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Reference model building and fitting4

We used the same approach to trait-environment modelling as in (Pollock et al. 2012) and5

(Pollock et al. 2018). We employ generalised linear mixed models (GLMM) with intercepts6

and slopes varying by taxon, and fixed effects for traits modulating those slopes. These7

are variously known as hierarchical models or multilevel models (Miller et al. 2019). We8

fit models of the form:9

Pr(Yij = 1) = logit−1(Xiβj)

βk ∼ N(µk,Σ)

µjk =



α : k = 0

Zjγk : k > 0

α, γmk ∼ N(0, s)

Σ ∼ Inv-Wishart
(
v, I
√

v
2

)

(1)10

Here the probability that the ith of N sites is occupied by the jth of J taxa (Yij = 1)11

is the inverse-logit inner product of K environmental gradient values, Xi, and gradient12

coefficients, βj. Thus, Y , X and β are N by J , N by K and K by J matrices, respectively.13

For the first column (k = 0) of X, all values are 1, accounting for the gradient intercepts.14

The rows of the gradient coefficient matrix, βk, are multivariate-normal distributed with15

mean vectors, µk, and covariance, Σ, such that µ, representing the expected response of16

taxa to gradients given their traits, has the reverse of the dimensions of β, and Σ is of size17

K. When k = 0, µjk is equal to α, the overall expected prevalence, so that traits do not18
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influence taxon prevalence. For k > 0, µjk, the expected response of the jth taxon to the19

kth gradient is the inner product of the jth taxon’s M traits, Zj and M trait-kth-gradient20

interaction coefficients, γk. Thus, Z is a J by M matrix of taxon traits and γ is an M21

by K − 1 matrix of trait-gradient coefficients. The parameter α and the elements of γ22

are normally distributed around 0 with variance, s. The covariance, Σ, is inverse-Wishart23

distributed with degrees of freedom, v, and a scale matrix I
√

v
2
, where, I is a size K24

identity matrix. We used regularising informative priors setting s = 1 and v = 4.25

These models are similar to those presented by (Jamil et al. 2013) and also evaluated26

by (Miller et al. 2019), described there as MLM1. Miller et al., found that having a fixed27

effect of traits improved model performance as in (Jamil et al. 2013), where there was an28

effect of traits on prevalence. Trait effects on prevalence should not be assumed, and much29

less work has demonstrated links between traits and commonness vs rarity (though see30

(Cornwell & Ackerly 2010). Whereas, much work has demonstrated associations between31

traits and gradients. Therefore in the spirit of parsimony we have retained the simpler32

model structure of excluding traits effects on prevalence.33
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Taxon models for target taxa and regions34

To compare the predicted (trait-based) response of taxa to gradients in the target regions35

we fit simple logistic regressions of the form:36

Pr(Yi = 1) = logit−1(Xiβ) (2)37

on per taxa, per region basis. Where Xi represented the same environmental gradients38

that were used in the Grampians (target) region trait-based model, but measured in the39

18 target regions ≈25,000 plots. For each taxon in each region we then compared the40

estimated value of β (the taxon responses) to the predicted response attained by combining41

the traits of the target taxon with the parameters of equation 1 estimated from the target42

model.43
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Results44

The magnitude of the (taxon-level) random effects can be seen to decline in the order:45

prevalence, Moisture Index, Ruggedness, Topographic Wetness Index and Total Nitrogen.46

The random effects are all correlated less than r = |0.5|.47

Table S3.1: Random effects

σ ρ

B0 MMI TWI R1k

B0 1.2

MMI 0.7 -0.2

TWI 0.4 0 0.4

R1k 0.5 -0.1 -0.4 -0.2

TN 0.4 0.1 -0.4 -0.3 0.2

Fixed effects report the response of the hypothetical average taxon, with average traits,48

and then below, the trait-environment interactions.49

Taxon coefficients for the GLMM trained in the Grampians illustrate considerable50

variation in response to Moisture Index, and rather less for Nitrogen (Fig. S3.1).51

Uncertainty in those coefficients is also greater for Moisture Index than Nitrogen.52

Prevalence (labelled intercept) varies widely among taxa.53

Illustration of the predicted response surface across gradients of Moisture and54

Topographic Wetness is provided for four hypothetical eucalypts with contrasting55

combinations of SLA and seed mass (Fig. S3.2). It is clear these these hypothetical taxa56

would be differently distributed.57
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Table S3.2: Fixed effects

µ σ

B0 -3.2 0.3

MMI -0.3 0.2

TWI 0.1 0.1

R1k 0.4 0.1

TN -0.1 0.1

MMI-SLA -0.0 0.4

MMI-SM 0.2 0.3

MMI-MH 0.0 0.2

TWI-SLA 0.4 0.2

TWI-SM -0.1 0.2

TWI-MH 0.0 0.1

R1k-SLA 0.5 0.3

R1k-SM 0.6 0.2

R1k-MH -0.0 0.2

TN-SLA -0.2 0.2

TN-SM 0.1 0.2

TN-MH -0.1 0.1
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Figure S3.1: Estimates of taxon-specific model parameters. Each violin represents the uncertainty in the

model intercept or environmental response coefficient for a taxon.
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Figure S3.2: The predicted probability of occurrence in relation to two environmental gradients for four

hypothetical eucalypt taxa with different combinations of two traits.
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Partial responses of two exemplar taxa illustrate the fitted curves and occurrence58

data along the four environmental gradients (Fig. S3.3). Positive responses to59

Topographic Wetness can be seen despite no presences at high values, this can be due to60

a relative paucity of plots in such locations, and also that other gradients may covary61

with Topographic Wetness in such a way to overwhelm an apparent pattern with it.62
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Figure S3.3: Expected partial response curves of two taxa from the Grampians trait-environment model.

Trait values in relation to modelled responses to one environmental gradient:63

topographic wetness.64

In Fig. S3.4 the relationship of two traits (SLA and seed mass) to the responses to65

topographic wetness can be seen to be distributed along the 1:1 line between predicted66

coefficients and those estimated from taxon regressions. High and low trait values are67

found in opposite quadrants of the plots for the Grampians (top panels). Low SLA and68

high seed mass taxa are consistently found to have negative responses to Topographic69

Wetness, in the trait-SDM and taxon regressions.70

In the Victorian Alps, we see most taxon responses captured well (Fig. S3.4, middle71

row). Two taxa lie to the top of the plot and left of the y-axis, indicating incorrectly72

predicted positive response, in keeping with their high SLA and middling seed mass.73
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But the taxon regression estimates indicate the taxa responding like taxa with lower74

SLA and/or heavier seeds. In both of the two target regions—Snowy Mountains and75

Victorian Alps—taxa have higher SLA and lighter seeds, with incorrectly positive76

responses predicted for several taxa. This suggests that trait ranges that extend well77

beyond the reference trait range might play some role in low predictive performance in78

testing ranges.79
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Figure S3.4: Trait-SDM predicted vs. single taxon model estimated response to topographic wetness

gradient. Each point’s black level is mapped to the taxon’s median SLA or seed mass on a scale of

standard deviations from the mean trait value of taxa in the Grampians.
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