REFERENCES
Auesukaree, C., Damnernsawad, A., Kruatrachue, M., Pokethitiyook, P., Boonchird, C., Kaneko, Y., & Harashima, S. (2009). Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae . Journal of Applied Genetics , 50 (3), 301–310. doi: 10.1007/BF03195688
Beopoulos, A., Mrozova, Z., Thevenieau, F., Dall, M.-T. L., Hapala, I., Papanikolaou, S., … Nicaud, J.-M. (2008). Control of Lipid Accumulation in the Yeast Yarrowia lipolytica . Applied and Environmental Microbiology , 74 (24), 7779–7789. doi: 10.1128/AEM.01412-08
Berg, M. A. van den, Jong-Gubbels, P. de, Kortland, C. J., Dijken, J. P. van, Pronk, J. T., & Steensma, H. Y. (1996). The Two Acetyl-coenzyme A Synthetases of Saccharomyces cerevisiae Differ with Respect to Kinetic Properties and Transcriptional Regulation. Journal of Biological Chemistry , 271 (46), 28953–28959. doi: 10.1074/jbc.271.46.28953
Berman, J., Zorrilla-López, U., Farré, G., Zhu, C., Sandmann, G., Twyman, R. M., … Christou, P. (2015). Nutritionally important carotenoids as consumer products. Phytochemistry Reviews ,14 (5), 727–743. doi: 10.1007/s11101-014-9373-1
Das, A., Yoon, S.-H., Lee, S.-H., Kim, J.-Y., Oh, D.-K., & Kim, S.-W. (2007). An update on microbial carotenoid production: Application of recent metabolic engineering tools. Applied Microbiology and Biotechnology , 77 (3), 505. doi: 10.1007/s00253-007-1206-3
Dowling, J. E., & Wald, G. (1960). The Biological Function of Vitamin A Acid. Proceedings of the National Academy of Sciences of the United States of America , 46 (5), 587–608.
Gao, X., Caiyin, Q., Zhao, F., Wu, Y., & Lu, W. (2018). EngineeringSaccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose. Journal of Agricultural and Food Chemistry , 66 (45), 12009–12016. doi: 10.1021/acs.jafc.8b04916
Gietz, R. D., Schiestl, R. H., Willems, A. R., & Woods, R. A. (1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast , 11 (4), 355–360. doi: 10.1002/yea.320110408
Green, M. R., Sambrook, J., & Sambrook, J. (2012). Molecular cloning: A laboratory manual (4th ed). Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press.
Henríquez, V., Escobar, C., Galarza, J., & Gimpel, J. (2016). Carotenoids in Microalgae. In C. Stange (Ed.), Carotenoids in Nature: Biosynthesis, Regulation and Function (pp. 219–237). doi: 10.1007/978-3-319-39126-7_8
Hollinshead, W., He, L., & Tang, Y. J. (2014). Biofuel production: An odyssey from metabolic engineering to fermentation scale-up.Frontiers in Microbiology , 5 . doi: 10.3389/fmicb.2014.00344
Hou, X. (2012). Anaerobic xylose fermentation by Spathaspora passalidarum . Applied Microbiology and Biotechnology ,94 (1), 205–214. doi: 10.1007/s00253-011-3694-4
Irwandi Jaswir. (2011). Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. Journal of Medicinal Plants Research , 5 (33). doi: 10.5897/JMPRX11.011
Jin, Yong-Su, Lee, T. H., Choi, Y. D., Ryu, Y. W., & Seo, J. H. (2000). Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis. Journal of Microbiology and Biotechnology , 10 (4), 564–567.
Jin, Y.-S., Laplaza, J. M., & Jeffries, T. W. (2004).Saccharomyces cerevisiae Engineered for Xylose Metabolism Exhibits a Respiratory Response. Applied and Environmental Microbiology , 70 (11), 6816–6825. doi: 10.1128/AEM.70.11.6816-6825.2004
Kim, S. R., Ha, S.-J., Wei, N., Oh, E. J., & Jin, Y.-S. (2012). Simultaneous co-fermentation of mixed sugars: A promising strategy for producing cellulosic ethanol. Trends in Biotechnology ,30 (5), 274–282. doi: 10.1016/j.tibtech.2012.01.005
Kim, S. R., Skerker, J. M., Kang, W., Lesmana, A., Wei, N., Arkin, A. P., & Jin, Y.-S. (2013). Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae . PLOS ONE ,8 (2), e57048. doi: 10.1371/journal.pone.0057048
Kok, S., Nijkamp, J. F., Oud, B., Roque, F. C., Ridder, D., Daran, J.-M., Maris, A. J. A. (2012). Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiaeand their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Research , 12 (3), 359–374. doi: 10.1111/j.1567-1364.2011.00787.x
Kwak, S., Jo, J. H., Yun, E. J., Jin, Y.-S., & Seo, J.-H. (2019). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances , 37 (2), 271–283. doi: 10.1016/j.biotechadv.2018.12.003
Kwak, S., Kim, S. R., Xu, H., Zhang, G.-C., Lane, S., Kim, H., & Jin, Y.-S. (2017). Enhanced isoprenoid production from xylose by engineeredSaccharomyces cerevisiae . Biotechnology and Bioengineering , 114 (11), 2581–2591. doi: 10.1002/bit.26369
Li, Q., Sun, Z., Li, J., & Zhang, Y. (2013). Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering.FEMS Microbiology Letters , 345 (2), 94–101. doi: 10.1111/1574-6968.12187
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method.Methods , 25 (4), 402–408. doi: 10.1006/meth.2001.1262
López, J., Cataldo, V. F., Peña, M., Saa, P. A., Saitua, F., Ibaceta, M., & Agosin, E. (2019). Build Your Bioprocess on a Solid Strain—β-Carotene Production in Recombinant Saccharomyces cerevisiae . Frontiers in Bioengineering and Biotechnology ,7 . doi: 10.3389/fbioe.2019.00171
Ma, T., Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y., Liu, T. (2019). Lipid engineering combined with systematic metabolic engineering ofSaccharomyces cerevisiae for high-yield production of lycopene.Metabolic Engineering , 52 , 134–142. doi: 10.1016/j.ymben.2018.11.009
Matsushika, A., Goshima, T., & Hoshino, T. (2014). Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial Cell Factories , 13 (1), 16. doi: 10.1186/1475-2859-13-16
Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L., Tsong, A. E. (2016). Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature ,537 (7622), 694–697. doi: 10.1038/nature19769
Montanti, J., Nghiem, N. P., & Johnston, D. B. (2011). Production of Astaxanthin from Cellulosic Biomass Sugars by Mutants of the YeastPhaffia rhodozyma . Applied Biochemistry and Biotechnology ,164 (5), 655–665. doi: 10.1007/s12010-011-9165-7
Palozza, P., & Krinsky, N. I. (1992). [38] Antioxidant effects of carotenoids in Vivo and in Vitro: An overview. In Carotenoids Part A: Chemistry, Separation, Quantitation, and Antioxidation : Vol.213 . Methods in Enzymology (pp. 403–420). doi: 10.1016/0076-6879(92)13142-K
Peralta-Yahya, P. P., Ouellet, M., Chan, R., Mukhopadhyay, A., Keasling, J. D., & Lee, T. S. (2011). Identification and microbial production of a terpene-based advanced biofuel. Nature Communications ,2 (1), 483. doi: 10.1038/ncomms1494
Pfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences , 1 . doi: 10.3389/fmolb.2014.00017
Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Keasling, J. D. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature ,440 (7086), 940. doi: 10.1038/nature04640
Sun, L., Kwak, S., & Jin, Y.-S. (2019). Vitamin A Production by Engineered Saccharomyces cerevisiae from Xylose via Two-Phase in Situ Extraction. ACS Synthetic Biology , 8 (9), 2131–2140. doi: 10.1021/acssynbio.9b00217
Sun, Y., Sun, L., Shang, F., & Yan, G. (2016). Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids.Process Biochemistry , 51 (5), 568–577. doi: 10.1016/j.procbio.2016.02.004
van Hoek, P., de Hulster, E., van Dijken, J. P., & Pronk, J. T. (2000). Fermentative capacity in high‐cell‐density fed‐batch cultures of baker’s yeast. Biotechnology and Bioengineering , 68 (5), 7.
Verwaal, R., Wang, J., Meijnen, J.-P., Visser, H., Sandmann, G., Berg, J. A. van den, & Ooyen, A. J. J. van. (2007). High-Level Production of Beta-Carotene in Saccharomyces cerevisiae by Successive Transformation with Carotenogenic Genes from Xanthophyllomyces dendrorhous . Applied and Environmental Microbiology. ,73 (13), 4342–4350. doi: 10.1128/AEM.02759-06
Vickers, C. E., Williams, T. C., Peng, B., & Cherry, J. (2017). Recent advances in synthetic biology for engineering isoprenoid production in yeast. Current Opinion in Chemical Biology , 40 , 47–56. doi: 10.1016/j.cbpa.2017.05.017
Wei, L.-J., Kwak, S., Liu, J.-J., Lane, S., Hua, Q., Kweon, D.-H., & Jin, Y.-S. (2018). Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae . Biotechnology and Bioengineering , 115 (7), 1793–1800. doi: 10.1002/bit.26595
Williams, A. W., Boileau, T. W.-M., Zhou, J. R., Clinton, S. K., & Erdman, J. W. (2000). β-Carotene Modulates Human Prostate Cancer Cell Growth and May Undergo Intracellular Metabolism to Retinol. The Journal of Nutrition , 130 (4), 728–732. doi: 10.1093/jn/130.4.728
Xie, W., Liu, M., Lv, X., Lu, W., Gu, J., & Yu, H. (2014). Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae .Biotechnology and Bioengineering , 111 (1), 125–133. doi: 10.1002/bit.25002
Xie, W., Lv, X., Ye, L., Zhou, P., & Yu, H. (2015). Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering , 30 , 69–78. doi: 10.1016/j.ymben.2015.04.009
Xie, W., Ye, L., Lv, X., Xu, H., & Yu, H. (2015). Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae . Metabolic Engineering , 28 , 8–18. doi: 10.1016/j.ymben.2014.11.007
Yan, G., Wen, K., & Duan, C. (2012). Enhancement of β-Carotene Production by Over-Expression of HMG-CoA Reductase Coupled with Addition of Ergosterol Biosynthesis Inhibitors in Recombinant Saccharomyces cerevisiae . Current Microbiology , 64 (2), 159–163. doi: 10.1007/s00284-011-0044-9
Yeum, K. J., Booth, S. L., Sadowski, J. A., Liu, C., Tang, G., Krinsky, N. I., & Russell, R. M. (1996). Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. The American Journal of Clinical Nutrition , 64 (4), 594–602. doi: 10.1093/ajcn/64.4.594
Yoon, S.-H., Park, H.-M., Kim, J.-E., Lee, S.-H., Choi, M.-S., Kim, J.-Y., … Kim, S.-W. (2007). Increased β-Carotene Production in Recombinant Escherichia coli Harboring an Engineered Isoprenoid Precursor Pathway with Mevalonate Addition. Biotechnology Progress , 23 (3), 599–605. doi: 10.1021/bp070012p
Yuan, L. Z., Rouvière, P. E., LaRossa, R. A., & Suh, W. (2006). Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli . Metabolic Engineering ,8 (1), 79–90. doi: 10.1016/j.ymben.2005.08.005
Zhang, G.-C., Kong, I. I., Kim, H., Liu, J.-J., Cate, J. H. D., & Jin, Y.-S. (2014). Construction of a Quadruple Auxotrophic Mutant of an Industrial Polyploid Saccharomyces cerevisiae Strain by Using RNA-Guided Cas9 Nuclease. Applied and Environmental Microbiology ,80 (24), 7694–7701. doi: 10.1128/AEM.02310-14
Zhang, S., Skerker, J. M., Rutter, C. D., Maurer, M. J., Arkin, A. P., & Rao, C. V. (2016). Engineering Rhodosporidium toruloides for increased lipid production. Biotechnology and Bioengineering ,113 (5), 1056–1066. doi: 10.1002/bit.25864
Zhao, J., Li, Q., Sun, T., Zhu, X., Xu, H., Tang, J., Ma, Y. (2013). Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metabolic Engineering ,17 , 42–50. doi: 10.1016/j.ymben.2013.02.002
Zhou, P., Xie, W., Li, A., Wang, F., Yao, Z., Bian, Q., Ye, L. (2017). Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae .Enzyme and Microbial Technology , 100 , 28–36. doi: 10.1016/j.enzmictec.2017.02.006