Funding
This research did not receive any specific grant from funding agencies
in the public, commercial, or not-for-profit sectors.
Albuquerque, M.G.E., Martino, V., Pollet, E., Avérous, L., Reis, M.A.M.
(2011). Mixed culture polyhydroxyalkanoate (PHA) production from
volatile fatty acid (VFA)-rich streams: effect of substrate composition
and feeding regime on PHA productivity, composition and properties.Journal of Biotechnoly , 151 , 66-76. doi:
10.1016/j.jbiotec.2010.10.070.
Batyrova, K. A., Tsygankov, A. A., Kosourov, S. (2012). Sustained
hydrogen photoproduction by phosphorus-deprived Chlamydomonas
reinhardtii cultures. International Journal of Hydrogen Energy.
37 , 8834-8839. doi: 10.1016/j.ijhydene.2012.01.068.
Burson, A., Stomp, M., Mekkes, L. and Huisman, J. (2019). Stable
coexistence of equivalent nutrient competitors through niche
differentiation in the light spectrum. Ecology, 100 , e02873. doi:
10.1002/ecy.2873.
Cakmak, T., Angun, P., Demiray, Y. E., Ozkan, A. D., Elibol, Z.,
Tekinay, T. (2012). Differential effects of nitrogen and sulfur
deprivation on growth and biodiesel feedstock production of
Chlamydomonas reinhardtii. Biotechnology and Bioengineering. 109 ,
1947-1957. doi: 10.1002/bit.24474.
Dickinson, K. E., Whitney, C.G., McGinn, P. J. (2013). Nutrient
remediation rates in municipal wastewater and their effect on
biochemical composition of the microalga Scenedesmus sp. AMDD.Algal Research. 2 , 127-134. doi: 10.1016/j.algal.2013.01.009.
Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A., Teixeira,
J. A. (2011). Nutrient limitation as a strategy for increasing starch
accumulation in microalgae. Applied Energy. 88 , 3331-3335. doi:
10.1016/j.apenergy.2011.03.012.
Fazeli Danesh, A., Ebrahimi, S., Salehi, A., Parsa, A. (2017). Impact of
nutrient starvation on intracellular biochemicals and calorific value of
mixed microalgae. Biochemical Engineering Journal, 12 5, 56–64.
doi: 10.1016/j.bej.2017.05.017.
Fazeli Danesh, A., Mooij, P., Ebrahimi, S., Kleerebezem, R. and van
Loosdrecht, M. (2018). Effective Role of Medium Supplementation in
Microalgal Lipid Accumulation. Biotechnology and Bioengineering,
115 , 1152-1160. doi: 10.1002/bit.26548.
Friedman, A. L., Alberte, R. S. (1984). A diatom light-harvesting
pigment-protein complex: purification and characterization. Plant
physiology, 76 , 483-489. doi: 10.1104/pp.76.2.483.
Hassanpour, M., Abbasabadi, M., Ebrahimi, S., Hosseini, M.,
Sheikhbaglou, A. (2015). Gravimetric enrichment of high lipid and starch
accumulating microalgae. Bioresource Technology, 196 , 17-21. doi:
10.1016/j.biortech.2015.07.046
Herring, P. J. (1990). Light and life in the sea , Cambridge
University Press.
Ho, S. H., Chen, C. Y., Chang, J. S. (2012). Effect of light intensity
and nitrogen starvation on CO2 fixation and lipid/carbohydrate
production of an indigenous microalga Scenedesmus obliquus CNW-N.Bioresource Technology, 113 , 244-252. doi:
10.1016/j.biortech.2011.11.133.
Hu, Y., Hao, X., van Loosdrecht, M., Chen, H. (2017). Enrichment of
highly settleable microalgal consortia in mixed cultures for effluent
polishing and low-cost biomass production. Water Research, 125 ,
11-22. doi: 10.1016/j.watres.2017.08.034.
Johnson, K., Jiang, Y., Kleerebezem, R., Muyzer, G. and van Loosdrecht,
M.C. (2009). Enrichment of a Mixed Bacterial Culture with a High
Polyhydroxyalkanoate Storage Capacity. Biomacromolecules, 10 ,
670-676. doi: 10.1021/bm8013796.
Kandilian, R., Taleb, A., Heredia, V., Cogne, G. and Pruvost, J. (2019).
Effect of light absorption rate and nitrate concentration on TAG
accumulation and productivity of Parachlorella kessleri cultures grown
in chemostat mode. Algal research, 39 , 101442. doi:
10.1016/j.algal.2019.101442.
Klok, A. J., Martens, D. E., Wijffels, R. H., Lamers, P. P. (2013).
Simultaneous growth and neutral lipid accumulation in microalgae.Bioresource Technology, 134 , 233-243. doi:
10.1016/j.biortech.2013.02.006.
Kumar, D., Singh, B. (2020). Effect of winterization and plant
phenolic-additives on the cold-flow properties and oxidative stability
of Karanja biodiesel. Fuel, 262 , 116631. Doi:
10.1016/j.fuel.2019.116631.
Kung, C.C. (2019). A stochastic evaluation of economic and environmental
effects of Taiwan’s biofuel development under climate change.Energy, 167 , 1051-1064. doi: 10.1016/j.energy.2018.11.064.
Lavaud, J., Rousseau, B. and Etienne, A. (2004). General features of
photoprotection by energy dissipation in planktonic diatoms
(Bacillariophyceae). Journal of Phycology, 40 , 130-137.
doi:10.1046/j.1529-8817.2004.03026.x
Martins, F., Felgueiras, C., Smitkova, M., Caetano, N. (2019). Analysis
of fossil fuel energy consumption and environmental impacts in European
countries. Energies, 12 , 964. doi: 10.3390/en12060964.
Mata, T. M., Martins, A. A., Caetano, N. S. (2010). Microalgae for
biodiesel production and other applications: a review. Renewable and
sustainable energy reviews. Renewable and Sustainable Energy
Reviews, 14 , 217-232. doi: 10.1016/j.rser.2009.07.020.
Mazzuca Sobczuk, T., Chisti, Y. (2010). Potential fuel oils from the
microalga Choricystis minor. Journal of Chemical Technology
Biotechnology, 85 , 100-108. Doi: 10.1002/jctb.2272.
Milledge, J. J., Nielsen, B. V., Maneein, S., Harvey, P. J. (2019). A
brief review of anaerobic digestion of algae for bioenergy.Energies, 12 , 1166. doi: 10.3390/en12061166.
Mizuno, Y., Sato, A., Watanabe, K., Hirata, A., Takeshita, T., Ota, S.,
Sato, N., Zachleder, V., Tsuzuki, M. and Kawano, S. (2013). Sequential
Accumulation of Starch and Lipid Induced by Sulfur Deficiency in
Chlorella and Parachlorella species. Bioresource Technology, 129 ,
150-155. doi: 10.1016/j.biortech.2012.11.030.
Mofijur, M., Rasul, M. G., Hassan, N. M. S., Nabi, M. N. (2019). Recent
development in the production of third generation biodiesel from
microalgae. Energy Procedia, 156 , 53-58. doi:
10.1016/j.egypro.2018.11.088.
Mooij, P. R., de Graaff, D. R., van Loosdrecht, M. C., Kleerebezem, R.
(2015). Starch productivity in cyclically operated photobioreactors with
marine microalgae effect of ammonium addition regime and volume exchange
ratio. Journal of Applied Phycology, 27 , 1121-1126. doi:
10.1007/s10811-014-0430-3.
Mooij, P. R., de Jongh, L. D., van Loosdrecht, M. C., Kleerebezem, R.
(2016). Influence of silicate on enrichment of highly productive
microalgae from a mixed culture. Journal of Applied Phycology,28, 1-5. doi: 10.1007/s10811-015-0678-2.
Mooij, P.R., Stouten, G.R., Tamis, J., van Loosdrecht, M.C.,
Kleerebezem, R. (2013). Survival of the fattest. Energy &
Environmental Science. 6 , 3404-3406. doi: 10.1039/C3EE42912A.
Mujtaba, G., Choi, W., Lee, C.G., Lee, K. (2012). Lipid production by
Chlorella vulgaris after a shift from nutrient-rich to nitrogen
starvation conditions. Bioresource Technology, 123 , 279-283. Doi:
10.1016/j.biortech.2012.07.057.
Mur, R., Skulberg Olav, M., Utkilen, H. (1999). CYANOBACTERIA IN THE
ENVIRONMENT.
Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R.
and Mishra, S. (2014). Nitrogen stress triggered biochemical and
morphological changes in the microalgae Scenedesmus sp. CCNM 1077.Bioresource Technology, 156 , 146-154. doi:
10.1016/j.biortech.2014.01.025.
Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S.K., Ghosh,
A. and Mishra, S. (2015). Salinity induced oxidative stress enhanced
biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.Bioresource Technology, 189 , 341-348. doi:
10.1016/j.biortech.2015.04.017.
Phukan, M. M., Chutia, R. S., Konwar, B. K., Kataki, R. (2011).
Microalgae Chlorella as a potential bio-energy feedstock. Applied
Energy, 88 , 3307-3312. doi: 10.1016/j.apenergy.2010.11.026.
Regan, D. L., Ivancic, N. (1984). Mixed populations of marine microalgae
in continuous culture: Factors affecting species dominance and biomass
productivity. Biotechnology and Bioengineering, 26 , 1265-1271.
doi: 10.1002/bit.260261102.
Sluchanko, N.N., Slonimskiy, Y.B., Shirshin, E.A., Moldenhauer, M.,
Friedrich, T. and Maksimov, E.G. (2018). OCP–FRP protein complex
topologies suggest a mechanism for controlling high light tolerance in
cyanobacteria. Nature Communications, 9 , 3869.
doi: 10.1038/s41467-018-06195-0.
Sukenik, A., Zmora, O., Carmeli, Y. (1993). Biochemical quality of
marine unicellular algae with special emphasis on lipid composition. II.
Nannochloropsis sp. Aquaculture. 117 , 313-326. doi:
10.1016/0044-8486(93)90328-V.
Takagi, M., Yoshida, T. (2006). Effect of salt concentration on
intracellular accumulation of lipids and triacylglyceride in marine
microalgae Dunaliella cells. Journal of Bioscience and
Bioengineering, 101 , 223-226. doi: 10.1263/jbb.101.223.
Takeshita, T., Ota, S., Yamazaki, T., Hirata, A., Zachleder, V., Kawano,
S. (2014). Starch and lipid accumulation in eight strains of six
Chlorella species under comparatively high light intensity and aeration
culture conditions. Bioresource Technology, 158 , 127-134. doi:
10.1016/j.biortech.2014.01.135.
Tanada, T. (1951). The photosynthetic efficiency of carotenoid pigments
in Navicula minima. American Journal of Botany , 276-283. doi:
10.2307/2438001.
Tang, H., Chen, M., Simon Ng, K.Y. and Salley, S.O. (2012). Continuous
microalgae cultivation in a photobioreactor. Biotechnology
Bioengineering, 109 , 2468-2474. doi: 10.1002/bit.24516.
Tevatia, R., Allen, J., Blum, P., Demirel, Y. and Black, P. (2014).
Modeling of rhythmic behavior in neutral lipid production due to
continuous supply of limited nitrogen: Mutual growth and lipid
accumulation in microalgae. Bioresource Technology, 170 , 152-159.
Doi: 10.1016/j.biortech.2014.07.043.
Thiruvenkadam, S., Izhar, S., Hiroyuki, Y., Harun, R. (2019). One-step
microalgal biodiesel production from Chlorella pyrenoidosa using
subcritical methanol extraction (SCM) technology. Biomass and Bioenergy,
120, 265-272. doi: 10.1016/j.biombioe.2018.11.037.
Wen, X., Geng, Y., Li, Y. (2014). Enhanced lipid production in Chlorella
pyrenoidosa by continuous culture. Bioresource Technology, 161 ,
297-303. doi: 10.1016/j.biortech.2014.03.077.
Xiao, Y., Zhang, J., Cui, J., Feng, Y. and Cui, Q. (2013). Metabolic
profiles of Nannochloropsis oceanica IMET1 under
nitrogen-deficiency stress. Bioresource Technology, 130, 731-738. doi:
10.1016/j.biortech.2012.11.116.
Zhang, Y., Liu, X., White, M. A., Colosi, L. M. (2017). Economic
evaluation of algae biodiesel based on meta-analyses. International
Journal of Sustainable Energy. 36, 682-694. doi:
10.1080/14786451.2015.1086766.
Table 1. Nitrate concentration in chemostat enrichment culture under
different nitrogen loading rates.