References
[1] Chua L O, Memristor-The missing circuit element, IEEE Trans. Circuit Th., 18, 507-519 (1971).
[2] Strukov D B, Snider G S, Stewart, D. R. & Williams, R. S., The missing memristor found, Nature, 459 (2008).
[3] Bao B C, Shi G D, Xu J P, Liu Z, Pan S H, Dynamics analysis of chaotic circuit with two memristors, Sci. China Tech. Sci. 54, 2180-2187 (2011).
[4] Buscarino A, Fortuna L, Frasca M, Gambuzza L V, A chaotic circuit based on Hewlett-Packard memristor, Chaos, 22, 023136 (2012).
[5] Adhikari SP, Sah MP, Kim H, Chua LO, Three fingerprints of memristor, IEEE Trans. Circuits Syst, I(60), 3008-3021 (2013).
[6] Li Q D, Zeng HZ, Li J, Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria, Nonlinear Dyn, 79, 2295-2308 (2015).
[7] Chen M, Li M Y, Yu Q, Bao B C, Xu Q, Wang J, Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit, Nonlinear Dyn., 81, 215-226 (2015).
[8] Zhou L,Wang C H, Zho L L, Generating hyperchaotic multi-wing attractor in a 4D memristive circuit, Nonlinear Dyn., 85, 2653-2663 (2016).
[9] Yang N N, Xu C, Wu C J, Jia R, Modeling and analysis of a fractional-order generalized memristor-based chaotic system and circuit implementation, Int J Bifurcat Chaos, 27 (13) (2017), Article 1750199, DOI: 10.1142/S0218127417501991.
[10] Sánchez-López C, Carbajal-Gómez V H, Carrasco-Aguilar M A and Carro-Pérez I, Fractional-order memristor emulator circuits Complexity, 2018, ID 2806976 https://doi.org/10.1155/2018/2806976.
[11] Lin Q, Wen C, Fajie W, Ji L, A non-local structural derivative model for memristor, Chaos, Solitons & Fractals, 126, 169-177 (2019).
[12] H Cheng, The Casimir effect for parallel plates in the space time with a fractal extra compactified dimension, Int J Theor Phys, 52 (2013), 3229-3237.
[13] J H He, A tutorial review on fractal space time and fractional calculus, Int J Theor Phys, 53 (2014), 3698-3718.
[14] F. Brouers, T.J. Al-MusawiBrouers-Sotolongo fractal kinetics versus fractional derivative kinetics: a new strategy to analyze the pollutants sorption kinetics in porous materials, J Hazard Mater, 350 (2018) 162-168.
[15] M. Pan, L. Zheng, F. Liu, A spatial-fractional thermal transport model for nanofluid in porous media, Appl Math Model, 53 (2018), 622-634.
[16] Atangana A, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons & Fractals, 102, (2017), 396-406.
[17] Atangana A, Qureshi S, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos, Solitons & Fractals, 123, (2019), 320-337.
[18] Gomez-Aguilar J F, Chaos and multiple attractors in a fractal-fractional Shinriki’s oscillator model, Physica A (2019), doi: https://doi.org/10.1016/j.physa.2019.122918.
[19] Sania Q, Abdon A, Asif A S, Strange chaotic attractors under fractal-fractional operators using newly proposed numerical methods, Eur. Phys. J. Plus (2019) 134: 523, DOI 10.1140/epjp/i2019-13003-7.
[20] Kashif A A, Gomez-Aguilar J F, A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function, Eur. Phys. J. Plus (2019) 134, 101, DOI 10.1140/epjp/i2019-12507-4.
[21] Abro K A, Muhammad N M, Gomez-Aguilar J F, Functional application of Fourier sine transform in radiating gas flow with non‑singular and non‑local kernel, Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:400 https://doi.org/10.1007/s40430-019-1899-0.
[22] Kanno R. Representation of random walk in fractal space-time, Physica A, 1998, 248, 165-75.
[23] Kashif A A, Ilyas K, Jose F G-A, Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, (2019) 174-181. https://doi.org/10.1007/s40430-019-1671-5.
[24] Abro K A, Ali A M, Anwer A M, Functionality of Circuit via Modern Fractional Differentiations, Analog Integrated Circuits and Signal Processing: An International Journal, 99(1) 11-21, (2019). https://doi.org/10.1007/s10470-018-1371-6.
[25] Chen W, Sun H G , Zhang X, Korosak D, Anomalous diffusion modeling by fractal and fractional derivatives, Comput Math Appl. 2010, 59(5), 1754-8.
[26] Ambreen S, Kashif, A A, Muhammad A S, Thermodynamics of magnetohydrodynamic Brinkman fluid in porous medium: Applications to thermal science, Journal of Thermal Analysis and Calorimetry (2018), DOI: 10.1007/s10973-018-7897-0
[27] Kashif A A, Ilyas K, Gomez-Aguilar J F, A mathematical analysis of a circular pipe in rate type fluid via Hankel transform, Eur. Phys. J. Plus (2018) 133: 397, DOI 10.1140/epjp/i2018-12186-7.
[28] Abro K A, Ali D C, Irfan A A, Ilyas K, Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium, Journal of Thermal Analysis and Calorimetry, (2018) 1-11. https://doi.org/10.1007/s10973-018-7302-z.
[29] J. Singh, D. Kumar, D. Baleanu, S. Rathore. On the local fractional wave equation in fractal strings. Mathematical Methods in the Applied Sciences, 42(5), (2019), 1588-1595.
[30] Kashif Ali Abro, Anwar Ahmed Memon, Muhammad Aslam Uqaili, A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives, Eur. Phys. J. Plus, (2018) (2018) 133: 113, DOI 10.1140/epjp/i2018-11953-8.

[31] Abro K A, Ilyas K, Kottakkaran S N, Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit, Chaos, Solitons & Fractals, 129, 40-45, (2019), https://doi.org/10.1016/j.chaos.2019.08.001