Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Albuquerque, M.G.E., Martino, V., Pollet, E., Avérous, L., Reis, M.A.M. (2011). Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties.Journal of Biotechnoly , 151 , 66-76. doi: 10.1016/j.jbiotec.2010.10.070.
Batyrova, K. A., Tsygankov, A. A., Kosourov, S. (2012). Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. ‎International Journal of Hydrogen Energy. 37 , 8834-8839. doi: 10.1016/j.ijhydene.2012.01.068.
Burson, A., Stomp, M., Mekkes, L. and Huisman, J. (2019). Stable coexistence of equivalent nutrient competitors through niche differentiation in the light spectrum. Ecology, 100 , e02873. doi: 10.1002/ecy.2873.
Cakmak, T., Angun, P., Demiray, Y. E., Ozkan, A. D., Elibol, Z., Tekinay, T. (2012). Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnology and Bioengineering. 109 , 1947-1957. doi: 10.1002/bit.24474.
Dickinson, K. E., Whitney, C.G., McGinn, P. J. (2013). Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD.Algal Research. 2 , 127-134. doi: 10.1016/j.algal.2013.01.009.
Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A., Teixeira, J. A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy. 88 , 3331-3335. doi: 10.1016/j.apenergy.2011.03.012.
Fazeli Danesh, A., Ebrahimi, S., Salehi, A., Parsa, A. (2017). Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Biochemical Engineering Journal, 12 5, 56–64. doi: 10.1016/j.bej.2017.05.017.
Fazeli Danesh, A., Mooij, P., Ebrahimi, S., Kleerebezem, R. and van Loosdrecht, M. (2018). Effective Role of Medium Supplementation in Microalgal Lipid Accumulation. Biotechnology and Bioengineering, 115 , 1152-1160. doi: 10.1002/bit.26548.
Friedman, A. L., Alberte, R. S. (1984). A diatom light-harvesting pigment-protein complex: purification and characterization. Plant physiology, 76 , 483-489. doi: 10.1104/pp.76.2.483.
Hassanpour, M., Abbasabadi, M., Ebrahimi, S., Hosseini, M., Sheikhbaglou, A. (2015). Gravimetric enrichment of high lipid and starch accumulating microalgae. Bioresource Technology, 196 , 17-21. doi: 10.1016/j.biortech.2015.07.046
Herring, P. J. (1990). Light and life in the sea , Cambridge University Press.
Ho, S. H., Chen, C. Y., Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N.Bioresource Technology, 113 , 244-252. doi: 10.1016/j.biortech.2011.11.133.
Hu, Y., Hao, X., van Loosdrecht, M., Chen, H. (2017). Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production. Water Research, 125 , 11-22. doi: 10.1016/j.watres.2017.08.034.
Johnson, K., Jiang, Y., Kleerebezem, R., Muyzer, G. and van Loosdrecht, M.C. (2009). Enrichment of a Mixed Bacterial Culture with a High Polyhydroxyalkanoate Storage Capacity. Biomacromolecules, 10 , 670-676. doi: 10.1021/bm8013796.
Kandilian, R., Taleb, A., Heredia, V., Cogne, G. and Pruvost, J. (2019). Effect of light absorption rate and nitrate concentration on TAG accumulation and productivity of Parachlorella kessleri cultures grown in chemostat mode. Algal research, 39 , 101442. doi: 10.1016/j.algal.2019.101442.
Klok, A. J., Martens, D. E., Wijffels, R. H., Lamers, P. P. (2013). Simultaneous growth and neutral lipid accumulation in microalgae.Bioresource Technology, 134 , 233-243. doi: 10.1016/j.biortech.2013.02.006.
Kumar, D., Singh, B. (2020). Effect of winterization and plant phenolic-additives on the cold-flow properties and oxidative stability of Karanja biodiesel. Fuel, 262 , 116631. Doi: 10.1016/j.fuel.2019.116631.
Kung, C.C. (2019). A stochastic evaluation of economic and environmental effects of Taiwan’s biofuel development under climate change.Energy, 167 , 1051-1064. doi: 10.1016/j.energy.2018.11.064.
Lavaud, J., Rousseau, B. and Etienne, A. (2004). General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). Journal of Phycology, 40 , 130-137. doi:10.1046/j.1529-8817.2004.03026.x
Martins, F., Felgueiras, C., Smitkova, M., Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies, 12 , 964. doi: 10.3390/en12060964.
Mata, T. M., Martins, A. A., Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews. Renewable and Sustainable Energy Reviews, 14 , 217-232. doi: 10.1016/j.rser.2009.07.020.
Mazzuca Sobczuk, T., Chisti, Y. (2010). Potential fuel oils from the microalga Choricystis minor. Journal of Chemical Technology Biotechnology, 85 , 100-108. Doi: 10.1002/jctb.2272.
Milledge, J. J., Nielsen, B. V., Maneein, S., Harvey, P. J. (2019). A brief review of anaerobic digestion of algae for bioenergy.Energies, 12 , 1166. doi: 10.3390/en12061166.
Mizuno, Y., Sato, A., Watanabe, K., Hirata, A., Takeshita, T., Ota, S., Sato, N., Zachleder, V., Tsuzuki, M. and Kawano, S. (2013). Sequential Accumulation of Starch and Lipid Induced by Sulfur Deficiency in Chlorella and Parachlorella species. Bioresource Technology, 129 , 150-155. doi: 10.1016/j.biortech.2012.11.030.
Mofijur, M., Rasul, M. G., Hassan, N. M. S., Nabi, M. N. (2019). Recent development in the production of third generation biodiesel from microalgae. Energy Procedia, 156 , 53-58. doi: 10.1016/j.egypro.2018.11.088.
Mooij, P. R., de Graaff, D. R., van Loosdrecht, M. C., Kleerebezem, R. (2015). Starch productivity in cyclically operated photobioreactors with marine microalgae effect of ammonium addition regime and volume exchange ratio. Journal of Applied Phycology, 27 , 1121-1126. doi: 10.1007/s10811-014-0430-3.
Mooij, P. R., de Jongh, L. D., van Loosdrecht, M. C., Kleerebezem, R. (2016). Influence of silicate on enrichment of highly productive microalgae from a mixed culture. Journal of Applied Phycology,28, 1-5. doi: 10.1007/s10811-015-0678-2.
Mooij, P.R., Stouten, G.R., Tamis, J., van Loosdrecht, M.C., Kleerebezem, R. (2013). Survival of the fattest. Energy & Environmental Science. 6 , 3404-3406. doi: 10.1039/C3EE42912A.
Mujtaba, G., Choi, W., Lee, C.G., Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123 , 279-283. Doi: 10.1016/j.biortech.2012.07.057.
Mur, R., Skulberg Olav, M., Utkilen, H. (1999). CYANOBACTERIA IN THE ENVIRONMENT.
Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R. and Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077.Bioresource Technology, 156 , 146-154. doi: 10.1016/j.biortech.2014.01.025.
Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S.K., Ghosh, A. and Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.Bioresource Technology, 189 , 341-348. doi: 10.1016/j.biortech.2015.04.017.
Phukan, M. M., Chutia, R. S., Konwar, B. K., Kataki, R. (2011). Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88 , 3307-3312. doi: 10.1016/j.apenergy.2010.11.026.
Regan, D. L., Ivancic, N. (1984). Mixed populations of marine microalgae in continuous culture: Factors affecting species dominance and biomass productivity. Biotechnology and Bioengineering, 26 , 1265-1271. doi: 10.1002/bit.260261102.
Sluchanko, N.N., Slonimskiy, Y.B., Shirshin, E.A., Moldenhauer, M., Friedrich, T. and Maksimov, E.G. (2018). OCP–FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria. Nature Communications, 9 , 3869.
doi: 10.1038/s41467-018-06195-0.
Sukenik, A., Zmora, O., Carmeli, Y. (1993). Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture. 117 , 313-326. doi: 10.1016/0044-8486(93)90328-V.
Takagi, M., Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101 , 223-226. doi: 10.1263/jbb.101.223.
Takeshita, T., Ota, S., Yamazaki, T., Hirata, A., Zachleder, V., Kawano, S. (2014). Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresource Technology, 158 , 127-134. doi: 10.1016/j.biortech.2014.01.135.
Tanada, T. (1951). The photosynthetic efficiency of carotenoid pigments in Navicula minima. American Journal of Botany , 276-283. doi: 10.2307/2438001.
Tang, H., Chen, M., Simon Ng, K.Y. and Salley, S.O. (2012). Continuous microalgae cultivation in a photobioreactor. Biotechnology Bioengineering, 109 , 2468-2474. doi: 10.1002/bit.24516.
Tevatia, R., Allen, J., Blum, P., Demirel, Y. and Black, P. (2014). Modeling of rhythmic behavior in neutral lipid production due to continuous supply of limited nitrogen: Mutual growth and lipid accumulation in microalgae. Bioresource Technology, 170 , 152-159. Doi: 10.1016/j.biortech.2014.07.043.
Thiruvenkadam, S., Izhar, S., Hiroyuki, Y., Harun, R. (2019). One-step microalgal biodiesel production from Chlorella pyrenoidosa using subcritical methanol extraction (SCM) technology. Biomass and Bioenergy, 120, 265-272. doi: 10.1016/j.biombioe.2018.11.037.
Wen, X., Geng, Y., Li, Y. (2014). Enhanced lipid production in Chlorella pyrenoidosa by continuous culture. Bioresource Technology, 161 , 297-303. doi: 10.1016/j.biortech.2014.03.077.
Xiao, Y., Zhang, J., Cui, J., Feng, Y. and Cui, Q. (2013). Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresource Technology, 130, 731-738. doi: 10.1016/j.biortech.2012.11.116.
Zhang, Y., Liu, X., White, M. A., Colosi, L. M. (2017). Economic evaluation of algae biodiesel based on meta-analyses. International Journal of Sustainable Energy. 36, 682-694. doi: 10.1080/14786451.2015.1086766.
Table 1. Nitrate concentration in chemostat enrichment culture under different nitrogen loading rates.