References:
Ashraf, M.H.P.J.C., Harris, P.J. (2013) Photosynthesis under stressful
environments: An overview. Photosynthetica , 51 (2),
163–190.
Badawi, G.H., Yamauchi, Y., Kawano, N., Tanaka, K., Tanaka, K. (2004)
Enhanced tolerance to water deficit and high salt stress by
overexpressing superoxide dismutase and ascorbate peroxidase in tobacco
chloroplasts. Plant Cell Physiol . 45 , S230–S230.
Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak,
S., Mishra, S.K., Nover, L., Port, M., Scharf, K.D., Tripp, J. (2004)
Heat stress response in plants: a complex game with chaperones and more
than twenty heat stress transcription factors. J. Biosci.29 (4), 471-487.
Baniwal, S.K., Chan, K.Y., Scharf, K.D., Nover, L. (2007) Role of heat
stress transcription factor HsfA5 as specific repressor of HsfA4.J Biol Chem , 282 (6), 3605–3613.
Banti, V., Mafessoni, F., Loreti, E., Alpi, A., Perata, P. (2010) The
heat-inducible transcription factor HsfA2 enhances anoxia tolerance in
Arabidopsis. Plant Physiol. 152 (3), 1471–1483.
Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P.,
Tintschl-Körbitzer, A., Treuter, E., Nover, L. (2004) Tomato heat stress
transcription factor HsfB1 represents a novel type of general
transcription coactivator with a histone-like motif interacting with the
plant CREB binding protein ortholog HAC1. Plant
Cell , 16 (6), 1521-1535.
Brocker, C., Vasiliou, M., Carpenter, S., Carpenter, C., Zhang, Y.,
Wang, X., Kotchoni, S.O., Wood, A.J., Kirch, H.H., Kopečný, D., Nebert,
D.W., Vasiliou, V. (2013) Aldehyde dehydrogenase (ALDH) superfamily in
plants: Gene nomenclature and comparative genomics. Planta ,237 (1), 189–210.
Busch, W., Wunderlich, M., Schoffl, F. (2005) Identification of novel
heat shock factor-dependent genes and biochemical pathways inArabidopsis thaliana . Plant J . 41 (1), 1–14.
Chan-Schaminet, K.Y., Baniwal, S.K., Bublak, D., Nover, L., Scharf, K.D.
(2009) Specific interaction between tomato HsfA1 and HsfA2 creates
hetero-oligomeric superactivator complexes for synergistic activation of
heat stress gene expression. J. Biol. Chem. 284 (31),
20848–20857.
Chauhan, H., Khurana, N., Agarwal, P., Khurana, J.P., Khurana, P. (2013)
A seed preferential heat shock transcription factor from wheat provides
abiotic stress tolerance and yield enhancement in transgenic Arabidopsis
under heat stress environment. PLoS One , 8 , 11.
Chauhan, H., Khurana, N., Agarwal, P., Khurana, P. (2011) Heat shock
factors in rice (Oryza sativa L.): Genome-wide expression
analysis during reproductive development and abiotic stress. Mol.
Genet. Genomics , 286 (2), 171–187.
Czarnecka-Verner, E., Pan, S., Salem, T., Gurley, W.B. (2004) Plant
class B HSFs inhibit transcription and exhibit affinity for TFIIB and
TBP. Plant Mol. Biol. 56 (1), 57–75.
Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J.,
Coutu, J., Shulaev, V., Schlauch, K., Mittler, R. (2005) Cytosolic
ascorbate peroxidase 1 is a central component of the reactive oxygen
gene network of Arabidopsis. Plant Cell , 17 (1),
268–281.
Dhindsa, R.S., Matowe, W. (1981) Drought tolerance in two mosses:
Correlated with enzymatic defence against lipid peroxidation. J.
Exp. Bot. 32 (1), 79–91.
Evstigneeva, Z.G., Solov’eva, N.A., Sidel’nikova, L.I. (2001) Structures
and functions of chaperones and chaperonins (review). Appl.
Biochem. Microbiol . 37 (1), 1–13.
Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A.,
Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z., Alharby, H.,
Wu, C., Wang, D., Huang, J. (2017) Crop Production under drought and
heat stress: plant responses and management options. Front. Plant
Sci. 8 , 1147.
Fortunati, A., Barta, C., Brilli, F., Centritto, M., Zimmer, I.,
Schnitzler, J.P., Loreto, F. (2008) Isoprene emission is not
temperature-dependent during and after severe drought-stress: A
physiological and biochemical analysis. Plant J. 55 (4),
687–697.
Fragkostefanakis, S., Simm, S., Paul, P., Bublak, D., Scharf, K.D.,
Schleiff, E. (2015) Chaperone network composition in Solanum
lycopersicum explored by transcriptome profiling and microarray
meta-analysis. Plant, Cell Environ. 38 (4), 693–709.
Goyal, K., Walton, L.J., Tunnacliffe, A. (2005) LEA proteins prevent
protein aggregation due to water stress. Biochem .J.388 (1), 151–157.
Guo, M., Lu, J.P., Zhai, Y.F., Chai, W.G., Gong, Z.H., Lu, M.H. (2015)
Genome-wide analysis, expression profile of heat shock factor gene
family (CaHsfs) and characterisation of CaHsfA2 in pepper
(Capsicum annuum L.). BMC Plant Biol. 15 (1), 151.
Heerklotz, D., Doring, P., Bonzelius, F., Winkelhaus, S., Nover, L.
(2001) The balance of nuclear import and export determines the
intracellular distribution and function of tomato heat stress
transcription factor HsfA2. Mol. Cell. Biol . 21 (5),
1759–1768.
Hill, J.E., Hemmingsen, S.M. (2001) Arabidopsis thaliana type I
and II chaperonins. Cell Stress Chaperones , 6 (3),
190–200.
Hirayama, T., Shinozaki, K. (2010) Research on plant abiotic stress
responses in the post-genome era: Past, present and future. Plant
J. 61 (6), 1041–1052.
Hu, W., Hu, G., Han, B. (2009) Genome-wide survey and expression
profiling of heat shock proteins and heat shock factors revealed
overlapped and stress specific response under abiotic stresses in rice.Plant Sci. 176 (4), 583–590.
Hu, Y., Han, Y., Wei, W., Li, Y., Zhang, K., Gao, Y., Zhao, F., Feng, J.
(2015) Identification, isolation, and expression analysis of heat shock
transcription factors in the diploid woodland strawberry Fragaria
vesca . Front. Plant Sci . 6 , 736.
Huang, Y.C., Niu, C.Y., Yang, C.R., Jinn, T.L. (2016) The heat stress
factor HSFA6b connects ABA signaling and ABA-mediated heat responses.Plant Physiol . 172 (2), 1182–1199.
Ikeda, M., Ohme-Takagi, M. (2009) A novel group of transcriptional
repressors in Arabidopsis. Plant Cell Physiol . 50 (5),
970–975.
Jacob, P., Hirt, H., Bendahmane, A. (2017) The heat-shock
protein/chaperone network and multiple stress resistance. Plant
Biotechnol. J. 15 (4), 405–414.
Kalra, N., Chakraborty, D., Sharma, A., Rai, H.K., Jolly, M., Chander,
S., Kumar, P.R., Bhadraray, S., Barman, D., Mittal, R.B., Lal, M.,
Sehgal, M. (2008) Effect of increasing temperature on yield of some
winter crops in northwest India. Curr. Sci. 94 (1),
82–88.
Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling,
E., Scharf, K.D. (2007a) Complexity of the heat stress response in
plants. Curr. Opin. Plant Biol. 10 (3), 310–316.
Kotak, S., Vierling, E., Baumlein, H., von Koskull-Doring, P. (2007b) A
novel transcriptional cascade regulating expression of heat stress
proteins during seed development of Arabidopsis. Plant Cell ,19 (1), 182–195.
Kudla, J., Batistic, O., Hashimoto, K. (2010) Calcium signals: The Lead
Currency of plant information processing. Plant Cell ,22 (3), 541–563.
Kumar, M., Busch, W., Birke, H., Kemmerling, B., Nurnberger, T.,
Schoffl, F. (2009) Heat shock factors HsfB1 and HsfB2b are involved in
the regulation of Pdf1.2 expression and pathogen resistance in
Arabidopsis. Mol. Plant , 2 (1), 152–165.
Levy-Rimler, G., Bell, R.E., Ben-Tal, N., Azem, A. (2002) Type I
chaperonins: Not all are created equal. FEBS Lett.529 (1), 1–5.
Li, C., Chen, Q., Gao, X., Qi, B., Chen, N., Xu, S., Chen, J., Wang, X.
(2005) AtHsfA2 modulates expression of stress responsive genes
and enhances tolerance to heat and oxidative stress in Arabidopsis.Sci. China Ser. C Life Sci . 48 (6), 540–550.
Li, X. (2011) Infiltration of Nicotiana benthamiana protocol for
transient expression via Agrobacterium . Bio-protocol ,1 (14), e95.
Liu, H.C., Liao, H.T., Charng, Y.Y. (2011) The role of class A1 heat
shock factors (HSFA1s) in response to heat and other stresses in
Arabidopsis. Plant, Cell Environ. 34(5) , 738–751.
Lobell, D.B., Field, C.B. (2007) Global scale climate-crop yield
relationships and the impacts of recent warming. Environ. Res.
Lett. 29 (1), 014002.
Mann, D.G.J., Lafayette, P.R., Abercrombie, L.L., Parrott, W.A.,
Stewart, C.N. (2011) pANIC : A Versatile Set of Gateway-Compatible
Vectors for Gene Overexpression and RNAi-Mediated down-Regulation in
Monocots. Plant Transform. Technol. 161–168.
Mano, J., Kanameda, S., Kuramitsu, R., Matsuura, N., Yamauchi, Y. (2019)
Detoxification of reactive carbonyl species by glutathione transferase
tau isozymes. Front. Plant Sci. 10 , 487.
Mansoor, S., Naqvi, F.N. (2013) Effect of heat stress on lipid
peroxidation and antioxidant enzymes in mung bean (Vigna radiataL) seedlings. African J. Biotechnol . 12 (21), 3196–3203.
Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K.,
Nover, L., Scharf, K.D. (2002) In the complex family of heat stress
transcription factors, HsfA1 has a unique role as master
regulator of thermotolerance in tomato. Genes Dev .16 (2), 1555–1567.
Mittal, D., Chakrabarti, S., Sarkar, A., Singh, A., Grover, A. (2009)
Heat shock factor gene family in rice: Genomic organization and
transcript expression profiling in response to high temperature, low
temperature and oxidative stresses. Plant Physiol. Biochem .47 (9), 785–795.
Nakano, Y., Asada, K. (1981) Hydrogen Peroxide is Scavenged by
Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell
Physiol . 22 (5), 867–880.
Nover, L., Scharf, K.D. (1997) Heat stress proteins and transcription
factors. Cell. Mol. Life Sci. 53 (1), 80–103.
Patel, R.K., Jain, M. (2012) NGS QC toolkit: A toolkit for quality
control of next generation sequencing data. PLoS One ,7(2) , e30619.
Pulido, P., Leister, D. (2018) Novel DNAJ-related proteins inArabidopsis thaliana . New Phytol. 217 (2),
480–490.
Qu, A.L., Ding, Y.F., Jiang, Q., Zhu, C. (2013) Molecular mechanisms of
the plant heat stress response. Biochem. Biophys. Res. Commun .432 (2), 203–207.
Reddy, A.S.N., Ali, G.S., Celesnik, H., Day, I.S. (2011) Coping with
stresses: Roles of calcium- and calcium/calmodulin-regulated gene
expression. Plant Cell , 23 (6), 2010–2032.
Reddy, P.S., Kishor, P.B.K., Seiler, C., Kuhlmann, M., Eschen-Lippold,
L., Lee, J., Reddy, M.K., Sreenivasulu, N. (2014) Unraveling regulation
of the small heat shock proteins by the heat shock factorHvHsfB2c in barley: Its implications in drought stress response
and seed development. PLoS One , 9 (3), 1–16.
Scharf, K.D., Berberich, T., Ebersberger, I., Nover, L. (2012) The plant
heat stress transcription factor (Hsf) family: Structure, function and
evolution. Biochim. Biophys. Acta- Gene Regul. Mech .1819 (2), 104–119.
Scharf, K.D., Heider, H., Hohfeld, I., Lyck, R., Schmidt, E., Nover, L.
(1998) The Tomato Hsf System: HsfA2 Needs Interaction with HsfA1 for
Efficient Nuclear Import and May Be Localized in Cytoplasmic Heat Stress
Granules. Mol. Cell. Biol . 18 (4), 2240–2251.
Suzuki, N., Mittler, R. (2006) Reactive oxygen species and temperature
stresses: A delicate balance between signaling and destruction.Physiol. Plant. 126 (1), 45–51.
Trapnell, C., Pachter, L., Salzberg, S.L. (2009) TopHat: Discovering
splice junctions with RNA-Seq. Bioinformatics , 25 (9),
1105–1111.
Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S.,
Langebartels, C., Seidlitz, H.K., Zabeau, M., Van Montagu, M., Inzé, D.,
Van Breusegem, F. (2004) Catalase deficiency drastically affects gene
expression induced by high light in Arabidopsis thaliana .Plant J. 39 (1), 45–58.
von Koskull-Doring, P., Scharf, K.D., Nover, L. (2007) The diversity of
plant heat stress transcription factors. Trends Plant Sci.12 (10), 452–457.
Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R. (2007) Heat tolerance in
plants: An overview. Environ. Exp. Bot . 61 (3), 199–223.
Wang, G., Cai, G., Xu, N., Zhang, L., Sun, X., Guan, J., Meng, Q. (2019)
Novel Dnaj protein facilitates thermotolerance of transgenic tomatoes.Int. J. Mol. Sci. 20 (2), 1–19.
Wang, J., Sun, N., Deng, T., Zhang, L., Zuo, K. (2014) Genome-wide
cloning, identification, classification and functional analysis of
cotton heat shock transcription factors in cotton. BMC Genomics ,15 (1), 961.
Wang, W., Vinocur, B., Shoseyov, O., Altman, A. (2004) Role of plant
heat-shock proteins and molecular chaperones in the abiotic stress
response. Trends Plant Sci. 9 (5), 244–252.
Wohlgemuth, H., Mittelstrass, K., Kschieschan, S., Bender, J., Weigel,
H.J., Overmyer, K., Kangasjarvi, J., Sandermann, H., Langebartels, C.
(2002) Activation of an oxidative burst is a general feature of
sensitive plants exposed to the air pollutant ozone. Plant Cell
Environ . 25 (6), 717–726.
Wu, Z., Liang, J., Wang, C., Zhao, X., Zhong, X., Cao, X., Li, G., He,
J., Yi, M. (2018) Overexpression of lily HsfA3s in Arabidopsis
confers increased thermotolerance and salt sensitivity via alterations
in proline catabolism. J. Exp. Bot. 69 (8), 2005–2021.
Xue, G.P., Drenth, J., McIntyre, C.L. (2015) TaHsfA6f is a
transcriptional activator that regulates a suite of heat stress
protection genes in wheat (Triticum aestivum L.) including
previously unknown Hsf targets. J. Exp. Bot . 66 (3),
1025–1039.
Xue, G.P., Sadat, S., Drenth, J., McIntyre, C.L. (2014) The heat shock
factor family from Triticum aestivum in response to heat and
other major abiotic stresses and their role in regulation of heat shock
protein genes. J. Exp. Bot. 65 (2), 539–557.
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H.,
Iwabuchi, M., Oda, K. (2008) Expression of rice heat stress
transcription factor OsHsfA2e enhances tolerance to environmental
stresses in transgenic Arabidopsis. Planta , 227 (5),
957–967.