References
Alvarez, A. J., Yumet, G. M., Santiago, C. L., & Toranzos, G. A.
(1996). Stability of manipulated plasmid DNA in aquatic
environments. Environmental Toxicology and Water Quality: An
International Journal , 11 (2), 129-135.
Baldigo, B. P., Sporn, L. A., George, S. D., & Ball, J. A. (2017).
Efficacy of environmental DNA to detect and quantify brook trout
populations in headwater streams of the Adirondack Mountains, New
York. Transactions of the American Fisheries
Society , 146 (1), 99-111.
Bolker, B. M. (2008). Ecological models and data in R . Princeton
University Press.
Buxton AS, Groombridge JJ, Griffiths RA (2017)
Is
the detection of aquatic environmental DNA influenced by substrate type?
PLOS ONE 12(8): e0183371.
Darling, J. A., & Mahon, A. R. (2011). From molecules to management:
adopting DNA-based methods for monitoring biological invasions in
aquatic environments. Environmental research , 111 (7),
978-988.
Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F.,
Taberlet, P., & Miaud, C. (2011). Persistence of environmental DNA in
freshwater ecosystems. PloS one , 6 (8), e23398.
Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., &
Miaud, C. (2012). Improved detection of an alien invasive species
through environmental DNA barcoding: the example of the American
bullfrog Lithobates catesbeianus. Journal of applied
ecology , 49 (4), 953-959.
de Mendiburu, F., & de Mendiburu, M. F. (2017). Package
‘agricolae’. Statistical procedures for agricultural research .
de Souza, L. S., Godwin, J. C., Renshaw, M. A., & Larson, E. (2016).
Environmental DNA (eDNA) detection probability is influenced by seasonal
activity of organisms. PloS one , 11 (10), e0165273.
Dupray, E., Caprais, M. P., Derrien, A., & Fach, P. (1997). Salmonella
DNA persistence in natural seawaters using PCR analysis. Journal
of applied microbiology , 82 (4), 507-510.
Eichmiller JJ, Best SE, Sorensen PW (2016) Effects of Temperature and
Trophic State on Degradation of Environmental DNA in Lake Water.
Environmental Science & Technology 50(4): 1859-1867.
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008).
Species detection using environmental DNA from water
samples. Biology letters , 4 (4), 423-425.
Finkel, S. E., & Kolter, R. (2001). DNA as a nutrient: novel role for
bacterial competence gene homologs. Journal of
Bacteriology , 183 (21), 6288-6293.
Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P.
F., Murphy, M. A., … & Laramie, M. B. (2016). Critical considerations
for the application of environmental DNA methods to detect aquatic
species. Methods in Ecology and Evolution , 7 (11),
1299-1307.
Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011).
“Sight‐unseen” detection of rare aquatic species using environmental
DNA. Conservation Letters , 4 (2), 150-157.
Katano I, Harada K, Doi H, Souma R, Minamoto T (2017) Environmental DNA
method for estimating salamander distribution in headwater streams, and
a comparison of water sampling methods. PLOS ONE 12(5): e0176541.
Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell,
J. R., Klironomos, J. N., … & Dunfield, K. E. (2007). Cycling of
extracellular DNA in the soil environment. Soil Biology and
Biochemistry , 39 (12), 2977-2991.
Lindahl, T. (1993). Instability and decay of the primary structure of
DNA. nature , 362 (6422), 709.
Loeb, L. A., & Preston, B. D. (1986). Mutagenesis by
apurinic/apyrimidinic sites. Annual review of
genetics , 20 (1), 201-230.
López-Archilla, A. I., Marín, I., & Amils, R. (2001). Microbial
community composition and ecology of an acidic aquatic environment: the
Tinto River, Spain. Microbial ecology , 41 (1), 20-35.
Maruyama A, Nakamura K, Yamanaka H, Kondoh M, Minamoto T (2014)
The
Release Rate of Environmental DNA from Juvenile and Adult Fish. PLOS ONE
10(3): e0118727.
Nielsen, K. M., Johnsen, P. J., Bensasson, D., & Daffonchio, D. (2007).
Release and persistence of extracellular DNA in the
environment. Environmental biosafety research , 6 (1-2),
37-53.
Olajos, F., Bokma, F., Bartels, P., Myrstener, E., Rydberg, J., Öhlund,
G., … & Englund, G. (2018). Estimating species colonization dates
using DNA in lake sediment. Methods in Ecology and Evolution, 9(3),
535-543.
Palmer, C. J., Tsai, Y. L., Paszko-Kolva, C., Mayer, C., & Sangermano,
L. R. (1993). Detection of Legionella species in sewage and ocean water
by polymerase chain reaction, direct fluorescent-antibody, and plate
culture methods. Applied and environmental
microbiology , 59 (11), 3618-3624.
Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri,
G., & Nannipieri, P. (2009). Extracellular DNA in soil and sediment:
fate and ecological relevance. Biology and Fertility of
Soils , 45 (3), 219-235.
R Core Team (2014).
R:
A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL
http://www.R-project.org/.
Saeki, K., Ihyo, Y., Sakai, M., & Kunito, T. (2011). Strong adsorption
of DNA molecules on humic acids. Environmental chemistry
letters , 9 (4), 505-509.
Schultz MT, Lance RF (2015) Modeling the Sensitivity of Field Surveys
for Detection of Environmental DNA (eDNA). PLOS ONE 10(10): e0141503.
Shapiro, B. (2008). Engineered polymerases amplify the potential of
ancient DNA. Trends in biotechnology , 26 (6), 285-287.
Stotzky, G. (2000). Persistence and biological activity in soil of
insecticidal proteins from Bacillus thuringiensis and of bacterial DNA
bound on clays and humic acids. Journal of Environmental
Quality , 29 (3), 691-705.
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying
effects of UV-B, temperature, and pH on eDNA degradation in aquatic
microcosms. Biological Conservation , 183 , 85-92.
Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012).
Environmental DNA. Molecular ecology , 21 (8), 1789-1793.
Bonin, A., Taberlet, P., Zinger, L., & Coissac, E.
(2018). Environmental DNA: For Biodiversity Research and
Monitoring . Oxford University Press.
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. I.
(2012). Estimation of fish biomass using environmental DNA. PloS
one , 7 (4), e35868.
Therneau T (2014) A Package for Survival Analysis in S. R package
version 2.37-7, <URL:
http://CRAN.R-project.org/package=survival>.
Therneau TM and Grambsch PM (2000).
Modeling
Survival Data: Extending the Cox Model. Springer, New York. ISBN
0-387-98784-3.
Thomsen, P., Kielgast, J. O. S., Iversen, L. L., Wiuf, C., Rasmussen,
M., Gilbert, M. T. P., … & Willerslev, E. (2012). Monitoring
endangered freshwater biodiversity using environmental
DNA. Molecular ecology , 21 (11), 2565-2573.
Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen,
M., & Willerslev, E. (2012). Detection of a diverse marine fish fauna
using environmental DNA from seawater samples. PLoS
one , 7 (8), e41732.
Tsuji S, Ushio M, Sakurai S, Minamoto T, Yamanaka H (2017) Water
temperature-dependent degradation of environmental DNA and its relation
to bacterial abundance. PLOS ONE 12(4): e0176608.
Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental
DNA is more concentrated in aquatic sediments than surface water.
Biological Conservation, 183, 93-102.
Wilcox, T. M., McKelvey, K. S., Young, M. K., Sepulveda, A. J., Shepard,
B. B., Jane, S. F., … & Schwartz, M. K. (2016). Understanding
environmental DNA detection probabilities: A case study using a
stream-dwelling char Salvelinus fontinalis. Biological
Conservation , 194 , 209-216.
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., &
Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific
primers for polymerase chain reaction. BMC
bioinformatics , 13 (1), 134.