References
[1] E.A. Akinpelu, S.K.O. Ntwampe, L. Mekuto, E.F. Itoba Tombo, Optimizing the bioremediation of free cyanide containing wastewater by Fusarium oxysporum grown on beetroot waste using response surface methodology, in: S.I. Ao, C. Douglas, W.S. Grundfest (Eds.) Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering and Computer Science, Newswood Limited, San Francisco, USA, 2016, pp. 664-670.
[2] L. Mekuto, S.K.O. Ntwampe, C.E. Utomi, M. Mobo, J.B. Mudumbi, M.M. Ngongang, E.A. Akinpelu, Performance of a continuously stirred tank bioreactor system connected in series for the biodegradation of thiocyanate and free cyanide, Journal of Environmental Chemical Engineering, 5 (2017) 1936-1945.
[3] V.K. Virender Kumar, T.C. Bhalla, In vitro cyanide degradation by Serretia marcescens RL2b, Int J Environ Sci, 3 (2013).
[4] K.K. Ibrahim, M.A. Syed, M.Y. Shukor, S.A. Ahmad, Biological Remediation of Cyanide: A Review, BIOTROPIA-The Southeast Asian Journal of Tropical Biology, 22 (2016) 151-163.
[5] M.G. Campos, P. Pereira, J.C. Roseiro, Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum CCMI 876 andMethylobacterium sp. RXM CCMI 908, Enzyme and Microbial Technology, 38 (2006) 848-854.
[6] V.M. Luque-Almagro, C. Moreno-Vivián, M.D. Roldán, Biodegradation of cyanide wastes from mining and jewellery industries, Current Opinion in Biotechnology, 38 (2016) 9-13.
[7] L. Mekuto, S. Ntwampe, V. Jackson, Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: optimisation using response surface methodology, Environ Sci Pollut Res, 22 (2015) 10434-10443.
[8] E.A. Akinpelu, S.K. Ntwampe, N. Mpongwana, F. Nchu, T.V. Ojumu, Biodegradation Kinetics of Free Cyanide in Fusarium oxysporum-Beta vulgaris Waste-metal (As, Cu, Fe, Pb, Zn) Cultures under Alkaline Conditions, BioResources, 11 (2016) 2470-2482.
[9] A. Behnamfard, M.M. Salarirad, Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon, Journal of Hazardous Materials, 170 (2009) 127-133.
[10] N. Singh, C. Balomajumder, Equilibrium isotherm and kinetic studies for the simultaneous removal of phenol and cyanide by use of S. odorifera (MTCC 5700) immobilized on coconut shell activated carbon, Applied Water Science, (2016) 1-15.
[11] R.J. Huddy, A.W. van Zyl, R.P. van Hille, S.T.L. Harrison, Characterisation of the complex microbial community associated with the ASTER™ thiocyanate biodegradation system, Minerals Engineering, 76 (2015) 65-71.
[12] M.B. Stott, P.D. Franzmann, L.R. Zappia, H.R. Watling, L.P. Quan, B.J. Clark, M.R. Houchin, P.C. Miller, T.L. Williams, Thiocyanate removal from saline CIP process water by a rotating biological contactor, with reuse of the water for bioleaching, Hydrometallurgy, 62 (2001) 93-105.
[13] C. Du Plessis, P. Barnard, R. Muhlbauer, K. Naldrett, Empirical model for the autotrophic biodegradation of thiocyanate in an activated sludge reactor, Letters in Applied Microbiology, 32 (2001) 103-107.
[14] J. Boerio-Goates, Heat-capacity measurements and thermodynamic functions of crystalline α-D-glucose at temperatures from 10 K to 340 K, The Journal of Chemical Thermodynamics, 23 (1991) 403-409.
[15] M. Pyda, Conformational contribution to the heat capacity of the starch and water system, Journal of Polymer Science Part B: Polymer Physics, 39 (2001) 3038-3054.
[16] G.J. Kabo, O.V. Voitkevich, A.V. Blokhin, S.V. Kohut, E.N. Stepurko, Y.U. Paulechka, Thermodynamic properties of starch and glucose, The Journal of Chemical Thermodynamics, 59 (2013) 87-93.
[17] E.H. Battley, R.L. Putnam, J. Boerio-Goates, Heat capacity measurements from 10 to 300 K and derived thermodynamic functions of lyophilized cells of Saccharomyces cerevisiae including the absolute entropy and the entropy of formation at 298.15 K, Thermochimica Acta, 298 (1997) 37-46.
[18] E. Verdonck, K. Schaap, L.C. Thomas, A discussion of the principles and applications of Modulated Temperature DSC (MTDSC), Int. J. Pharm., 192 (1999) 3-20.
[19] W.A. Brantley, M. Iijima, T.H. Grentzer, Temperature-modulated DSC provides new insight about nickel-titanium wire transformations, American Journal of Orthodontics and Dentofacial Orthopedics, 124 (2003) 387-394.
[20] F. Xie, W.-C. Liu, P. Liu, J. Wang, P.J. Halley, L. Yu, Starch thermal transitions comparatively studied by DSC and MTDSC, Starch - Stärke, 62 (2010) 350-357.
[21] A. Magoń, M. Pyda, Apparent heat capacity measurements and thermodynamic functions of d(−)-fructose by standard and temperature-modulated calorimetry, The Journal of Chemical Thermodynamics, 56 (2013) 67-82.
[22] M.M. Knopp, K. Löbmann, D.P. Elder, T. Rades, R. Holm, Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development, Eur. J. Pharm. Sci., 87 (2016) 164-173.
[23] E.H. Battley, Energetics of microbial growth, Wiley Inter-science, New York, 1987.
[24] E.H. Battley, The thermodynamics of microbial growth, in: R.B. Kemp (Ed.) Handbook of thermal analysis and calorimetry, Elsevier, Amsterdam, 1999, pp. 219-266.
[25] P. Duboc, I. Marison, U. Von Stockar, Quantitative calorimetry and biochemical engineering, in: R.B. Kemp (Ed.) Handbook of thermal analysis and calorimetry, Elsevier, Amsterdam, 1999, pp. 267-365.
[26] E.A. Akinpelu, S.K.O. Ntwampe, B.-H. Chen, Biological stoichiometry and bioenergetics of Fusarium oxysporum EKT01/02 proliferation using different substrates in cyanidation wastewater, The Canadian Journal of Chemical Engineering, 96 (2018) 537-544.
[27] W. Stark, M. Jaunich, J. McHugh, Cure state detection for pre-cured carbon-fibre epoxy prepreg (CFC) using Temperature-Modulated Differential Scanning Calorimetry (TMDSC), Polym. Test., 32 (2013) 1261-1272.
[28] E. Akinpelu, S. Ntwampe, L. Mekuto, T. Ojumu, Thermodynamic Data of Fusarium oxysporum Grown on Different Substrates in Gold Mine Wastewater, Data, 2 (2017) 24.
[29] V.-F. Lai, C.-Y. Lii, Effects of modulated differential scanning calorimetry (MDSC) variables on thermodynamic and kinetic characteristics during gelatinization of waxy rice starch, Cereal chemistry, 76 (1999) 519-525.
[30] I. Tan, C.C. Wee, P.A. Sopade, P.J. Halley, Investigation of the starch gelatinisation phenomena in water–glycerol systems: application of modulated temperature differential scanning calorimetry, Carbohydrate Polymers, 58 (2004) 191-204.
[31] K. Herzog, R.J. Müller, W.D. Deckwer, Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases, Polym. Degradation Stab., 91 (2006) 2486-2498.
[32] R.-J. Mueller, Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling, Process Biochem., 41 (2006) 2124-2128.
[33] K.-i. Kasuya, N. Ishii, Y. Inoue, K. Yazawa, T. Tagaya, T. Yotsumoto, J.-i. Kazahaya, D. Nagai, Characterization of a mesophilic aliphatic–aromatic copolyester-degrading fungus, Polym. Degradation Stab., 94 (2009) 1190-1196.
[34] J. Wruss, G. Waldenberger, S. Huemer, P. Uygun, P. Lanzerstorfer, U. Müller, O. Höglinger, J. Weghuber, Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria, Journal of Food Composition and Analysis, 42 (2015) 46-55.
[35] USDA, USDA National Nutrient Database for Standard Reference Release 28, USDA, USA, 2016.
[36] K.M. Herbach, F.C. Stintzing, R. Carle, Betalain Stability and Degradation—Structural and Chromatic Aspects, J. Food Sci., 71 (2006) R41-R50.
[37] Y. Tokiwa, B. Calabia, C. Ugwu, S. Aiba, Biodegradability of Plastics, International Journal of Molecular Sciences, 10 (2009) 3722.
[38] D. Ditmars, S. Ishihara, S. Chang, G. Bernstein, E. West, Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K, J. Res. Natl. Bur. Stand, 87 (1982) 159-163.