Climate change
Future climate change scenarios indicate a contraction ofCochemiea halei ’s range of 21% to 53%, depending on the
severity of climate change and the length of time the species is exposed
to climate change effects (Table 1). The range contraction reduces
suitable habitat on the islands, and the species is unlikely to expand
to the peninsula within the climate change conditions and time periods
projected here. The unique adaptations of narrowly distributed endemic
plant species such as C. halei also make them vulnerable to
changing climate conditions, as those adaptations are often in response
to significantly different local climates or soil types that are
unsuitable for related species (Damschen, Harrison, Ackerly,
Fernandez-Going, & Anacker, 2012).
Specifically, each of the climate change scenarios projected in this
study indicates a widening of the annual temperature range on the
islands, which significantly increases the range contraction and limits
expansion. The areas of predicted contraction under all scenarios are
lower elevation, mostly bayside, leeward flats (Figs. 7 and 8). The
areas of expansion are mostly into the higher elevation ridges,
especially on Isla Margarita. But the opportunity to expand into these
higher elevation locales is greatly reduced as climate change becomes
more severe, or persists for a longer time period.
Projections under all climate change scenarios are for a higher mean
temperature of the warmest quarter, ranging from approximately
3○ C to as high as 6○ C.
Precipitation of the warmest and coldest quarters is projected to
decrease by from 10 mm to 15 mm for regions of predicted range
contraction. The wider thermal span and the warmer mean temperature from
July–September, along with reduced precipitation, are combined factors
that contribute to range contraction, driven by hotter, drier climate.
Predicted range contractions are consistent with Cochemiea
halei ’s narrow adaptation to a distinct island climate.
For the first time, temperature and precipitation correlates are
identified that drive the fragmented, highly restricted distribution of
an island endemic, vulnerable cactus. We used multiple modeling methods
to determine the correlations between topographical and climate
variables and the habitat suitability of Cochemiea halei , a
little-studied, island isolated cactus. Our results support the
following conclusions: (1) both the moderating effects of Pacific
coastal island climate and ultramafic soils unique to the islands
strongly determine suitable habitat, which is fragmented, (2) the
species is unlikely to disperse to the peninsula, (3) the species has a
facultative but not obligate relationship with ultramafic soils, (4)
climate change in all scenarios is likely to contract the range of the
species, as a result of greater variability in annual temperature range,
higher mean temperatures in the summer and reduced precipitation. Our
findings indicate that this narrowly restricted endemic cactus is at
increased risk of extinction, and populations should be carefully
monitored over at least the next 50 years.
REFERENCES
Albuquerque, F., Castro-Díez, P., Rodríguez, M.A., & Cayuela, L.
(2011). Assessing the influence of environmental and human factors on
native and exotic species richness. Acta Oecologica 37(2):
51–57. https://doi.org/10.1016/j.actao.2010.11.006
Albuquerque F., Benito, B., Rodriguez, M., & Gray, C. (2018). Potential
changes in the distribution of Carnegiea gigantea under future
scenarios. PeerJ . 6:e5623. doi: 10.7717/peerj.5623.
Albuquerque, F., Astudillo-Scalia, Y., Loyola, R. & Beier, P. (2019).
Towards an understanding of the drivers of broad-scale patterns of
rarity-weighted richness for vertebrates. Biodiversity and
Conservation no. 0123456789, 1-15.
https://doi.org/10.1007/s10531-019-01847-z
Albuquerque, F., Rodríguez, M., Búrquez, A., & Astudillo-Scalia, Y.
(2019). Climate change and the potential expansion of buffelgrass
(Cenchrus ciliaris L., Poaceae) in biotic communities of
Southwest United States and Northern Mexico. Biological Invasions21(11): 3335-3347. https://doi.org/10.1007/s10530-019-02050-5
Anacker, B.L., Whittall, J.B., Goldberg, E.E., & Harrison, S.P. (2011).
Origins and consequences of serpentine endemism in the California flora.Evolution 65 (2): 365–76.
https://doi.org/10.1111/j.1558-5646.2010.01114.x
Anderson, E.F., Taylor, N.P., Montes, S.A., Cattabriga, A. (1994).Threatened Cacti of Mexico . London, UK: Royal Botanic Gardens.
Anderson, E. F. 2001. The Cactus Family . Timber Press, Portland,
Oregon, USA.
Baddely, A. (2008). Analysing spatial point patterns in R. Workshop
Notes, CSIRO publications, Commonwealth Industrial and Scientific
Research Organisation, Canberra, Australia.
Bakkenes , M., Alkemade, J.R.M., Ihle, F., Leemans, R., & Latour, J.B.
(2002). Assessing effects of forecasted climate change on the diversity
and distribution of European higher plants for 2050. Global Change
Biology 8(4): 390-407. https://doi.org/10.1046/j.1354-1013.2001.00467.x
Bakun, A. (1990). Global climate change and intensification of coastal
ocean upwelling. Science 247(4939): 198-201.
https://doi.org/10.1126/science.247.4939.198
Bárcenas-Arguello, M.L., M. Gutierrez-Castorena, T. Terrazas. (2013).
The role of soil properties in plant endemism: a revision of
conservation strategies. In: Soil Processes and Current Trends in
Quality Assessment , M.C. Hernandez Soriano, ed. InTech Open,
www.intechopen.com, downloaded January
5th 2019.
Bárcenas-Luna, R.T., (2003). Chihuahuan desert cacti in Mexico: an
assessment of trade, management and conservation priorities. In:
Robbins, C.S. (Ed.), Prickly Trade: Trade and Conservation of
Chihuahuan Desert Cacti . Wshington, DC: TRAFFIC North America-World
Wildlife Fund.
Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., & Boucher,
O. (2011). Aerosol forcing in the Climate Model Intercomparison Project
(CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate.JGR Atmospheres 111(20): 27-39.
https://doi.org/10.1029/2011JD016074
Benito B.M., Cayuela, L., & Albuquerque, F.S. (2013). The impact of
modelling choices in the predictive performance of richness maps derived
from species-distribution models: guidelines to build better diversity
models. Methods in Ecology and Evolution . 4(4):327–335.
https://doi.org/10.1111/2041-210x.12022
Benito, B. M., Martínez-Ortega, M., Muñoz, L.M., Lorite, J., & Peña, J.
(2009). Assessing extinction-risk of endangered plants using species
distribution models: a case study of habitat depletion caused by the
spread of greenhouses. Biodiversity and Conservation 18 (9):
2509–20. https://doi.org/10.1007/s10531-009-9604-8
Bevill, R.L. and S. M. Louda.(1999). Comparisons of related rare and
common species in the study of plant rarity. Conservation
Biology , 13(3), 493–498.
https://doi.org/10.1046/j.1523-1739.1999.97369.x
Bizzarro, J.J. (2008). A review of the physical and biological
characteristics of the Bahía Magdalena Lagoon Complex (Baja California
Sur, Mexico). Bulletin, Southern California Academy of Sciences107(1): 1-24.
https://doi.org/10.3160/0038-3872(2008)107[1:AROTPA]2.0.CO;2
Blake, Jr., M.C., Jayco, A.S., & Moore, T.E. (1984).
Tectonostratigraphic terranes of Magdalena Island, Baja California Sur.Geology of the Baja California Peninsula , V.A. Frizzell, Jr., ed.
The Pacific Section of the Society of Economic Paleontologists and
Mineralogists, Los Angeles, CA.
Bonham, C. (2013). Measurements for Terrestrial Vegetation.Chichester, UK: John Wiley and Sons.
Botha, H., & Slomka, A. (2017). Divergent biology of facultative heavy
metal plants. Journal of Plant Physiology 219: 45-61.
https://doi.org/10.1016/j.jplph.2017.08.014
Brady, K. U., Kruckberg, A.R., & Bradshaw, J.H.D. (2005). Evolutionary
ecology of plant adaptation to serpentine soils. Annual Review of
Ecology, Evolution, and Systematics , 36(1), 243–266.
https://doi.org/10.1146/annurev.ecolsys.35.021103.105730
Burquez, A, A. Martinez-Yrizar, R.S. Felger,et al. (1999). Vegetation
and habitat diversity at the southern edge of the Sonoran Desert. In:Ecology of Sonoran Desert Plants and Plant Communities , Robert H.
Robichaux, ed. Tucson, USA: The University of Arizona Press.
Butler, C.J., Wheeler, E.A., & Stabler, L.B. (2012). Distribution of
the threatened lace hedgehog cactus (Echinocereus reichenbachii )
under various climate change scenarios. The Journal of the Torrey
Botanical Society 139(1): 46-55.
https://doi.org/10.3159/TORREY-D-11-00049.1
Caesar, J., Palin, E., Liddicoat, S., Lowe, J., Burke, E., Pardaens, A.,
… Kahana, R. (2013). Response of the HadGEM2 Earth System Model
to future greenhouse gas emissions pathways to the year 2300.Journal of Climate 26 (10): 3275–84.
https://doi.org/10.1175/JCLI-D-12-00577.1
Carl, G. & Kühn, I. (2007). Analyzing spatial autocorrelation in
species distributions using Gaussian and logit models. Ecological
Modelling , 207(2–4), 159–170.
https://doi.org/10.1016/j.ecolmodel.2007.04.024
Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton,
T., Jones, C.D. … Kim, J. (2008). Evaluation of the HadGEM2
model. Met Office Hadley Centre Technical Note no. HCTN 74, available
from Met Office, FitzRoy Road, Exeter EX1 3PB
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.L., Fichefet, T.,
Friedlingstein, P. … Booth, B.B.B. (2013). Long-term climate
change: projections, commitments and irreversibility. In: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate
Change. Stocker, T.F., D. Qin, G.-K. Plattner, et al. (eds). Cambridge
(UK): Cambridge University Press.
Cowie, R.H., & Holland, B.S. (2006). Dispersal is fundamental to
biogeography and the evolution of biodiversity on oceanic islands.Journal of Biogeography 33(2): 193-198.
https://doi.org/10.1111/j.1365-2699.2005.01383.x
Craig, R.T. (1945). The Mammillaria Handbook . Pasadena, USA:
Abbey Garden Press.
Crawford, D.J., & Stuessy, T.F. (1997). Plant speciation on oceanic
islands. In: Iwatsuki, K, Raven, PH eds. Evolution and
Diversification of Land Plants . New York City, USA: Springer. 249-267.
Damschen, E. I, Harrison, S., Ackerly, D.D., Fernandez-Going, B.M., &
Anacker, B.L. (2012). Endemic plant communities on special soils :
early victims or hardy survivors of climate change ? Journal of
Ecology 100 (5): 1122–30.
https://doi.org/10.1111/j.1365-2745.2012.01986.x
De’ath, G. (2007). Boosted trees for ecological modeling and prediction.Ecology 88(1): 243-251.
https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
Dormann, C. F. & McPherson, J.M. (2007). Methods to account for spatial
autocorrelation in the analysis of species distributional data: a
review. Ecography 30(5): 609-628.
https://doi.org/10.1111/j.2007.0906-7590.05171.x
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré,
G., García Marquéz, J.R., … Lautenbach, S. (2013). Collinearity:
a review of methods to deal with it and a simulation study evaluating
their performance. Ecography 36 (1): 027–046.
https://doi.org/10.1111/j.1600-0587.2012.07348.x
Elith, J., Leathwick, J.R., & Hastie, T. (2008). A working guide to
boosted regression trees. Journal of Animal Ecology 77(4):
802-813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
Elith, J., & Leathwick, J.R. (2009). Species distribution models:
ecological explanation and prediction across space and time.Annual Review of Ecology, Evolution and Systematics 40:677-697.
https://doi.org/10.1146/annurev.ecolsys.110308.120159
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling
range-shifting species. Methods in Ecology and Evolution , 1,
330-342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E., & Yates,
C.J. (2011). A statistical explanation of MaxEnt for ecologists.Diversity and Distributions 17(1):1472-4642.
https://doi.org/10.1111/j.1472-4642.2010.00725.x
Elith, J., & Franklin,J. (2013). Species distribution modelling .
In: Levin, S. (ed.) Encyclopedia of Biodiversity, pp. 692-705. Waltham,
USA: Academic Press.
Elith, J., & Leathwick, J.R. ( 2017). Boosted regression trees for
ecological modeling.
https://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf,
accessed 9-19-2018
Ellstrand, N.C., & Ellam, D.R. (1993). Population genetic consequences
of small population size: implications for plant conservation.Annual Review of Ecology and Systematics 24: 217-242.
https://doi.org/10.1146/annurev.es.24.110193.001245
Elzinga, C. L. Salzer, D.W., & Willoughby, J.W. (1998). Measuring &
monitoring plant populations. U.S. Bureau of Land Management
Papers . 17.
Fick, S.E., & Hijmans, R.J. (2017). Worldclim 2: New 1-km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology 37. https://doi.org/10.1002/joc.5086
Franklin, J. (1995). Predictive vegetation mapping: geographic modelling
of biospatial patterns in relation to environmental
gradients. Progress in Physical Geography: Earth and
Environment , 19(4), 474–499.
https://doi.org/10.1177%2F030913339501900403
Franklin, J. (2010). Moving beyond static species distribution models in
support of conservation biogeography. Diversity and
Distributions , 16, 321-330.
https://doi.org/10.1111/j.1472-4642.2010.00641.x
Franklin, J. (2010). Mapping species distributions: spatial
inference and prediction. Cambridge, UK: Cambridge University Press.
Gibson, A.C., & Nobel, P.S. (1986). The Cactus Primer . Boston,
USA: Harvard University Press.
Godínez-Álvarez, H.,Valverde, T., Ortega-Baes, P. (2003). Demographic
trends in the Cactaceae. The Botanical Review 69(2): 173-201.
https://doi.org/10.1663/0006-8101(2003)069[0173:DTITC]2.0.CO;2
Goettsch, B., Hilton-Taylor, C., Cruz-Piñón, G., Duffy, J.P., Frances,
A., Hernández, H.M.,…Gaston,K.J. (2015). High proportion of
cactus species threatened with extinction. Nature Plants 1 (10):
15142. https://doi.org/10.1038/nplants.2015.142
Gogol-Prokurat, M. (2011). Predicting habitat suitability for rare
plants at local spatial scales using a species distribution model.Ecological Applications , 21 (1): 33–47.
https://doi.org/10.1890/09-1190.1
Gonçalves, G. (2002). Analysis of interpolation errors in urban digital
surface models created from lidar data. Symposium on Spatial
Accuracy Assessment in Natural Resources and Environmental Sciences.160–68.
Gorelick, R. (2007). Cochemiea halei on peninsular Baja
California Sur. Cactus and Succulent Journal 79(6): 274-275.
https://doi.org/10.2985/0007-9367(2007)79[274:CHOPBC]2.0.CO;2
Grunwald, S. (2009). Multi-criteria characterization of recent digital
soil mapping and modeling approaches. Geoderma 152 (3/4):
195–207. https://doi.org/10.1016/j.geoderma.2009.06.003
Guillera‐Arroita, G., Lahoz‐Monfort, J.J., Elith, J., Gordon, A.,
Kujala, H., Lentini, P.E., … Wintle, B.A. (2015). Is my species
distribution model fit for purpose? Matching data and models to
applications. Global Ecology and Biogeography . 24: 276-292.
https://doi.org/10.1111/geb.12268
Guisan, A., & Zimmermann, N.E. (2000). Predictive habitat distribution
models in ecology. Ecological Modelling 135 (2–3): 147–86.
https://doi.org/10.1016/S0304-3800(00)00354-9
Guisan, A., Edwards Jr., T.C., & Hastie, T. (2002). Generalized linear
and generalized additive models in studies of species distributions:
setting the scene. Ecological Modelling 157:89-100.
https://doi.org/10.1016/S0304-3800(02)00204-1
Guisan, A., & Thuiller, W. (2005). Predicting species distribution:
Offering more than simple habitat models. Ecology Letters , 8(9),
993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Harrison, S., Safford, H.D., Grace, J.B, Viers, J.H., & Davies, K.F.
(2006). Regional and local species richness in an insular environment :
serpentine plants in California. Ecological Monographs 76 (1):
41–56. https://doi.org/10.1890/05-0910
Hatten, J.R., Giermakowski, J.T., Holmes, J.A., Nowak, E.M., Johnson,
M.J., Ironside, K.E., … Cole, K.L. (2016). Identifying bird and
reptile vulnerabilities to climate change in the Southwestern United
States: US geological survey open-file report 2016–1085. 2016:76 p.
https://doi.org/10.3133/ofr20161085
Hawkins, B. A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J-F.,
Kaufman, D.M.,…Turner, J.R.G. (2003). Energy, water, and
broad-scale geographic patterns of species richness. Ecology 84
(12): 3105–3117. https://doi.org/10.1890/03-8006
Hernández, H.M., & Godínez-Álvarez, H. (1994). Contribución al
conocimiento de las cactáceas mexicanas amenazadas . Acta Botánica
Mexicana . 26: 33-52.
Hickey, B. (1979). The California current system- hypotheses and facts.Progress in Oceanography 8(4):191-279.
https://doi.org/10.1016/0079-6611(79)90002-8
Hijmans, R. J., & Graham, C.H. (2006). The ability of climate envelope
models to predict the effect of climate change on species distributions.Global Change Biology 12 (12): 2272–81.
https://doi.org/10.1111/j.1365-2486.2006.01256.x
Hijmans, R.J. (2012). Cross-validation of species distribution models:
removing spatial sorting bias and calibration with a null model.Ecology , 93, 679-688. https://doi.org/10.1890/11-0826.1
Humphreys, A.M., Govaerts, R., Ficinski, S.Z., Lughadha, E.N., &
Vorontsova, M.S. (2019). Global dataset shows geography and life form
predict modern plant extinction and rediscovery. Nature Ecology &
Evolution 3: 1043-1047. https://doi.org/10.1038/s41559-019-0906-2
Huyer, A. (1983). Coastal upwelling in the California current system.Progress in Oceanography 12(3):259-284.
https://doi.org/10.1016/0079-6611(83)90010-1
IPCC, 2013: Climate Change 2013: The Physical Science Basis. (2013).
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Stocker, T.F., D. Qin, G.-K.
Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex
and P.M. Midgley (eds.). Cambridge (UK): Cambridge University Press.
Kazakou, E., Dimitrakopoulos, P.G., Baker, A.J.M., Reeves, R.D., &
Troumbis, A.Y. (2008). Hypotheses, mechanisms and trade-offs of
tolerance and adaptation to serpentine soils : from species to
ecosystem level. Biological Reviews , 83(4): 495–508.
https://doi.org/10.1111/j.1469-185X.2008.00051.x
Kelly, A. E. & Goulden, M.L. (2008). Rapid shifts in plant distribution
with recent climate change. Proceedings of the National Academy of
Sciences 105(33): 11823–11826. https://doi.org/10.1073/pnas.0802891105
Kier, G., Kreft, H., Lee,T.M., Jetz, W., Ibisch, P.L., Nowicki, C.,
…,Bathlott,W. et al. (2009). A global assessment of endemism and
species richness across island and mainland regions. Proceedings
of the National Academy of Sciences 106(23): 9322-9327.
https://doi.org/10.1073/pnas.0810306106
Kotliar, N. B., & Wiens, J.A. (1990). Multiple scales of patchiness and
patch structure : A hierarchical framework for the study of
heterogeneity. Oikos 59(2), 253–260.
https://doi.org/10.2307/3545542
Kraemer, H.C. (2006). Biserial correlation. In: Koptz S, Read
CB,Balakrishnan N, Vadakovik B, Johnson NL, eds. Encyclopedia of
statistical sciences . Second Edition. Hoboken: Wiley-Interscience,
276-279
Kreft, H., Jetz, W., Mutke, J., Kier, G., & Barthlott, W. (2008).
Global diversity of island floras from a macroecological perspective.Ecology Letters 11: 116-127.
https://doi.org/10.1111/j.1461-0248.2007.01129.x
Kruckeberg, A.R. (1951). Intraspecific variability in the response of
certain native plant species to serpentine soil. American Journal
of Botany , 38(6): 408-419. https://doi.org/ 10.2307/2438248
Kruckberg, A. R., & Rabinowitz, D. (1985). Biological aspects of
endemism in higher plants. Annual Review of Ecology and
Systematics , 16(1985), 447–479.
https://doi.org/10.1146/annurev.es.16.110185.002311
Lande, R. (1993). Risks of population extinction from demographic and
environmental stochasticity and random catastrophes. The American
Naturalist 142(6): 911-927. https://doi.org/10.1086/285580
Leclère, D., Havlik, P., Fuss, S., Schmid, E., Mosnier, A., Walsh, B.,
Valin, H., … Obersteiner, M. (2014). Climate change induced
transformations of agricultural systems: insights from a global model.Environmental Research Letters 9(12): 1-14.
https://doi.org/10.1088/1748-9326/9/12/124018
León de la Luz, J. L., Medel-Narvez, A., & Dominguez-Cadena, R. (2015).
Floristic diversity and notes on the vegetation of Bahía Magdalena area,
Baja California Sur, Mexico. Botanical Sciences , 93 (3),
579–600. https://doi.org/10.17129/botsci.159
Liddicoat, S., Jones, C., & Robertson, E. (2013). CO2emissions determined by HadGEM2-ES to be compatible with representative
concentration pathway scenarios and their extensions. Journal of
Climate 26(13): 4381-4397. https://doi.org/10.1175/JCLI-D-12-00569.1
Martorell, C., & Peters, E.M. (2005). The measurement of chronic
disturbance and its effects on
the threatened cactus Mammillaria pectinifera . Biological
Conservation 124: 199-207. https://doi.org/10.1016/j.biocon.2005.01.025
Matthies, D., Bräuer, I., Maibom, W., & Tscharntke, T. (2004).
Population size and the risk of local extinction: empirical evidence
from rare plants. Oikos 105: 481-488.
https://doi.org/10.1111/j.0030-1299.2004.12800.x
McQuillan, M. A., & Rice, A.R. (2015). Differential effects of climate
and species interactions on range limits at a hybrid zone: potential
direct and indirect impacts of climate change. Ecology and
Evolution 5(21): 5120-5137. https://doi.org/10.1002/ece3.1774
Melbourne, B.A., & Hastings, A. (2008). Extinction risk depends
strongly on factors contributing to stochasticity. Nature 454:
100-103. https://doi.org/10.1038/nature06922
Menges, E.S. (1992). Stochastic modeling of extinction in plant
populations. In: Conservation Biology, Eds: Fiedler, P.L. and
S.K. Jain. Berlin, DE: Springer.
Mubayi, A., Kribs, C., Arunachalam, V., & Castillo-Chavez, C. (2019).
Studying complexity and risk through stochastic population dynamics:
persistence, resonance and extinction in ecosystems. In:Integrated Population Biology and Modeling, Part B, Volume 40.Eds: Rao, A.S. and C.R. Rao. Amsterdam: North Holland Publishing
Company.
National Hurricane Center, https://www.nhc.noaa.gov, accessed
December 20, 2018.
Nelder, J.A., & Wedderburn, R.W.M. (1972). Generalized linear models.Journal of the Royal Statistical Society. Series A (General) ,
135(3): 370-384. https://doi.org/10.2307/2344614
Nobel, Park S. (1988). Environmental Biology of Cacti and Agaves .
Cambridge (UK): Cambridge University Press.
Oldfield, S. (1997). Cactus and succulent plants: status survey
and conservation action plan. Gland, CH: International Union for the
Conservation of Nature.
Phillips, S. J., Anderson, R.P., & Schapire, R.E. (2006). Maximum
entropy modeling of species geographic distributions. Ecological
Modelling 190(3): 231-259.
https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S.J. & Elith, J. (2013). On estimating probability of
presence from use-availability or presence-background data.Ecology 94: 1409-1419. https://doi.org/10.1890/12-1520.1
Phillips, S. J., Anderson, R.P., Dudík, M., Schapire, R.E., & Blair,
M.E. (2017). Opening the black box: An open-source release of Maxent.Ecography 40 (7): 887–93. https://doi.org/10.1111/ecog.03049
Pilbeam, J. (1999). Mammillaria . The Cactus File Handbook 6.1st.
London, UK: Cirio Publications.
Pollard, A.J., Reeves, R.D., & Baker, A.J.M. (2014). Facultative
hyperaccumulation of heavy metals and metalloids. Plant Science217: 8-17. https://doi.org/10.1016/j.plantsci.2013.11.011
R Core Team. (2018). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Rabinowitz, D. (1981). Seven forms of rarity. The Biological
Aspects of Rare Plant Conservation , 205–217. Hoboken, USA: John Wiley
and Sons.
Rangin, C. (1978). Speculative model of Mesozoic geodynamics, central
Baja California to northeastern Sonora (Mexico). Mesozoic
Paleogeography of the Western United States, Pacific Coast
Paleogeography Symposium 2. The Pacific Section of the Society of
Economic Plaeontologists and Mineralogists, Los Angeles, CA.
Ratay, S.E., Vanderplank, S.E., & Wilder, B.T. (2014). Island
specialists: shared flora of the Alta and Baja California Pacific
islands. Monographs of the Western North American Naturalist7(1): 161-220. https://doi.org/10.3398/042.007.0116
Rebman, J. and N. Roberts. (2012). Baja California Plant Field
Guide, 3rd Edition. San Diego, USA: Sunbelt
Publications.
Reimann, H. and Ezcurra, E. (2005). Plant Endemism and natural protected
areas in the peninsula of Baja California, Mexico. Biological
Conservation 122(1): 141-150.
https://doi.org/10.1016/j.biocon.2004.07.008
Reyes-Fornet, A., Fornet-Hernandez, E.B., Martinez Ondaro, Y.R. (2019).
Fungi Infecting Escobaria cubensis and Melocactus
holguinensis ( Cactaceae ) in Northeastern Cuba. Acta Ecologica
Sinica 39(2): 117-124. https://doi.org/10.1016/j.chnaes.2018.08.009
Roberts, BA. (1980). Some chemical and physical properties of serpentine
soils from Western Newfoundland. Canadian Journal of Soil Science60:231-240. https://doi.org/10.4141/cjss80-026
Robinson C.J., Gómez-Gutiérrez, J., Gómez-Aguirre, S. (2007).Efecto de la dinámica de las corrientes de marea en los organismos
pelágicos en la boca de Bahía Magdalena. In: Rodriguez RF, Gutierrez
JG, Garcia RP, eds. Estudios Ecologicos en Bahia Magdalena . La
Paz: Centro de Investigaciones Biologicas del Noroeste.
Sarstedt M., & Mooi, E. (2014). Cluster analysis. In: A Concise
Guide to Market Research . Berlin: Springer Texts in Business and
Economics.
Sedlock, R.L. (1993). Mesozoic geology and tectonics of blueschist and
associated oceanic terranes in the Cedros-Vizcaino-San Benito and
Magdalena-Santa Margarita regions, Baja California, Mexico.Mesozoic Paleogeography of the Western United States, II . Pacific
Section of the Society for Economic Paleontologists and Mineralogists,
Los Angeles, CA.
Shreve, F., and I.L. Wiggins. (1964). Vegetation and Flora of the
Sonoran Desert . Vol. 59: 1. Palo Alto, USA: Stanford University Press.
Snyder M.A., Sloan, L.C., Diffenbaugh, N.S., & Bell, J.L. (2003).
Future climate change and upwelling in the California Current.Geophysical Research Letters . 30(15): 1-4.
https://doi.org/10.1029/2003GL017647
Stolar, J., & Nielsen, S.E. (2015). Accounting for spatially biased
sampling effort in presence-only species distribution modelling.Diversity and Distributions , 21: 595-608.
https://doi.org/10.1111/ddi.12279
Stuessy, T.F., Takayama, K., López-Sepúlveda, P., & Crawford, D.J.
(2014). Interpretation of patterns of genetic variation in endemic plant
species of oceanic islands. Botanical Journal of the Linnaean
Society 174: 276–88. https://doi.org/10.1111/boj.12088
Téllez-Valdés, O., & Dávila-Aranda, P. (2003). Protected areas and
climate change : a case study of the cacti in the Tehuacán-Cuicatlán
Biosphere Reserve, México. Conservation Biology 17 (3): 846–853.
https://doi.org/10.1046/j.1523-1739.2003.01622.x
Tessarolo, G., Rangel, T.F., Araújo, M.B., & Hortal, J. (2014).
Uncertainty associated with survey design in species distribution
models. Diversity And Distributions , 20, 1258-1269.
https://doi.org/10.1111/ddi.12236
Urban, M. C. (2015). Accelerating extinction risk from climate change.Science 348 (6234): 571-573.
https://doi.org/10.1126/science.aaa4984
Ureta, C., & Marti, E. (2012). Projecting the effects of climate change
on the distribution of maize races and their wild relatives in Mexico.Global Change Biology 18:1073–82.
https://doi.org/10.1111/j.1365-2486.2011.02607.x
Walther, G-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee,
T.J.C., Fromentin, J-M., …Bairlein, F. (2002). Ecological
responses to recent climate change. Nature 416: 389-395.
https://doi.org/10.1038/416389a
Warren, R., Price, J., Vanderwal, J., Cornelius, S., & Sohl, H. (2018).
The implications of the United Nations Paris Agreement on Climate Change
for globally significant biodiversity areas. Climatic Change ,
147: 395–409. https://doi.org/10.1007/s10584-018-2158-6
Zaitsev, O., Sánchez-Montante, O., Robinson, C.J. (2007).Características del ambiente hidrofísico de la plataforma
continental y zona oceánica adyacente al sistema lagunar Bahía
Magdalena-Almejas. In: Rodriguez RF, Gutierrez JG, Garcia RP, eds.Estudios Ecologicos en Bahia Magdalena . La Paz, MX: Centro de
Investigaciones Biologicas del Noroeste.
Data Accessibility Statement : The data that support the
findings in this paper, including locality data and raster files of the
climate variables used in modeling, are available at the Dryad data
repository.
Tables :