REFERENCES
Auesukaree, C., Damnernsawad, A., Kruatrachue, M., Pokethitiyook, P.,
Boonchird, C., Kaneko, Y., & Harashima, S. (2009). Genome-wide
identification of genes involved in tolerance to various environmental
stresses in Saccharomyces cerevisiae . Journal of Applied
Genetics , 50 (3), 301–310. doi: 10.1007/BF03195688
Beopoulos, A., Mrozova, Z., Thevenieau, F., Dall, M.-T. L., Hapala, I.,
Papanikolaou, S., … Nicaud, J.-M. (2008). Control of Lipid
Accumulation in the Yeast Yarrowia lipolytica . Applied and
Environmental Microbiology , 74 (24), 7779–7789. doi:
10.1128/AEM.01412-08
Berg, M. A. van den, Jong-Gubbels, P. de, Kortland, C. J., Dijken, J. P.
van, Pronk, J. T., & Steensma, H. Y. (1996). The Two Acetyl-coenzyme A
Synthetases of Saccharomyces cerevisiae Differ with Respect to
Kinetic Properties and Transcriptional Regulation. Journal of
Biological Chemistry , 271 (46), 28953–28959. doi:
10.1074/jbc.271.46.28953
Berman, J., Zorrilla-López, U., Farré, G., Zhu, C., Sandmann, G.,
Twyman, R. M., … Christou, P. (2015). Nutritionally important
carotenoids as consumer products. Phytochemistry Reviews ,14 (5), 727–743. doi: 10.1007/s11101-014-9373-1
Das, A., Yoon, S.-H., Lee, S.-H., Kim, J.-Y., Oh, D.-K., & Kim, S.-W.
(2007). An update on microbial carotenoid production: Application of
recent metabolic engineering tools. Applied Microbiology and
Biotechnology , 77 (3), 505. doi: 10.1007/s00253-007-1206-3
Dowling, J. E., & Wald, G. (1960). The Biological Function of Vitamin A
Acid. Proceedings of the National Academy of Sciences of the
United States of America , 46 (5), 587–608.
Gao, X., Caiyin, Q., Zhao, F., Wu, Y., & Lu, W. (2018). EngineeringSaccharomyces cerevisiae for Enhanced Production of
Protopanaxadiol with Cofermentation of Glucose and Xylose. Journal
of Agricultural and Food Chemistry , 66 (45), 12009–12016. doi:
10.1021/acs.jafc.8b04916
Gietz, R. D., Schiestl, R. H., Willems, A. R., & Woods, R. A. (1995).
Studies on the transformation of intact yeast cells by the
LiAc/SS-DNA/PEG procedure. Yeast , 11 (4), 355–360. doi:
10.1002/yea.320110408
Green, M. R., Sambrook, J., & Sambrook, J. (2012). Molecular
cloning: A laboratory manual (4th ed). Cold Spring Harbor, N.Y: Cold
Spring Harbor Laboratory Press.
Henríquez, V., Escobar, C., Galarza, J., & Gimpel, J. (2016).
Carotenoids in Microalgae. In C. Stange (Ed.), Carotenoids in
Nature: Biosynthesis, Regulation and Function (pp. 219–237). doi:
10.1007/978-3-319-39126-7_8
Hollinshead, W., He, L., & Tang, Y. J. (2014). Biofuel production: An
odyssey from metabolic engineering to fermentation scale-up.Frontiers in Microbiology , 5 . doi:
10.3389/fmicb.2014.00344
Hou, X. (2012). Anaerobic xylose fermentation by Spathaspora
passalidarum . Applied Microbiology and Biotechnology ,94 (1), 205–214. doi: 10.1007/s00253-011-3694-4
Irwandi Jaswir. (2011). Carotenoids: Sources, medicinal properties and
their application in food and nutraceutical industry. Journal of
Medicinal Plants Research , 5 (33). doi: 10.5897/JMPRX11.011
Jin, Yong-Su, Lee, T. H., Choi, Y. D., Ryu, Y. W., & Seo, J. H. (2000).
Conversion of xylose to ethanol by recombinant Saccharomyces
cerevisiae containing genes for xylose reductase and xylitol
dehydrogenase from Pichia stipitis. Journal of Microbiology and
Biotechnology , 10 (4), 564–567.
Jin, Y.-S., Laplaza, J. M., & Jeffries, T. W. (2004).Saccharomyces cerevisiae Engineered for Xylose Metabolism
Exhibits a Respiratory Response. Applied and Environmental
Microbiology , 70 (11), 6816–6825. doi:
10.1128/AEM.70.11.6816-6825.2004
Kim, S. R., Ha, S.-J., Wei, N., Oh, E. J., & Jin, Y.-S. (2012).
Simultaneous co-fermentation of mixed sugars: A promising strategy for
producing cellulosic ethanol. Trends in Biotechnology ,30 (5), 274–282. doi: 10.1016/j.tibtech.2012.01.005
Kim, S. R., Skerker, J. M., Kang, W., Lesmana, A., Wei, N., Arkin, A.
P., & Jin, Y.-S. (2013). Rational and Evolutionary Engineering
Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid
Xylose Fermentation in Saccharomyces cerevisiae . PLOS ONE ,8 (2), e57048. doi: 10.1371/journal.pone.0057048
Kok, S., Nijkamp, J. F., Oud, B., Roque, F. C., Ridder, D., Daran,
J.-M., Maris, A. J. A. (2012). Laboratory evolution of new lactate
transporter genes in a jen1Δ mutant of Saccharomyces cerevisiaeand their identification as ADY2 alleles by whole-genome resequencing
and transcriptome analysis. FEMS Yeast Research , 12 (3),
359–374. doi: 10.1111/j.1567-1364.2011.00787.x
Kwak, S., Jo, J. H., Yun, E. J., Jin, Y.-S., & Seo, J.-H. (2019).
Production of biofuels and chemicals from xylose using native and
engineered yeast strains. Biotechnology Advances , 37 (2),
271–283. doi: 10.1016/j.biotechadv.2018.12.003
Kwak, S., Kim, S. R., Xu, H., Zhang, G.-C., Lane, S., Kim, H., & Jin,
Y.-S. (2017). Enhanced isoprenoid production from xylose by engineeredSaccharomyces cerevisiae . Biotechnology and
Bioengineering , 114 (11), 2581–2591. doi: 10.1002/bit.26369
Li, Q., Sun, Z., Li, J., & Zhang, Y. (2013). Enhancing beta-carotene
production in Saccharomyces cerevisiae by metabolic engineering.FEMS Microbiology Letters , 345 (2), 94–101. doi:
10.1111/1574-6968.12187
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene
Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method.Methods , 25 (4), 402–408. doi: 10.1006/meth.2001.1262
López, J., Cataldo, V. F., Peña, M., Saa, P. A., Saitua, F., Ibaceta,
M., & Agosin, E. (2019). Build Your Bioprocess on a Solid
Strain—β-Carotene Production in Recombinant Saccharomyces
cerevisiae . Frontiers in Bioengineering and Biotechnology ,7 . doi: 10.3389/fbioe.2019.00171
Ma, T., Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y., Liu, T. (2019).
Lipid engineering combined with systematic metabolic engineering ofSaccharomyces cerevisiae for high-yield production of lycopene.Metabolic Engineering , 52 , 134–142. doi:
10.1016/j.ymben.2018.11.009
Matsushika, A., Goshima, T., & Hoshino, T. (2014). Transcription
analysis of recombinant industrial and laboratory Saccharomyces
cerevisiae strains reveals the molecular basis for fermentation of
glucose and xylose. Microbial Cell Factories , 13 (1), 16.
doi: 10.1186/1475-2859-13-16
Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y.,
Raetz, L., Tsong, A. E. (2016). Rewriting yeast central carbon
metabolism for industrial isoprenoid production. Nature ,537 (7622), 694–697. doi: 10.1038/nature19769
Montanti, J., Nghiem, N. P., & Johnston, D. B. (2011). Production of
Astaxanthin from Cellulosic Biomass Sugars by Mutants of the YeastPhaffia rhodozyma . Applied Biochemistry and Biotechnology ,164 (5), 655–665. doi: 10.1007/s12010-011-9165-7
Palozza, P., & Krinsky, N. I. (1992). [38] Antioxidant effects of
carotenoids in Vivo and in Vitro: An overview. In Carotenoids Part
A: Chemistry, Separation, Quantitation, and Antioxidation : Vol.213 . Methods in Enzymology (pp. 403–420). doi:
10.1016/0076-6879(92)13142-K
Peralta-Yahya, P. P., Ouellet, M., Chan, R., Mukhopadhyay, A., Keasling,
J. D., & Lee, T. S. (2011). Identification and microbial production of
a terpene-based advanced biofuel. Nature Communications ,2 (1), 483. doi: 10.1038/ncomms1494
Pfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the
Crabtree effect. Frontiers in Molecular Biosciences , 1 .
doi: 10.3389/fmolb.2014.00017
Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L.,
Ndungu, J. M., Keasling, J. D. (2006). Production of the antimalarial
drug precursor artemisinic acid in engineered yeast. Nature ,440 (7086), 940. doi: 10.1038/nature04640
Sun, L., Kwak, S., & Jin, Y.-S. (2019). Vitamin A Production by
Engineered Saccharomyces cerevisiae from Xylose via Two-Phase in
Situ Extraction. ACS Synthetic Biology , 8 (9), 2131–2140.
doi: 10.1021/acssynbio.9b00217
Sun, Y., Sun, L., Shang, F., & Yan, G. (2016). Enhanced production of
β-carotene in recombinant Saccharomyces cerevisiae by inverse
metabolic engineering with supplementation of unsaturated fatty acids.Process Biochemistry , 51 (5), 568–577. doi:
10.1016/j.procbio.2016.02.004
van Hoek, P., de Hulster, E., van Dijken, J. P., & Pronk, J. T. (2000).
Fermentative capacity in high‐cell‐density fed‐batch cultures of baker’s
yeast. Biotechnology and Bioengineering , 68 (5), 7.
Verwaal, R., Wang, J., Meijnen, J.-P., Visser, H., Sandmann, G., Berg,
J. A. van den, & Ooyen, A. J. J. van. (2007). High-Level Production of
Beta-Carotene in Saccharomyces cerevisiae by Successive
Transformation with Carotenogenic Genes from Xanthophyllomyces
dendrorhous . Applied and Environmental Microbiology. ,73 (13), 4342–4350. doi: 10.1128/AEM.02759-06
Vickers, C. E., Williams, T. C., Peng, B., & Cherry, J. (2017). Recent
advances in synthetic biology for engineering isoprenoid production in
yeast. Current Opinion in Chemical Biology , 40 , 47–56.
doi: 10.1016/j.cbpa.2017.05.017
Wei, L.-J., Kwak, S., Liu, J.-J., Lane, S., Hua, Q., Kweon, D.-H., &
Jin, Y.-S. (2018). Improved squalene production through increasing lipid
contents in Saccharomyces cerevisiae . Biotechnology and
Bioengineering , 115 (7), 1793–1800. doi: 10.1002/bit.26595
Williams, A. W., Boileau, T. W.-M., Zhou, J. R., Clinton, S. K., &
Erdman, J. W. (2000). β-Carotene Modulates Human Prostate Cancer Cell
Growth and May Undergo Intracellular Metabolism to Retinol. The
Journal of Nutrition , 130 (4), 728–732. doi:
10.1093/jn/130.4.728
Xie, W., Liu, M., Lv, X., Lu, W., Gu, J., & Yu, H. (2014). Construction
of a controllable β-carotene biosynthetic pathway by decentralized
assembly strategy in Saccharomyces cerevisiae .Biotechnology and Bioengineering , 111 (1), 125–133. doi:
10.1002/bit.25002
Xie, W., Lv, X., Ye, L., Zhou, P., & Yu, H. (2015). Construction of
lycopene-overproducing Saccharomyces cerevisiae by combining
directed evolution and metabolic engineering. Metabolic
Engineering , 30 , 69–78. doi: 10.1016/j.ymben.2015.04.009
Xie, W., Ye, L., Lv, X., Xu, H., & Yu, H. (2015). Sequential control of
biosynthetic pathways for balanced utilization of metabolic
intermediates in Saccharomyces cerevisiae . Metabolic
Engineering , 28 , 8–18. doi: 10.1016/j.ymben.2014.11.007
Yan, G., Wen, K., & Duan, C. (2012). Enhancement of β-Carotene
Production by Over-Expression of HMG-CoA Reductase Coupled with Addition
of Ergosterol Biosynthesis Inhibitors in Recombinant Saccharomyces
cerevisiae . Current Microbiology , 64 (2), 159–163. doi:
10.1007/s00284-011-0044-9
Yeum, K. J., Booth, S. L., Sadowski, J. A., Liu, C., Tang, G., Krinsky,
N. I., & Russell, R. M. (1996). Human plasma carotenoid response to the
ingestion of controlled diets high in fruits and vegetables. The
American Journal of Clinical Nutrition , 64 (4), 594–602. doi:
10.1093/ajcn/64.4.594
Yoon, S.-H., Park, H.-M., Kim, J.-E., Lee, S.-H., Choi, M.-S., Kim,
J.-Y., … Kim, S.-W. (2007). Increased β-Carotene Production in
Recombinant Escherichia coli Harboring an Engineered Isoprenoid
Precursor Pathway with Mevalonate Addition. Biotechnology
Progress , 23 (3), 599–605. doi: 10.1021/bp070012p
Yuan, L. Z., Rouvière, P. E., LaRossa, R. A., & Suh, W. (2006).
Chromosomal promoter replacement of the isoprenoid pathway for enhancing
carotenoid production in E. coli . Metabolic Engineering ,8 (1), 79–90. doi: 10.1016/j.ymben.2005.08.005
Zhang, G.-C., Kong, I. I., Kim, H., Liu, J.-J., Cate, J. H. D., & Jin,
Y.-S. (2014). Construction of a Quadruple Auxotrophic Mutant of an
Industrial Polyploid Saccharomyces cerevisiae Strain by Using
RNA-Guided Cas9 Nuclease. Applied and Environmental Microbiology ,80 (24), 7694–7701. doi: 10.1128/AEM.02310-14
Zhang, S., Skerker, J. M., Rutter, C. D., Maurer, M. J., Arkin, A. P.,
& Rao, C. V. (2016). Engineering Rhodosporidium toruloides for
increased lipid production. Biotechnology and Bioengineering ,113 (5), 1056–1066. doi: 10.1002/bit.25864
Zhao, J., Li, Q., Sun, T., Zhu, X., Xu, H., Tang, J., Ma, Y. (2013).
Engineering central metabolic modules of Escherichia coli for
improving β-carotene production. Metabolic Engineering ,17 , 42–50. doi: 10.1016/j.ymben.2013.02.002
Zhou, P., Xie, W., Li, A., Wang, F., Yao, Z., Bian, Q., Ye, L. (2017).
Alleviation of metabolic bottleneck by combinatorial engineering
enhanced astaxanthin synthesis in Saccharomyces cerevisiae .Enzyme and Microbial Technology , 100 , 28–36. doi:
10.1016/j.enzmictec.2017.02.006