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Abstract 1 

The field of landscape genetics has been rapidly evolving, adopting and adapting analytical frameworks 2 

to address research questions. As landscape genetic analyses have shifted away from Mantel-based 3 

analytical frameworks, studies are increasingly using regression-based frameworks to understand the 4 

individual contributions of landscape and habitat variables on genetic differentiation. This paper outlines 5 

appropriate and inappropriate uses of multiple regression for these purposes. Of concern is the prevalence 6 

of studies seeking to explain genetic differences by fitting regression models with effective distance 7 

variables calculated independently on separate landscape resistance surfaces. When moving across the 8 

landscape, organisms cannot respond independently and uniquely to habitat and landscape features. 9 

Therefore, independent resistance surfaces and their effective distance measures have no mechanistic 10 

meaning or relevant statistical interpretation. There are also tremendous challenges to fitting and 11 

interpreting regression models that include ‘independent’ effective distance measures as predictors, 12 

including statistical suppression. As such, regression analyses seeking to understand how landscape 13 

resistance affects gene flow should be univariate models, with the creation of a single resistance surface 14 

being a necessary precursor to the regression analysis. There are, however, important statistical advances 15 

underway that explicitly model the covariance of allele frequencies or genetic distances as functions of 16 

spatial landscape variables. The growth and evolution of landscape genetics as a field has been rapid and 17 

exciting. It is the goal of this opinion paper to highlight past missteps and to ensure that future use of 18 

regression models will appropriately consider the process being modeled, which will provide clarity to 19 

model interpretation.  20 
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Background 25 

A fundamental goal of landscape genetic research is to understand how landscape structure and 26 

composition contribute to patterns of genetic (dis)similarity between individuals or populations. However, 27 

achieving this goal has been exceedingly difficult. Over the relatively short history of the discipline, 28 

landscape genetics has incrementally made progress toward statistically defensible models and analytical 29 

frameworks. Mantel and partial Mantel tests were among the first models used to correlate genetic 30 

(dis)similarity with least cost path distance, cumulative cost distance, or resistance distance (hereafter 31 

effective distance) across the landscape. Mantel tests were bolstered through the use of rigorous 32 

frameworks for assessing alternative hypotheses of landscape resistance, specifically the causal modeling 33 

framework (Cushman et al. 2006) and later the reciprocal causal modeling framework (Cushman et al. 34 

2013). However, Mantel tests have received extensive scrutiny (e.g., Balkenhol et al. 2009; Guillot & 35 

Rousset 2013; Legendre et al. 2015; Legendre & Fortin 2010; Zeller et al. 2016), and are now known to 36 

be a relatively low-power method for correctly inferring genetic-distance relationships. 37 

  As of 2008, nearly 60% of landscape genetic studies used Mantel tests, while linear regression 38 

(~20%) and multiple matrix regression (<5%) were much less common (Storfer et al. 2010). However, 39 

the removal of the Mantel test from the statistical toolbox left researchers looking for alternative 40 

analytical approaches, of which there are many (Balkenhol et al. 2009). Two regression-based methods, 41 

multiple regression on distance matrices (MRDM; Legendre et al. 1994) and novel formulations of mixed 42 

effects models (Clarke et al. 2002), have received extensive use in more recent landscape genetic 43 

analyses. Originally developed as a statistical framework for evaluating the effects of independent traits 44 

coded as distance matrices, MRDM had a logical and intuitive extension to modeling effective distances 45 

between spatial samples and their corresponding genetic distances. In contrast, the maximum likelihood 46 

population-effects parameterization of a mixed effects model (MLPE; Clarke et al. 2002) was specifically 47 

developed for accommodating the non-independence inherent in pairwise genetic and geographic or 48 

environmental distance. MLPE was first used in a landscape genetics context by van Strien et al. (2012), 49 
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and has since seen widespread application. Reinforcing the value of the MLPE model, Shirk et al. (2017) 50 

identified it as the best overall regression-based approach when conducting model selection in individual-51 

based analyses.  52 

 Unfortunately, the use of regression-based models in landscape genetics is not without its pitfalls, 53 

and it is my opinion and concern that researchers are misusing regression models for landscape genetic 54 

analyses (e.g., Balkenhol et al. 2014; Blair et al. 2013; Emel & Storfer 2015; Kozakiewicz et al. 2019; 55 

Mims et al. 2015; Prunier et al. 2017; Row et al. 2015; Trumbo et al. 2019; Trumbo et al. 2013). 56 

Specifically, effective distance should not be calculated separately across individual resistance surfaces 57 

and then used as independent predictor variables in regression models. The purpose of this perspective 58 

piece is to highlight the conceptual flaws in this approach when the objective is to understand how 59 

landscape resistance effects gene flow. 60 

 61 

Landscape resistance and effective distance 62 

It is important to think mechanistically about the underlying process we hope to understand through a 63 

regression-based landscape genetics analysis. When we sample individuals or populations in space, the 64 

occurrence or frequency of alleles can be used to calculate genetic (dis)similarity. It is typically assumed 65 

that space (isolation-by-distance), the intervening landscape (isolation-by-resistance), and/or 66 

environmental differences (isolation-by-environment) are factors affecting the movement, survival, and 67 

subsequent gene flow of organisms. Understanding how landscape features affect gene flow requires a 68 

movement model, such as least cost path or circuit resistance (McRae 2006; McRae & Beier 2007), to 69 

calculate effective distances between spatial samples. These models of movement require a single 70 

resistance surface as an input. Similarly, individual- and population-based genetic simulations that include 71 

a landscape resistance effect require a single distance matrix describing the effective distance between 72 

spatial locations on the landscape (e.g., Adamack & Gruber 2014; Landguth et al. 2016; Landguth & 73 

Cushman 2009). This single effective distance matrix must encapsulate the combined effects of all 74 
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landscape and environmental features. The requirements of current genetic simulation software also 75 

accurately reflect the movement process of organisms, as all landscape and environmental features are 76 

perceived and experienced simultaneously. For example, a salamander dispersing across the landscape 77 

experiences the land cover, hill slope, and soil moisture simultaneously, and all these features combine to 78 

shape the movement paths of salamanders. It therefore does not make biological sense to calculate 79 

effective distances across landscape features independently. It is quite likely that the movement paths or 80 

effective distances across individual surfaces will not align with those across the combined resistance 81 

surface (Fig. 1). Individual effective distance measures are not independent nor additive components of 82 

the true effective distance that results from a resistance surface derived from multiple spatial features. As 83 

such, the fitted regression model should be 84 

genetic distance ~ effective distance. (1) 85 

If the movement process is the result of experiencing all facets of the landscape at once, what can we 86 

hope to meaningfully ascertain from artificially creating distance variables from each landscape surface 87 

independently? The challenge for landscape genetic researchers is determining which variables combine 88 

in which way to create a resistance surface and subsequent effective distances between individuals or 89 

populations that best reflect the patterns in observed genetic distances. Calculating independent effective 90 

distance measures is not a valid approach to surmounting this challenge. 91 

 92 

 Multicollinearity and parameter interpretation 93 

As with any regression-based approach, it is important to assess and minimize collinearity among 94 

variables used as independent variables in the model. Assessing zero-order correlations and variance 95 

inflation factors are steps that seem to be widely adopted and correctly implemented in regression-based 96 

landscape genetic analyses that include multiple predictor variables. However, it is quite alarming that 97 

effective distances between sample locations can be uncorrelated and ‘independent’. This highlights how 98 

unique and divergent movement paths between sample locations can be, as demonstrated in Figure 1. 99 
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Milanesi et al. (2016) found that not only can least cost path distances calculated on different resistance 100 

surfaces be uncorrelated, they can be significantly different. 101 

Even in the absence of multicollinearity, effective distances as independent variables are likely to act 102 

as suppressors in the regression model (Paulhus et al. 2004; Prunier et al. 2017; Prunier et al. 2015). In 103 

short, nuisance variance is explained by the suppressor variable, which can elevate the importance of 104 

other parameters and result in a superior fitting model. The presence of a suppressor variable is often 105 

manifested as a negative regression parameter estimate. This phenomena has been described in previous 106 

regression-based analyses (Row et al. 2015; Trumbo et al. 2019; Trumbo et al. 2013). Negative parameter 107 

coefficients have been interpreted as indicating that a particular resistance surface has a negative effect on 108 

gene flow (Trumbo et al. 2019; Trumbo et al. 2013), or have been discounted as indicating a non-true 109 

relationship (Kozakiewicz et al. 2019). In their simulation study and assessment of multiple regression of 110 

distance matrices, Prunier et al. (2015) used correspondence analysis to demonstrate how suppression can 111 

influence parameter estimates, challenging interpretation of parameters and model selection. The reality is 112 

that effective distances, as calculated across a hypothesized resistance surface, should have either a 113 

positive or negligible effect. The only way to generate a ‘negative effect’ is to invert the resistance values 114 

of the landscape. A positive regression parameter estimate on this inverted resistance surface with 115 

confidence intervals that do not include zero is statistical support of this ‘negative effect’.  116 

Although multicollinearity is no doubt hugely problematic in regression-based analyses and cannot be 117 

ignored, analyses seeking to relate pairwise effective distances across the landscape to pairwise genetic 118 

distances should only contain a single predictor variable consisting of the pairwise effective distances 119 

between sample locations (Eq 1). Therefore, multicollinearity should not be an issue of concern.  120 

Can multiple predictor variables ever be used in a distance-based landscape genetics regression 121 

analysis? 122 

In short, yes, there are ways to approach distance-based landscape genetic analyses that can defensibly 123 

accommodate multiple independent landscape predictor variables. These scenarios broadly fall into two 124 
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different modeling approaches: (1) corridor- or transect-based analyses and (2) derived distance analyses. 125 

In corridor-based analyses, transects or corridors between all sample locations are first created, then 126 

landscape features are summarized along transects or within corridors (e.g., maximum slope, average 127 

canopy cover, proportion of corridor consisting of developed land). This was the approach used by van 128 

Strien et al. (2012) in their initial application of MLPE for landscape genetic analyses, which resulted in 129 

largely independent predictor variables. Using this framework, regression parameter coefficients can be 130 

interpreted as promoting or impeding movement within the corridor, as well as their magnitude of effect. 131 

There are still challenges and limitations to this approach. First, one must decide how spatial locations 132 

will be connected. Studies have simply used a straight line (e.g., Coster et al. 2015; Goldberg & Waits 133 

2010; Murphy et al. 2010), or alternatively have used a least cost path between locations (e.g., Emel & 134 

Storfer 2015; Spear & Storfer 2008; van Strien et al. 2012). The former approach assumes that a summary 135 

of the landscape directly between locations is influencing movement, while the latter approach requires 136 

that a resistance surface be defined in order to generate least cost paths. Second, the width of the corridor 137 

surrounding the connection lines must be defined. Researchers have previously considered the corridor 138 

width to be indicative of the scale at which a species responds to a particular landscape or habitat feature 139 

(Murphy et al. 2010; van Strien et al. 2012), however this interpretation differs from definitions of scale 140 

in the landscape ecological literature (e.g., McGarigal et al. 2016; Zeller et al. 2012). Finally, it must be 141 

assumed that the statistic used to summarize landscape features within the corridor (e.g., proportion, 142 

mean, maximum, minimum) appropriately reflects how movement through the corridor might be affected. 143 

 The other approach for generating independent landscape variables is to create distance matrices 144 

(e.g., Euclidean distance) of the differences in landscape or habitat features between sample locations. 145 

This approach was used by Franckowiak et al. (2017) in their assessment of the model selection abilities 146 

of MRDM, is in line with the original application of MRDM (Legendre et al. 1994), and is an assessment 147 

of isolation-by-environment (Wang 2013; Wang & Bradburd 2014). It is important to recognize that this 148 

approach does not require or follow any specific movement model across the landscape and is not an 149 

explicit evaluation of how landscape configuration or matrix composition affect gene flow.  150 
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  151 

Creating a resistance surface 152 

If the end goal of an analysis is to identify the best-supported resistance surface and/or to infer movement 153 

paths across the landscape, the real challenge facing researchers is how to combine individual landscape 154 

features to create a resistance surface. This is a long-standing challenge in landscape genetics (Spear et al. 155 

2010). Unfortunately, neither of the frameworks described above will achieve this goal (although full 156 

implementation of the multi-step framework of van Strien et al. (2012) does include identifying a 157 

resistance surface for creating least cost paths). Numerous approaches for creating and optimizing 158 

resistance surfaces have been used (e.g., Peterman 2018; Shirk et al. 2010; Wang et al. 2009). Central to 159 

these is an assessment of effective distance calculated on a resistance surface in relation to genetic 160 

distance (Eq 1). Essentially, a suite of resistance surfaces are created by transforming and combining 161 

individual surfaces. Effective distances are then calculated across each resistance surface and univariate 162 

models are then fit with each effective distance measure in turn. Finally, some form of model selection is 163 

used identify the best-supported resistance surface. Just as in instances of regression misuse, there is still a 164 

desire in these analyses to identify the landscape features promoting or impeding movement, but these 165 

approaches recognize that it is not possible to ascertain individual landscape effects in a regression model.  166 

 167 

 Future advances 168 

What is apparent from the misuse of regression-based models is that an end goal of many analyses is to 169 

understand the individual contributions of landscape and habitat features on gene flow. Development of 170 

novel, model-based analytical frameworks is ongoing, and show great promise (e.g., Bradburd et al. 2013; 171 

Hanks 2017; Hanks & Hooten 2013; Peterson et al. 2019; Pope 2019). In these model-based approaches, 172 

allelic frequencies or genetic distances are directly modeled as a function of landscape predictor variables 173 

and covariance relationships. These frameworks allow individual covariates to be explicitly modeled, 174 
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provide estimates of parameter uncertainty, and facilitate model selection. Currently proposed model-175 

based approaches can be computationally demanding, and/or relevant for certain types of genetic data 176 

(e.g., bi-allelic loci), which perhaps has limited their uptake and broader application in landscape genetic 177 

analyses. Flexible and computationally efficient model-based methods are the future of landscape genetic 178 

analyses. As a young and still developing field, landscape genetics has a relatively finite lens through 179 

which to ask and answer spatial genetic questions (Dyer 2015). Models and methods developed to 180 

maximally leverage the amount and types of spatial and genetic data currently available to researchers 181 

will undoubtedly lead to tremendous advances and novel questions. 182 

 183 

 Conclusions 184 

Landscape genetics has been a rapidly evolving field, always striving to improve the power and precision 185 

of its quantitative inferences. Unfortunately, the necessary transition from Mantel-based models to more 186 

statistically defensible regression-based models has resulted in analyses that likely lack ecological 187 

interpretation and are potentially subject to statistical artifacts, such as suppression. Effective distances 188 

calculated separately on individual landscape resistance surfaces should not be used as independent 189 

predictor variables in regression models. Doing so creates an artificial caricature of the movement process 190 

that generated the observed patterns of genetic diversity across the landscape. The desire to understand 191 

the individual contributions of landscape features to movement is well-intentioned, but misuse of 192 

regression-based methods such as MRDM and MLPE, is likely to lead to inaccurate or incomplete 193 

interpretations of model results. 194 

  195 
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Figures 305 

 306 

 307 
Figure 1. Least cost paths between two locations on a smoothed categorical surface (A), a random 308 

Gaussian surface (B), distance from feature (C), and the composite resistance surface (D) that results from 309 

summing A–C. In all panels, resistance goes from low to high as the color transitions from blue to green, 310 

and green to yellow. The solid red line in each panel indicates the least cost path for that surface. The 311 

dashed lines in panel D are the least cost paths for each of the three component resistance surfaces. 312 
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