References
[1] Chua L O, Memristor-The missing circuit element, IEEE Trans.
Circuit Th., 18, 507-519 (1971).
[2] Strukov D B, Snider G S, Stewart, D. R. & Williams, R. S., The
missing memristor found, Nature, 459 (2008).
[3] Bao B C, Shi G D, Xu J P, Liu Z, Pan S H, Dynamics analysis of
chaotic circuit with two memristors, Sci. China Tech. Sci. 54, 2180-2187
(2011).
[4] Buscarino A, Fortuna L, Frasca M, Gambuzza L V, A chaotic
circuit based on Hewlett-Packard memristor, Chaos, 22, 023136 (2012).
[5] Adhikari SP, Sah MP, Kim H, Chua LO, Three fingerprints of
memristor, IEEE Trans. Circuits Syst, I(60), 3008-3021 (2013).
[6] Li Q D, Zeng HZ, Li J, Hyperchaos in a 4D memristive circuit
with infinitely many stable equilibria, Nonlinear Dyn, 79, 2295-2308
(2015).
[7] Chen M, Li M Y, Yu Q, Bao B C, Xu Q, Wang J, Dynamics of
self-excited attractors and hidden attractors in generalized
memristor-based Chua’s circuit, Nonlinear Dyn., 81, 215-226 (2015).
[8] Zhou L,Wang C H, Zho L L, Generating hyperchaotic multi-wing
attractor in a 4D memristive circuit, Nonlinear Dyn., 85, 2653-2663
(2016).
[9] Yang N N, Xu C, Wu C J, Jia R, Modeling and analysis of a
fractional-order generalized memristor-based chaotic system and circuit
implementation, Int J Bifurcat Chaos, 27 (13) (2017), Article 1750199,
DOI: 10.1142/S0218127417501991.
[10] Sánchez-López C, Carbajal-Gómez V H, Carrasco-Aguilar M A and
Carro-Pérez I, Fractional-order memristor emulator circuits Complexity,
2018, ID 2806976 https://doi.org/10.1155/2018/2806976.
[11] Lin Q, Wen C, Fajie W, Ji L,
A
non-local structural derivative model for memristor,
Chaos,
Solitons & Fractals, 126, 169-177 (2019).
[12] H Cheng, The Casimir effect for parallel plates in the space
time with a fractal extra compactified dimension, Int J Theor Phys, 52
(2013), 3229-3237.
[13] J H He, A tutorial review on fractal space time and fractional
calculus, Int J Theor Phys, 53 (2014), 3698-3718.
[14] F. Brouers, T.J. Al-MusawiBrouers-Sotolongo fractal kinetics
versus fractional derivative kinetics: a new strategy to analyze the
pollutants sorption kinetics in porous materials, J Hazard Mater, 350
(2018) 162-168.
[15] M. Pan, L. Zheng, F. Liu, A spatial-fractional thermal
transport model for nanofluid in porous media, Appl Math Model, 53
(2018), 622-634.
[16] Atangana A, Fractal-fractional differentiation and integration:
Connecting fractal calculus and fractional calculus to predict complex
system, Chaos, Solitons & Fractals, 102, (2017), 396-406.
[17] Atangana A, Qureshi S, Modeling attractors of chaotic dynamical
systems with fractal-fractional operators, Chaos, Solitons & Fractals,
123, (2019), 320-337.
[18] Gomez-Aguilar J F, Chaos and multiple attractors in a
fractal-fractional Shinriki’s oscillator model, Physica A (2019), doi:
https://doi.org/10.1016/j.physa.2019.122918.
[19] Sania Q, Abdon A, Asif A S, Strange chaotic attractors under
fractal-fractional operators using newly proposed numerical methods,
Eur. Phys. J. Plus (2019) 134: 523, DOI 10.1140/epjp/i2019-13003-7.
[20] Kashif A A, Gomez-Aguilar J F, A comparison of heat and mass
transfer on a Walter’s-B fluid via Caputo-Fabrizio versus
Atangana-Baleanu fractional derivatives using the Fox-H function, Eur.
Phys. J. Plus (2019) 134, 101, DOI 10.1140/epjp/i2019-12507-4.
[21] Abro K A, Muhammad N M, Gomez-Aguilar J F, Functional
application of Fourier sine transform in radiating gas flow with
non‑singular and non‑local kernel, Journal of the Brazilian Society of
Mechanical Sciences and Engineering (2019) 41:400
https://doi.org/10.1007/s40430-019-1899-0.
[22] Kanno R. Representation of random walk in fractal space-time,
Physica A, 1998, 248, 165-75.
[23] Kashif A A, Ilyas K, Jose F G-A, Thermal effects of
magnetohydrodynamic micropolar fluid embedded in porous medium with
Fourier sine transform technique, Journal of the Brazilian Society of
Mechanical Sciences and Engineering, 41, (2019) 174-181.
https://doi.org/10.1007/s40430-019-1671-5.
[24] Abro K A, Ali A M, Anwer A M, Functionality of Circuit via
Modern Fractional Differentiations, Analog Integrated Circuits and
Signal Processing: An International Journal, 99(1) 11-21, (2019).
https://doi.org/10.1007/s10470-018-1371-6.
[25] Chen W, Sun H G , Zhang X, Korosak D, Anomalous diffusion
modeling by fractal and fractional derivatives, Comput Math Appl. 2010,
59(5), 1754-8.
[26] Ambreen S, Kashif, A A, Muhammad A S, Thermodynamics of
magnetohydrodynamic Brinkman fluid in porous medium: Applications to
thermal science, Journal of Thermal Analysis and Calorimetry (2018),
DOI: 10.1007/s10973-018-7897-0
[27] Kashif A A, Ilyas K, Gomez-Aguilar J F, A mathematical analysis
of a circular pipe in rate type fluid via Hankel transform, Eur. Phys.
J. Plus (2018) 133: 397, DOI 10.1140/epjp/i2018-12186-7.
[28] Abro K A, Ali D C, Irfan A A, Ilyas K, Dual thermal analysis of
magnetohydrodynamic flow of nanofluids via modern approaches of
Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded
in porous medium, Journal
of Thermal Analysis and Calorimetry, (2018) 1-11.
https://doi.org/10.1007/s10973-018-7302-z.
[29] J. Singh, D. Kumar, D. Baleanu, S. Rathore. On the local
fractional wave equation in fractal strings. Mathematical Methods in the
Applied Sciences, 42(5), (2019), 1588-1595.
[30] Kashif Ali Abro, Anwar Ahmed Memon, Muhammad Aslam Uqaili, A
comparative mathematical analysis of RL and RC electrical circuits via
Atangana-Baleanu and Caputo-Fabrizio fractional derivatives, Eur. Phys.
J. Plus, (2018) (2018) 133: 113, DOI 10.1140/epjp/i2018-11953-8.
[31] Abro K A, Ilyas K, Kottakkaran S N,
Novel technique of Atangana and Baleanu for heat dissipation in
transmission line of electrical circuit,
Chaos,
Solitons & Fractals,
129,
40-45, (2019),
https://doi.org/10.1016/j.chaos.2019.08.001