References
Annett, R., Habibi, H.R., Hontela, A., 2014. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 34, 458–479. https://doi.org/10.1002/jat.2997
Araújo, M. da-Silva, Gil, L.H.S., e-Silva, A. de-Almeida, 2012. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malar. J. 11, 261. https://doi.org/10.1186/1475-2875-11-261
Avigliano, L., Fassiano, A.V., Medesani, D.A., Ríos de Molina, M.C., Rodríguez, E.M., 2014. Effects of glyphosate on growth rate, metabolic rate and energy reserves of early juvenile crayfish, Cherax quadricarinatus M. Bull. Environ. Contam. Toxicol. 92, 631–635. https://doi.org/10.1007/s00128-014-1240-7
Baglan, H., Lazzari, C.R., Guerrieri, F.J., 2018a. Glyphosate impairs learning in mosquito larvae (Aedes aegypti ) at field-realistic doses. J. Exp. Biol. jeb.187518. https://doi.org/10.1242/jeb.187518
Bai, S.H., Ogbourne, S.M., 2016. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ. Sci. Pollut. Res. 23, 18988–19001. https://doi.org/10.1007/s11356-016-7425-3
Bara, J.J., Montgomery, A., Muturi, E.J., 2014. Sublethal effects of atrazine and glyphosate on life history traits of Aedes aegyptiand Aedes albopictus (Diptera: Culicidae ). Parasitol. Res. 113, 2879–2886. https://doi.org/10.1007/s00436-014-3949-y
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 067.
Beketov, M.A., Liess, M., 2007. Predation risk perception and food scarcity induce alterations of life-cycle traits of the mosquitoCulex pipiens . Ecol. Entomol. 32, 405–410. https://doi.org/10.1111/j.1365-2311.2007.00889.x
Benbrook, C.M., 2016. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. https://doi.org/10.1186/s12302-016-0070-0
Billker, O., Lindo, V., Panico, M., Etienne, A.E., Paxton, T., Dell, A., Rogers, M., Sinden, R.E., Morris, H.R., 1998. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392, 289–292. https://doi.org/10.1038/32667
Bolker, B.M., 2008. Ecological Models and Data in R. Princeton University Press.
Christensen, B.M., Li, J., Chen, C.-C., Nappi, A.J., 2005. Melanization immune responses in mosquito vectors. Trends Parasitol. 21, 192–199. https://doi.org/10.1016/j.pt.2005.02.007
Coors, A., Meester, L.D., 2008. Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna . J. Appl. Ecol. 45, 1820–1828. https://doi.org/10.1111/j.1365-2664.2008.01566.x
Crain, C.M., Kroeker, K., Halpern, B.S., 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x
Crawley, M.J., 2012. The R Book. John Wiley & Sons.
Cuhra, M., Traavik, T., Bøhn, T., 2013. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna . Ecotoxicology 22, 251–262. https://doi.org/10.1007/s10646-012-1021-1
Daam, M.A., Moutinho, M.F., Espíndola, E.L.G., Schiesari, L., 2019. Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate and metribuzin to tropical frog larvae. Ecotoxicology 28, 707–715. https://doi.org/10.1007/s10646-019-02067-5
de Melo Tarouco, F., de Godoi, F.G.A., Velasques, R.R., da Silveira Guerreiro, A., Geihs, M.A., da Rosa, C.E., 2017. Effects of the herbicide Roundup on the polychaeta Laeonereis acuta : Cholinesterases and oxidative stress. Ecotoxicol. Environ. Saf. 135, 259–266. https://doi.org/10.1016/j.ecoenv.2016.10.014
Dutra, B.K., Fernandes, F.A., Failace, D.M., Oliveira, G.T., 2011. Effect of roundup® (glyphosate formulation) in the energy metabolism and reproductive traits of Hyalella castroi (Crustacea, Amphipoda, Dogielinotidae ). Ecotoxicology 20, 255–263. https://doi.org/10.1007/s10646-010-0577-x
Fernandes, K.M., Gonzaga, W.G., Pascini, T.V., Miranda, F.R., Tomé, H.V.V., Serrão, J.E., Martins, G.F., 2015. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquitoStegomyia aegypti (=Aedes aegypti ). Med. Vet. Entomol. 29, 245–254. https://doi.org/10.1111/mve.12122
Giesy, J.P., Dobson, S., Solomon, K.R., 2000. Ecotoxicological risk assessment for Roundup® herbicide, in: Ware, G.W. (Ed.), Reviews of Environmental Contamination and Toxicology. Springer New York, New York, NY, pp. 35–120. https://doi.org/10.1007/978-1-4612-1156-3_2
Gill, J.P.K., Sethi, N., Mohan, A., Datta, S., Girdhar, M., 2018. Glyphosate toxicity for animals. Environ. Chem. Lett. 16, 401–426. https://doi.org/10.1007/s10311-017-0689-0
Gregorc, A., Ellis, J.D., 2011. Cell death localization in situ in laboratory reared honey bee (Apis mellifera L. ) larvae treated with pesticides. Pestic. Biochem. Physiol. 99, 200–207. https://doi.org/10.1016/j.pestbp.2010.12.005
Hansen, L.R., Roslev, P., 2016. Behavioral responses of juvenileDaphnia magna after exposure to glyphosate and glyphosate-copper complexes. Aquat. Toxicol. Amst. Neth. 179, 36–43. https://doi.org/10.1016/j.aquatox.2016.08.010
Hong, Y., Yang, X., Huang, Y., Yan, G., Cheng, Y., 2018. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis . Chemosphere 210, 896–906. https://doi.org/10.1016/j.chemosphere.2018.07.069
Hong, Y., Yang, X., Yan, G., Huang, Y., Zuo, F., Shen, Y., Ding, Y., Cheng, Y., 2017. Effects of glyphosate on immune responses and haemocyte DNA damage of Chinese mitten crab, Eriocheir sinensis . Fish Shellfish Immunol. 71, 19–27. https://doi.org/10.1016/j.fsi.2017.09.062
Janssens, L., Stoks, R., 2017. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquat. Toxicol. 193, 210–216. https://doi.org/10.1016/j.aquatox.2017.10.028
Kibuthu, T.W., Njenga, S.M., Mbugua, A.K., Muturi, E.J., 2016. Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes? Parasit. Vectors 9, 500. https://doi.org/10.1186/s13071-016-1788-7
Langiano, V. do C., Martinez, C.B.R., 2008. Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus . Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 147, 222–231. https://doi.org/10.1016/j.cbpc.2007.09.009
Lavazec, C., Bourgouin, C., 2008. Mosquito-based transmission blocking vaccines for interrupting Plasmodium development. Microbes Infect. 10, 845–849. https://doi.org/10.1016/j.micinf.2008.05.004
Mann, R.M., Bidwell, J.R., 1999. The Toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Arch. Environ. Contam. Toxicol. 36, 193–199. https://doi.org/10.1007/s002449900460
Matozzo, V., Zampieri, C., Munari, M., Marin, M.G., 2019. Glyphosate affects haemocyte parameters in the clam Ruditapes philippinarum . Mar. Environ. Res. 146, 66–70. https://doi.org/10.1016/j.marenvres.2019.03.008
Mesnage, R., Defarge, N., Spiroux de Vendômois, J., Séralini, G.-E., 2014. Major pesticides are more toxic to human cells than their declared active principles. BioMed Res. Int. https://doi.org/10.1155/2014/179691
Modesto, K.A., Martinez, C.B.R., 2010. Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus . Chemosphere 78, 294–299. https://doi.org/10.1016/j.chemosphere.2009.10.047
Mohamed, A.H., 2011. Sublethal toxicity of Roundup to immunological and molecular aspects of Biomphalaria alexandrina toSchistosoma mansoni infection. Ecotoxicol. Environ. Saf. 74, 754–760. https://doi.org/10.1016/j.ecoenv.2010.10.037
Monte, T.C. de C., Chometon, T.Q., Bertho, A.L., de Moura, V.S., de Vasconcellos, M.C., Garcia, J., Ferraz-Nogueira, R., Maldonado Júnior, A., Faro, M.J., 2019. Changes in hemocytes of Biomphalaria glabrata infected with Echinostoma paraensei and exposed to glyphosate-based herbicide. J. Invertebr. Pathol. 160, 67–75. https://doi.org/10.1016/j.jip.2018.11.007
Morris, A., Murrell, E.G., Klein, T., Noden, B.H., 2016. Effect of two commercial herbicides on life history traits of a human disease vector,Aedes aegypti , in the laboratory setting. Ecotoxicology 25, 863–870. https://doi.org/10.1007/s10646-016-1643-9
Morrissey, C.A., Mineau, P., Devries, J.H., Sanchez-Bayo, F., Liess, M., Cavallaro, M.C., Liber, K., 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024
Motta, E.V.S., Raymann, K., Moran, N.A., 2018. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115
Muturi, E.J., Kim, C.-H., Alto, B.W., Berenbaum, M.R., Schuler, M.A., 2011. Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop. Med. Int. Health 16, 955–964. https://doi.org/10.1111/j.1365-3156.2011.02796.x
Muturi, E.J., Nyakeriga, A., Blackshear, M., 2012. Temperature-Mediated Differential Expression of immune and stress-related genes inAedes aegypti larvae. J. Am. Mosq. Control Assoc. 28, 79–83. https://doi.org/10.2987/11-6194R.1
Nagy, K., Duca, R.C., Lovas, S., Creta, M., Scheepers, P.T.J., Godderis, L., Ádám, B., 2019. Systematic review of comparative studies assessing the toxicity of pesticide active ingredients and their product formulations. Environ. Res. 108926. https://doi.org/10.1016/j.envres.2019.108926
Nguyen, M.-H., Nguyen, T.-H.-N., Hwang, I.-C., Bui, C.-B., Park, H.-J., 2016. Effects of the physical state of nanocarriers on their penetration into the root and upward transportation to the stem of soybean plants using confocal laser scanning microscopy. Crop Prot. 87, 25–30. https://doi.org/10.1016/j.cropro.2016.04.012
Pala, A., 2019. The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex(Crustacean ). Environ. Sci. Pollut. Res. 26, 36869–36877. https://doi.org/10.1007/s11356-019-06804-5
Peruzzo, P.J., Porta, A.A., Ronco, A.E., 2008. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ. Pollut. 156, 61–66. https://doi.org/10.1016/j.envpol.2008.01.015
Pigeault, R., Vézilier, J., Cornet, S., Zélé, F., Nicot, A., Perret, P., Gandon, S., Rivero, A., 2015. Avian malaria: a new lease of life for an old experimental model to study the evolutionary ecology ofPlasmodium . Phil Trans R Soc B 370, 20140300. https://doi.org/10.1098/rstb.2014.0300
Riaz, M.A., Poupardin, R., Reynaud, S., Strode, C., Ranson, H., David, J.-P., 2009. Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat. Toxicol. 93, 61–69. https://doi.org/10.1016/j.aquatox.2009.03.005
Shapiro, L.L.M., Murdock, C.C., Jacobs, G.R., Thomas, R.J., Thomas, M.B., 2016. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc R Soc B 283, 20160298. https://doi.org/10.1098/rspb.2016.0298
Struger, J., Thompson, D., Staznik, B., Martin, P., McDaniel, T., Marvin, C., 2008. Occurrence of glyphosate in surface waters of southern ontario. Bull. Environ. Contam. Toxicol. 80, 378–384. https://doi.org/10.1007/s00128-008-9373-1
Takken, W., Smallegange, R.C., Vigneau, A.J., Johnston, V., Brown, M., Mordue-Luntz, A.J., Billingsley, P.F., 2013. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi . Parasit. Vectors 6, 345. https://doi.org/10.1186/1756-3305-6-345
Tripet, F., Aboagye-Antwi, F., Hurd, H., 2008. Ecological immunology of mosquito–malaria interactions. Trends Parasitol. 24, 219–227. https://doi.org/10.1016/j.pt.2008.02.008
Valkiunas, G., 2004. Avian Malaria Parasites and other Haemosporidia. CRC Press.
Van Bruggen, A.H.C., He, M.M., Shin, K., Mai, V., Jeong, K.C., Finckh, M.R., Morris, J.G., 2018. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 616–617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309
Van Handel, E., Day, J.F., 1989. Correlation between wing length and protein content of mosquitoes. J. Am. Mosq. Control Assoc. 5, 180–182.
Vantaux, A., Lefèvre, T., Cohuet, A., Dabiré, K.R., Roche, B., Roux, O., 2016. Larval nutritional stress affects vector life history traits and human malaria transmission. Sci. Rep. 6. https://doi.org/10.1038/srep36778
Vézilier, J., Nicot, A., Gandon, S., Rivero, A., 2010. Insecticide resistance and malaria transmission: Infection rate and oocyst burden inCulex pipiens mosquitoes infected with Plasmodium relictum . Malar. J. https://doi.org/10.1186/1475-2875-9-379
Yassine, H., Kamareddine, L., Osta, M.A., 2012. The mosquito melanization response is implicated in defense against the entomopathogenic fungus Beauveria bassiana . PLOS Pathog. 8, e1003029. https://doi.org/10.1371/journal.ppat.1003029
Zhang, J., Huang, F.S., Xu, W.Y., Song, P., Duan, J.H., Yang, S., Qiu, Z.W., 2008. Plasmodium yoelii : Correlation of up-regulated prophenoloxidase and phenoloxidases with melanization induced by the antimalarial, nitroquine. Exp. Parasitol. 118, 308–314. https://doi.org/10.1016/j.exppara.2007.08.017