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Abstract20

Trait-based species distribution models (trait-SDMs) enable prediction to new species21

and situations based on traits. However, predictive transferability is unknown. We fit22

trait-SDMs with specific leaf area (SLA), maximum height and seed mass as species level23

predictors in generalised linear mixed models with four environmental predictors for 2024

species of eucalypt trees in an outlying reference region. Trait-environment interactions25

included heavy-seeded species increasing in rugged areas and high-SLA species increasing26

in areas receiving runoff. We predicted occurrences using traits for 82 species across27

18 target regions over > 100,000 km2 in south-eastern Australia. Median predictive28

performance for new species in target regions was 0.65 (area under the receiver operating29

curve) and 1.24 times that of random (area under the precision recall curve). Prediction30

in target regions did not worsen across geographic, environmental or compositional space.31

This work provides a path for first-order models of species distribution using traits.32
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Introduction33

Species distributions—where they occur and why—are core elements of fundamental34

and applied ecology. Species distribution modelling (SDM) has been the focus of35

substantial research over the past two decades (Araujo & Guisan 2006; Elith &36

Leathwick 2009). The vast majority of SDM work is correlative, and the basis for37

transferring such models is uncertain for many reasons relating to links between38

modelled distributions and the species niche, including chance correlations, biotic39

interactions, non-equilibrium distributions, and extrapolation (Colwell & Rangel 2009;40

Briscoe et al. 2016). Hierarchical (or multi-level) models can aid the the development of41

correlative models by assuming some commonality of response and sharing strength42

between species, which is important as most species are rare (Gelfand et al. 2006;43

Dorrough et al. 2011; Ovaskainen & Soininen 2011).44

Plant functional traits can be used as predictors of species distribution along45

environmental gradients (Dorrough & Scroggie 2008; Laughlin et al. 2012; Pollock et al.46

2012; Jamil et al. 2013; Brown et al. 2014; Pollock et al. 2018; Miller et al. 2019; Warton47

et al. 2015). Trait-based models provide a route for generalised ecological48

inference—how traits influence species occurrence—but also for prediction to new49

situations—where species are likely to occur—based only on their traits and the50

environment. Incorporating traits into hierarchical models can help both establish the51

functional role of traits and improve correlative models by adding biologically relevant52

information. That is, a chance correlation of a species distribution with an53

environmental gradient is less likely to be included in a model if (a) it is strongly54

dissimilar to other species, and (b) a trait variable can explain why species vary in their55
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responses. However, it is unclear how robust trait-based models are for species and56

regions beyond the training set.57

To be operationally useful, it is not enough for traits to simply indicate response,58

they need also to predict response and be transferable (Sequeira et al. 2018; Yates et al.59

2018). For example, can one generalize between regions, by predicting responses in one60

region with a trait-based model fitted in another region with different species (Thomas61

& Vesk 2017)? The ability to transfer ecological models from reference to target settings62

or conditions could provide predictions to facilitate decisions in conservation and natural63

resource management (Yates et al. 2018). Predictive transfer across regions and species64

is the subject of this paper.65

Here we build on past work with trait-based multi-species distribution models66

(trait-SDM) of eucalypts (sensu lato, including the genera Eucalyptus, Corymbia and67

Angophora), the dominant trees in Australia, with over 800 species dominating the68

overstorey of over 92 million km2. Much SDM work has demonstrated the importance69

and method of incorporating effects of temperature, rainfall, irradiance and lithology on70

eucalypt species distributions (Austin et al. 1990; Austin 2002; Fithian et al. 2015).71

Pollock et al. (2012) incorporated leaf-height-seed (LHS) traits (specific leaf area (SLA),72

maximum height and seed mass) into generalised linear mixed models (GLMMs) across73

Gariwerd (the Grampians Ranges), Victoria using seven environmental gradients74

including climatic, topographic and edaphic variables. Trait-environment relationships75

captured by those models included: heavier-seeded species being more likely to occur in76

sandier (cf. clay) soils, low SLA species more likely to occur in sites with greater rock77

cover (and less exploitable soil volume). Species occurrence across gradients of78

irradiance and rock cover within the Grampians was predicted utilising SLA and79
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maximum height, but not evaluated.80

Here we ask whether such trait-SDMs can be transferred between regions (Morán-81

Ordóñez et al. 2017; Sequeira et al. 2018) and between species. Can one build and train82

a model in the Grampians and transfer it to new target regions and species based only83

on the modelled trait-environment interactions? This is a severe test—previous tests of84

model transferability within species between regions (Randin et al. 2006) or time periods85

(Morán-Ordóñez et al. 2017; Dobrowski et al. 2011), report performance ranging from86

failure to excellent, but with most less than fair. Internal cross-validation of trait-SDM87

showed good performance between species, within a dataset (Brown et al. 2014). Here we88

evaluate the capacity to predict not only to different regions, but to different species as89

well.90

We are interested in the capacity to (1) predict the direction of the response (i.e., is91

a target species likely to increase or decrease in occurrence along a given environmental92

gradient?) and to (2) predict presences and absences. We fit GLMMs to 20 taxa in93

the Gariwerd-Grampians region, a small outlier of Australia’s Great Dividing Range,94

and then evaluate their predictive performance with 85 taxa in 18 target regions across95

over 100,000 km2 along the Great Dividing Range in southeast Australia. Because one96

would expect degree of extrapolation to affect prediction, we then (3) assess whether97

the predictive performance is negatively related to distance from the reference region in98

geographic, environmental and compositional space.99
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Methods100

Study system and datasets101

Geography102

Our work was conducted in southeastern Australia (Fig. S1.1). We used subregions from103

the the Interim Biogeographic Regionalisation of Australia (IBRA version 7) (Department104

of the Environment & Energy 2012); we refer to them from hereon as regions. The Greater105

Grampians (Gariwerd is the Indigenous name), our reference (or training) region, covers106

an isolated series of mountain ranges in an area ∼75 km north-south and 30 km east-west.107

Rising out of sedimentary plains with high topographic variation, the region includes108

gently rising scarps, rocky ridges and cliffs, gullies, sandy outwash plains and clay-rich109

depressions. Our target (or test or transfer) regions cover a roughly triangular area of110

∼118 000 km2 spanning 5 degrees of latitude and 5 degrees of longitude. This yielded 18111

target regions ranging in area from 400 to 17 300 km2, containing 10-72 eucalypt taxa112

each (Table S1.1)113

Occurrence data114

For the Grampians we used the plots surveyed by Pollock et al. (2012). Briefly, ∼460115

plots were surveyed using a gradient-directed transect design following an environmentally116

stratified selection of start points. Plots were centred on a tree and included the four117

nearest trees in cardinal points or extended to a maximum of 20 m, whichever was less.118

The southeastern Australian data were compiled from the Victorian Biodiversity Atlas119
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(The State of Victoria, Department of Environment, Land, Water and Planning 2018)120

and Southeast forests datasets (Austin et al. 1990; Austin et al. 1996). These were fixed121

area, 200–2500 m2 (90% of which were 900–1 000 m2) plots with all woody tree species122

recorded. Subspecies were recognised and so, “taxon” is the more correct term, however123

we occasionally use the term “species” for simplicity. From all datasets we extracted124

binary presence-absence data.125

Trait data126

Traits were measured according to standard protocols (Perez-Harguindeguy et al. 2016).127

Trait collection for the Gariwerd-Grampians is described in Pollock et al. (2012). New128

data for the southeast dataset were collected in a series of fieldtrips across the regions,129

using our plot data to guide sampling. We sampled trees near to roads and tracks, where130

canopies were accessible with 4m pole clippers. Occasionally for tall taxa, blown-down131

branches were used.132

For each plant sampled, we chose three young, fully-expanded adult leaves from the133

outer canopy, lacking obvious indication of herbivore or pathogen attack or other epiphylls.134

We aimed to select over a range of leaf sizes but avoiding the smallest leaves. Leaves135

were stored in sealed plastic bags inside an insulated cooler while in the field, and in a136

refrigerator before measurement. Individual fresh leaves were rubbed dry and leaf area137

(mm2, including petiole) measured with a pre-calibrated (LI-COR LI3000 leaf area meter).138

Occasionally, if a leaf area meter was not available, leaves were scanned on a flatbed139

scanner with a scale bar. The area of the leaf was then calculated using the software140

ImageJ. Leaves were then placed in paper bags and oven-dried at 60◦C for at least 72141
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hours. Once removed from the oven, leaves were immediately weighed on laboratory scales142

(Mettler Toledo ML104).143

We harvested 10-20 mature fruits from each plant sampled. Fruits were placed in144

paper bags and put into an oven at 60◦C for at least 72 hours. This process causes the145

fruits to dehisce their seeds and was followed by shaking the bag to encourage seeds to146

fall out. Once removed from the oven, we weighed 10 mature seeds. Maximum height147

data were extracted from the EUCLID database (Slee et al. 2006).148

Environmental data149

In this study we only used environmental data available as GIS layers throughout the150

southeastern Australian regions. This is in contrast with the original modelling (Pollock151

et al. 2012), and was necessary because the field-based environmental measurements were152

not available across the target regions dataset. Covariates were selected from a large153

set using a combination of cluster analysis and discrimination power (see Supplement154

1). Candidate covariates were obtained from the Soil and Landscape Grid of Australia155

(Grundy et al. 2015) and the NSW and ACT Regional Climate Modelling (NARCliM)156

project (Evans et al. 2014). The final set used were: Moisture index in the lowest quarter;157

Topographic Wetness Index; Topographic relief within 1000 m; Total Nitrogen.158

Model building159

The trait-SDMs were built using the same GLMM approach as in (Pollock et al. 2012)160

and (Pollock et al. 2018) and detailed in Supplement 3. Broadly similar approaches are161
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described in (Brown et al. 2014; Jamil et al. 2013) and an overview of related techniques162

is in Ovaskainen et al. (2017). These models can all be thought of extensions to linear163

regression, where the taxon response includes interactions between environmental and164

trait predictors. Briefly, the occurrence of the jth taxon at the ith site, Yij = 1 is assumed165

to be Bernoulli distributed. The corresponding probability is modelled as the inverse-166

logit of a linear function of taxon-specific intercepts and coefficients for covariates that167

had submodels incorporating the three traits and taxon-level random effects.168

Statistical power was a key consideration. In the original Gariwerd-Grampians169

analyses there were roughly 460 sites for 20 taxa with three traits and seven170

environmental covariates for a linear model with 21 trait-environment interactions to171

estimate. We felt this was an upper limit to model complexity. We used the same three172

traits and chose to use four environmental covariates yielding 12 trait-environment173

interactions.174

Measuring and comparing model performance175

The trait-SDMs were trained on the Grampians data and then used to make predictions.176

We predicted using the fitted coefficients within the Grampians in two ways: (a) based177

only on the traits of the Grampians taxa, without taxon identities; and (b) to the178

Grampians taxa, using traits and including the taxon random effect. This enables a179

within-sample evaluation of how well the trait-SDM performs in the reference region.180

The difference between the performance of these first and second predictions indicated181

what fraction of environmental responses, within the Grampians, were not associated182

with the traits we used. We then made predictions to our target regions with our fitted183
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trait-SDM. We predicted occurrences for all taxa based only on their traits as in the184

first test within the Grampians. These out-of-sample predictions are the main part of185

our study.186

Performance measurement of presence-absence predictions187

Predictive performance was measured with two metrics using the confusion matrix of188

prediction and observations; the area under the receiver operator curve statistic (AUROC)189

(Fielding & Bell 1997), as used and recommended in studies of transferability (Randin190

et al. 2006; Sequeira et al. 2018). This can be interpreted as the probability that for191

a randomly chosen pair of plots consisting of one presence and one absence, the model192

would correctly rank their probability of occurrence. We also examined the area under193

the precision recall curve (AUPRC), which has advantages in situations where objects are194

rare, and it is proposed to map well on to the problem of directing survey effort (Sofaer195

et al. 2019). We also examined the explained deviance. These are detailed in Supplement196

4.197

To evaluate whether predictive performance declined farther from the reference region198

we used three measures. We used the geographic distance in kilometres between the199

centroids of the reference and target regions. Community composition dissimilarity was200

measured with Jaccard’s index (P. Legendre & L. F. J. Legendre 2012). Environmental201

dissimilarity was measured with Kullback-Leibler divergence (Cover & Thomas 2006).202
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Correlation of regression coefficients from trait-SDM with taxon regressions203

We expect better calibrated models to better predict occurrences. So, we examine204

calibration of environmental responses and ask whether lower predictive performance for205

taxa in target regions can be explained by miscalibration. Predicting the regression206

coefficients for environmental covariates maps onto the problem of a practitioner in a207

region asking: for a particular environmental gradient will a focal species increase or208

decrease in occurrence? To benchmark performance of our trait-SDM, for each taxon in209

each region, we fitted separate generalised linear models based on the same210

environmental variables (see Supplement 4 for details). These taxon- and region-specific211

models, we call taxon regressions to avoid confusion. Taxon regressions were used to212

estimate coefficients for comparison with the coefficients from the trait-SDM, and serve213

to evaluate how the trait-SDM is making potentially inaccurate predictions.214

We asked whether miscalibration of the taxon regression coefficients explained215

variation in the performance measures, reasoning that a model that poorly predicted216

coefficients for a taxon in a region would result in poor occurrence prediction. We used217

absolute value of the miscalibration (|predicted coefficient - taxon regression coefficient|)218

for each environmental variable as predictors in a model of performance, expecting219

negative effects. We built GLMMs for the performance metrics with distance measures220

and miscalibration as predictors, and random effects of taxon and region.221
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Results222

Characterising the target and reference regions223

Environmental covariates varied within and between regions. The Grampians is located224

towards high evaporation and temperature and lower moisture index loading on the first225

component of the principal components analysis (Fig. S1.6). In the subset of covariates226

used in the model, the Grampians experienced a lower and more limited range in moisture227

index compared with the other regions of southeast Australia (Fig. S1.5). Topographic228

relief, wetness and nitrogen were more equably covered in both the Grampians and target229

regions. Target regions shared fewer than half their species with the Grampians, and230

displayed distance-decay in compositional dissimilarity (Fig. S1.3). Regions >600 km231

from the Grampians shared few, if any, eucalypt taxa with the Grampians, while regions232

<400 km from the Grampians shared 5–20% of taxa. Environmental distance of regions233

from the Grampians tended to increase with geographic distance, except for two regions,234

resulting in a lack of correlation (r = 0.2) between the two measures.235

Trait-SDM236

Modelling results from fitting the trait-SDM to the reference region (the Grampians)237

including taxon coefficients are in Supplement 3. A variance components analysis of the238

fitted linear model illustrates that taxa varied most in their response to moisture index239

(∼0.8 SD), but that traits explained relatively little (<20%) of that variance (Fig. 1).240

Taxa varied less in response to topographic wetness (∼0.6 SD), but traits explained over241

one-third of that between-taxon variance.242
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That variation in range of taxon environmental responses and their explanation by243

traits are revealed by plotting modelled trait-environment interactions and taxon244

environmental responses (Fig. 2). First, taxa varied most in response to Moisture Index,245

but with little relation to traits (Fig. 2, top row). Taxon responses to Topographic246

Wetness varied less (Fig. 2, second row), but were positively related to SLA, indicating247

that taxa with thicker, denser leaves were less likely to be found in topographically wet248

areas. By contrast, taxa with high SLA (i.e., taxa with thinner, flimsier leaves) were249

likely to respond positively to increased topographic wetness (Fig. 2, second row, left).250

A positive interaction between seed mass and Topographic Relief indicated that heavier251

seeded taxa responded positively to increasing ruggedness, while small seeded taxa252

responded negatively to ruggedness (Fig. 2, third row, center). Predictive performance253

of the trait-SDM within the reference region was, for some species, comparable to a254

model that included a taxon random effect (Fig. S4.6).255

Calibration of predicted environmental responses256

Predicted environmental response coefficients in the reference region were well calibrated257

for Topographic Wetness and Topographic Relief and less so for Moisture Index (Fig. 3),258

matching the variance components analysis. Among the target regions, that pattern of259

calibration was not evident; correlations were weaker, though most positive for260

Topographic Wetness and Moisture Index. Predicted responses ranged widely in261

Topographic Relief and Topographic Wetness, less in Moisture Index and Total262

Nitrogen, which ranged more in the taxon regressions. Relations between responses to263

Topographic Wetness and traits illustrate that low SLA and high seed mass taxa were264

consistently found to have negative responses to Topographic Wetness, in the trait-SDM265
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and taxon regressions (Fig. S3.4).266

Predictive performance by target taxa and region267

Predictive performance of the trait-SDM varied widely in both AUROC and AUPRC,268

and more among target taxa within target regions, than between regions (Fig. 5).269

Median AUROC = 0.65 and 75% of AUROC values > 0.55 (Fig. 5). Many more taxon270

predictions were excellent for AUROC (AUROC > 0.90) than random or worse271

(AUROC < 0.5). AUROC within each region ranged roughly over 0.55–0.95 , and had272

performance that declined with prevalence (Figs. S4.1,S4.2). AUPRC was even more273

tightly (though positively) related to prevalence, so we used AUPRC divided by274

prevalence, yielding a performance measure relative to that of a random classifier (see275

Supplement 4). According to AUPRC, most predictions were better than random, with276

median AUPRC = 1.24 times random, and 25% of predictions > 2.2 times as good as277

random, but >25% of predictions were worse than random. Predictive performance was278

not related to geographic nor environmental distance nor compositional dissimilarity279

from the reference region (Fig. 5). Neither was performance within the reference region280

clearly higher than target regions. For the ten taxa that occurred in both the reference281

region and target regions, AUROC and AUPRC values were similarly, highly variable282

(Fig. S4.9).283

Highly-calibrated environmental response predictions could achieve higher284

performance measured by AUPRC/prevalence (Fig. 4), and less so for AUROC.285

GLMMs of the performance statistics confirmed that miscalibrated models performed286

worse for AUPRC/prevalence, but less clearly so for AUROC (Supplement 4, Table287
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S4.1). That model of AUPRC/prevalence indicated miscalibration effects on288

AUPRC/prevalence performance were most important for Topographic Wetness and289

Topographic Relief (Table S4.1). Miscalibration effects on AUROC were also negative in290

sign, but were uncertain. The intercept of the model for AUPRC/prevalence (0.43)291

predicts that for the hypothetical average prediction, with average miscalibration,292

predictions performed 1.5 times as good as random. In neither performance metric did293

we find evidence for negative effects of any distance measures (Table S4.1).294

Predictions of particular taxa did not perform consistently across regions. Residual295

variance (measured as standard deviations) was approximately twice that of the taxon296

level random effect, which was greater than region level (Table S4.2). Taxon level random297

effects were weakly, negatively correlated with seed mass (r = -0.30, 95 % CI [-0.49, -0.10],298

80 d.f) S4.10. The effects of miscalibration and the intermediate residual variation among299

taxa in these models of performance together imply that the variation evident in plots of300

performance measures would be only partly reducible with better trait knowledge.301

Probing predictive performance for some regions and environments302

We illustrate predictive performance measured with AUPRC/prevalence for a subset of303

target regions chosen across the range of median model performance from least to best304

predicted, as well as the Grampians for reference (Fig. 6). On the right we see that the305

trait-SDM predicts taxon occurrences with similar performance to the Grampians—taxa306

vary in their predictive capacity in each of the regions. Most taxa are better predicted in307

the Victorian Alps than the Snowy Mountains and Jervis, but in each region some taxa308

are predicted well, with AUPRC > four times as good as random. Notably, the median309
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AUPRC/prevalence is higher for Victorian Alps than the Grampians, where the model310

was trained. For AUROC, see Fig. S4.11.311

Predicted response of taxa in regions along gradients312

We compare the responses for two contrasting environmental covariates : moisture index313

(which varied widely between taxa but had limited interaction with traits) and;314

topographic wetness (with less variation between taxa but stronger interaction with315

traits (cf. Fig. 1). In the Grampians (at top Fig. 6)) we can see that the trait-SDMs316

produced coefficients for Topographic Wetness similar in sign and magnitude to those317

from individual taxon regressions. Also taxa with high AUPRC/prevalence values318

tended to lie farther from the origin and closer to the 1:1 line, indicating that better319

predictions of occurrence (AUPRC) were associated with well-calibrated predictions of320

coefficients. Those patterns were not so evident for Moisture Index, where taxon321

regression responses varied widely but trait-SDM predictions did not capture that and322

varied little; (Fig. 6).323

The correlation between trait-SDM predicted responses to Topographic Wetness in324

target regions show that some taxon responses were well predicted (lying in top right325

and lower left quadrants, and close to the 1:1 line). Taxa with high AUPRC/prevalence326

values were not always close to the 1:1 line, because the plots indicate responses to a327

single gradient at a time, whereas AUPRC/prevalence measures overall model328

performance. Some taxon responses were poorly predicted (e.g., in Victorian Alps, the329

sign was often wrong; positive responses were predicted by the trait-SDM while taxon330

regressions resulted in negative responses).331
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Trait-SDM responses to Moisture (Fig. 6, left panels) were less correlated with those332

from taxon regressions. Still, most responses were in the correct quadrant (i.e., correct333

sign). High AUPRC/prevalence predictions were generally associated with coefficients in334

the correct quadrant. In Jervis, it appears that taxa with low AUPRC/prevalence are335

dispersed widely in the taxon regression coefficients, without corresponding predictive336

coefficients. That is, taxa in Jervis varied widely in their responses to moisture index,337

but in a way that was not predicted by the trait-SDM from the Grampians.338

Together, the evaluation of environmental response suggests that stronger339

trait-environment interactions produce well-calibrated response coefficients resulting in340

better predictions of occurrence. But weak trait-environment interactions resulted in341

less calibrated coefficients and were not clearly related to predicting occurrence well.342

Discussion343

We have demonstrated a method for using trait-SDMs to transfer knowledge from one344

taxon to another and from one region to another along with ways to measure and345

visualise the performance of such a transfer. We used that method to demonstrate that346

taxon environmental responses along gradients (i.e., whether they increase or decrease in347

probability of occurrence) can be predicted reasonably from their traits, our first general348

result. But some taxa and some regions were better predicted than others. Performance349

in target regions displayed no distance-decay from the model reference region, our350

second general result. Higher performance was related to well-calibrated environmental351

response predictions that resulted from strong trait-environment associations for352

AUPRC, but not so clearly for AUROC, our third general result. We discuss these353
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further below.354

The performance we documented is notable, as we work within one genus, which355

makes the problem harder, because it potentially limits the trait range. Predictive356

performance using AUROC was comparable to that for spatial transferability within357

species (Randin et al. 2006): 54 tree species models transferred between Swiss and358

Austrian Alps resulting in median AUROC scores of 0.63 (minimum 0.44, interquartile359

range 0.55–0.72 and maximum 0.93) from Swiss to Austrian Alps and 0.65 in reverse360

(minimum 0.45, interquartile range 0.60–0.73 and maximum 0.83). Comparable361

performance is remarkable, given that our trait-SDM is blind to taxon.362

Yet less is known about comparable performance using AUPRC, as it has been less363

used in SDM (Sofaer et al. 2019). Our experience suggests that AUPRC should be more364

widely used — it better reflected model calibration. Interpretation of AUPRC is365

confounded by dependence on prevalence, but it matches the problem of directing366

survey effort, and by expressing relative to the performance of a random classifier (=367

prevalence), interpretation is aided. Substantive interpretation of the scale and rules of368

thumb for judging performance under AUPRC and AUPRC/prevalence would be369

assisted by accumulating published model performance results. One could use any370

metrics based on the confusion matrix. Undoubtedly these would yield different answers371

in the detail. Yet our central message is unlikely to change: responses of new species in372

new regions are variably predicted, some quite well and some quite poorly.373

We have presented a difficult case for transferability. The model reference region was374

peripheral, environmentally and geographically, to the wider region that we wished to375

predict to. This was partly historical—it is where we first built models—but also where376
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we had greatest confidence in the locational accuracy of the dataset to fit the model.377

Another way that our problem is hard is that we fitted the model on a small region and378

predicted to multiple regions over much greater extent. One expects better performance379

starting with a bigger (and wider-extent) dataset to predict to a small one. But that is380

not the problem that we believe presents itself to ecologists and practitioners, who are381

faced with larger areas where comparatively little is known and some intensively studied382

areas, from which one may wish to transfer knowledge. This is the problem that we have383

attempted to address, with some encouraging signs. Analogously, as one attempts to384

predict suitability under climate change, one is attempting to predict into conditions of385

great uncertainty from a smaller, well-understood current situation.386

Better predictive performance of trait-SDM stemmed from well-calibrated387

environmental responses that could be predicted through strong trait-environment388

interactions, like Topographic Wetness in our study. Predicted responses to Moisture389

Index were not well calibrated, owing to larger variation between species but weak390

interactions with studied traits. A likely direction for improving performance would be a391

trait that modulates species performance along the Moisture Index gradient. Perhaps,392

traits better reflecting the water costs of photosynthetic capacity e.g.,393

Rubisco-dependent carboxylation capacity (Vcmax) or Leaf Nitrogen per Area (Prentice394

et al. 2014).395

Additionally, Total nitrogen responses were mainly negatively calibrated. Perhaps396

because the fit was accurate within the reference region, but that trait-environment397

relationship had no generality. Or the covariate was incorrectly selected, which could be398

because it was mistakenly chosen ahead of some other environmental covariate with399

which it was correlated, but which was more meaningful. Poorly calibrated responses400
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could also emerge when predicting to trait ranges outside those of the reference dataset.401

This suggests that some explanation for the good predictive performance we found lies402

in the good coverage of trait space among the taxa in our reference region relative to the403

target regions (Sequeira et al. 2018).404

Surprisingly, we found no evidence to suggest declining transferability across405

geographic, compositional or environmental space in our study, nor little difference from406

the reference region. The random effects of region in models of performance were407

substantially lower than for taxa, which implies it is not about choosing the correct408

region from which to transfer. By contrast, about twice the improvement in model409

performance could be gained by considering taxa. We found that taxa that had better410

predictions tended to have lighter seeds. One speculative explanation draws on classical411

cost-benefit theory about community assembly along gradients of favourability (Orians412

& Solbrig 1977; Austin & T. M. Smith 1989; T. Smith & Huston 1989; Normand et al.413

2009). According to that theory, the most productive/resource-acquisitive taxa are414

restricted to the most favourable sites. More tolerant species could occur in those sites415

but are competitively excluded from them by the resource-acquisitive taxa, hence they416

generally occur in less favourable sites. In our case, light seed mass reflects lower417

tolerance of hazards of seedling establishment, more limited by environment, and heavy418

seed mass species with tolerant seedlings are less limited by environment, with greater419

role of competition (Leishman 2001; Muller-Landau 2010). Our models include only420

environment, no biotic interactions.421
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Caveats and extensions422

Performance of our models was hampered by two types of data limitations: spatial423

inaccuracy of occurrence data; and spatial models of environment used as covariates. In424

the first case, the occurrence data across our target regions result from compilations of425

survey campaigns over >30 years. Over that time, civilian GPS availability, accuracy426

and precision have improved substantially, meaning that older locations are less reliable.427

This limitation interacts with our second limitation, the need to used modelled428

environmental covariates. Our original modelling of the Grampians dataset utilised429

some field-measured covariates including rockiness and soil texture, which were strongly430

influential (Pollock et al. 2012), as soil texture was in semi-arid areas (Pollock et al.431

2018). Landscape position can vary dramatically across lateral distances of tens of432

meters with potent effects on environmental variables related to soil depth, texture,433

nutrients and water availability as well as irradiance-mediated micro-climate (Austin &434

Van Niel 2011). And the DEM-based models that exist for such environmental variables435

do not approach what one can achieve with plot-based measurement. Our soil nitrogen436

responses would appear to be least reliable. So when combined with spatial inaccuracy437

of occurrence plots, capacity to predict relationships with environmental variables is438

diminished (Van Niel & Austin 2007).439

These results give confidence in the value of traits to assist in the hard problem of440

predicting responses to environmental gradients for new species and new environmental441

conditions and regions. They deserve testing in different systems—other clades and442

landscapes. Factors likely contributing to the success here are that the reference region443

was environmentally diverse and the species there were functionally diverse, ranging444
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widely in all three traits.445
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Supplements446

Supplement 1 Study area, data and covariates.447

Supplement 2 Eucalypt traits.448

Supplement 3 Model fitting and results.449

Supplement 4 Performance metrics.450
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Figure 1: Variance components for environmental response hyperparameters for the Grampians trait-

SDM. Bars represent the between-taxa variability in responses to environmental gradients with the

component explained by their median trait values in light grey and the unexplained proportion in dark

grey. Taller bars represent gradients to which the responses are more variable.
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Figure 2: Relationships between median trait values and environmental responses. Black lines show

the expected response coefficient as a function of median trait value. Grey envelopes represent the 95%

credible bounds of the estimate. Boxplots are the estimated partial responses of each modelled taxon

(positioned along the x-axis at their measured trait medians) showing the mean, 50% and 95% credible

intervals with segments of decreasing width.
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Figure 3: Calibration relationships between environmental response coefficients predicted by the Trait-

SDM and fitted by individual taxon regressions. White symbols in foreground are for the reference region

(Grampians) and filled transparent grey symbols are for the target regions.
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Figure 4: Performance of Trait-SDMs compared to a random classifier (AUPRC / prevalence) plotted

against miscalibration of environmental response coefficients. White symbols in foreground are for the

reference region (Grampians) and filled grey symbols are for the target regions.
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Figure 5: Relationship between within region, taxon-specific performance metrics (AUROC and

AUPRC/prevalence) and the distance from the reference to each target region. Distance is measured

as: Jaccard dissimilarity of communities, Kullback-Leibler distance of modelled environmental space,

and distance in kms between centroids. White circles are the mean performance in each region. Leftmost

panels show the performance metrics for the reference region, Gariwerd-Grampians. Boxplots show the

distribution of within-region taxon-specific performance across all the target regions.
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Figure 6: Left panels: Predicted responses from the trait-SDM versus taxon regression estimates. The

top row of panels are the reference region, Greater Grampians. The four rows below are other regions

in the southeast. Each point represents the response of a taxon within a given region. The position

on the y-axis is the expected response predicted trait-SDM conditional on the median trait values. The

position on the x-axis is the estimate of the response from taxon regressions of the taxa within the regions.

Each point’s black level indicates the area under the precision recall curve statistic (AUPRC) divided

by the prevalence for the taxon in the region’s plots based on the predicted probabilities of occupancy

according to the trait-SDM. Right panels: Distribution of taxon-specific AUPRC divided by prevalence

for predicted probabilities of occupancy conditional on traits for the regions. Grey line is the median

AUPRC divided by prevalence value across the taxa in the region.
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