References
Andersen JH, Carstensen J, Conley DJ, Dromph K, Fleming-Lehtinen V, Gustafsson BG, Josefson AB, Norkko A, Villnäs A, Murray C (2016) Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol Rev 92: 135–149
Arula, T., Ojaveer, H., & Klais, R. (2014). Impact of extreme climate and bioinvasion on temporal coupling of spring herring (Clupea harengus m.) larvae and their prey. Marine Environmental Research, 102, 102-109.
BACC II Author Team (2015) Second assessment of climate change for the Baltic Sea basin, Regional Climate Studies. Springer, Berlin 501 pp.
Belkin IM (2009) Rapid warming of large marine ecosystems. Progr Oceanogr 81: 207–213
Bick, A., Burckhardt R., (1989). Erstnachweis von Marenzelleria viridis (Polychaeta, Spionidae) für den Ostseeraum, mit einem Bestmmungschluessel der Spioniden der Ostsee. Mitt. Zool. Mus. Berl. 65, 2: 237-247
Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG, Hietanen S, Janas U, Jilbert T, Maximov A, Norkko A, Norkko J (2014) Hypoxia in the Baltic Sea: biogeochemical cycles, benthic fauna, and management. Ambio 43: 26–36
Casini, M., Lövgren, J., Hjelm, J., Cardinale, M., Molinero, J. C., & Kornilovs, G. (2008). Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proceedings of the Royal Society B: Biological Sciences, 275(1644), 1793-1801.
Cederwall H, Elmgren R (1980) Biomass increase of benthic macrofauna demonstrates eutrophication of the Baltic Sea. Ophelia Suppl. 1: 87–304
Conley, D. J., Carstensen, J., Ærtebjerg, G., Christensen, P. B., Dalsgaard, T., Hansen, J. L., & Josefson, A. B. (2007). Long‐term changes and impacts of hypoxia in Danish coastal waters. Ecol Appl, 17(sp5), S165-S184.
Conley D, Björck S, Bonsdorff E, Carstensen J, Destouni G, Gustafsson BG, Hietanen S, Kortekaas M, Kuosa H, Meier HEM, Müller-Karulis B, Nordberg K, Norkko A, Nürnberg G, Pitkänen H, Rabalais NN, Rosenberg R, Savchuk OP, Slomp CP, Voss M, Wulff F, Zillén L (2009) Hypoxia-related processes in the Baltic Sea. Environ Sci Technol 43: 3412–3420
Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106: 12788–12793
Diaz, R. J., & Rosenberg, R. (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and marine biology. An annual review, 33, 245-03.
Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012). Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4: 11–37
Edwards, M., & Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature ,430 (7002), 881.
Hänninen, J., Vuorinen, I., & Hjelt, P. (2000). Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnology and Oceanography, 45(3), 703-710.
Hébert, M. P., Beisner, B. E., & Maranger, R. (2016). Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. Journal of Plankton Research , 39 (1), 3-12.
HELCOM thematic assessment of eutrophication 2011-2016. (2018). Supplementary report to the ‘State of the Baltic Sea ’ report. Eutrophication Supplementary Report. Baltic Sea Environment Proceedings 156.www.helcom.fi/publications
Hernroth L (ed) (1985) Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. Baltic Mar Biol Publ 10:l-32
Holopainen R, Lehtiniemi M, Meier HEM, Albertsson J, Gorokhova E, Kotta J, Viitasalo M (2016) Impacts of changing climate on the non-indigenous invertebrates in the northern Baltic Sea by end of the twenty-first century. Biol Invasions 10.1007/s10530-016-1197-z
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471.
Jónasdóttir, S. H., Visser, A. W., Richardson, K., & Heath, M. R. (2015). Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proceedings of the National Academy of Sciences, 112(39), 12122-12126.
Jurgensone I, Carstensen J, Ikauniece A, Kalveka B (2011) Long-term changes and controlling factors of phytoplankton community in the Gulf of Riga (Baltic Sea). Estuaries and Coasts (2011) 34:1205–1219.
Kabel K, Moros M, Porsche C, Neumann T, Adolphi F, Andersen TJ, Siegel H, Gerth M, Leipe T, Jansen E, Damsté JSS (2012) Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years. Nat Clim Change 2: 871–874
Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters: a review. Oceanogr Mar Biol 40: 427–489
Katajisto, T. (2004). Effects of anoxia and hypoxia on the dormancy and survival of subitaneous eggs of Acartia bifilosa (Copepoda: Calanoida). Marine Biology, 145(4), 751-757.
Kauppi, L., Norkko, A., & Norkko, J. (2018). Seasonal population dynamics of the invasive polychaete genus Marenzelleria spp. in contrasting soft-sediment habitats. Journal of Sea Research, 131, 46-60.
Klais, R., Norros, V., Lehtinen, S., Tamminen, T., & Olli, K. (2017). Community assembly and drivers of phytoplankton functional structure. Functional Ecology, 31(3), 760-767.
Kotta, J., Simm, M., Kotta, I., Kanošina, I., Kallaste, K., & Raid, T. (2004). Factors controlling long-term changes of the eutrophicated ecosystem of Pärnu Bay, Gulf of Riga. Hydrobiologia, 514(1-3), 259-268.
Kotta, J., Lauringson, V., Martin, G., Simm, M., Kotta, I., Herkül, K., & Ojaveer, H. (2008). Gulf of Riga and Pärnu Bay. In Ecology of Baltic coastal waters (pp. 217-243). Springer, Berlin, Heidelberg.
Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., Nygård, H., Raateoja, M., … & Suikkanen, S. (2017). A retrospective view of the development of the Gulf of Bothnia ecosystem. Journal of Marine Systems, 167, 78-92.
Leech, D. M., Pollard, A. I., Labou, S. G., & Hampton, S. E. (2018). Fewer blue lakes and more murky lakes across the continental US: Implications for planktonic food webs. Limnology and Oceanography, 63(6), 2661-2680.
Lehmann A, Krauss W, and Hinrichsen H-H (2002) Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus 54: 299–316.
Lehmann A, Getzlaff K, Harlass J (2011) Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim Res 46: 185–196
Lehmann A, Hinrichsen H-H, Getzlaff K, Myrberg K (2014) Quantifying the heterogeneity of hypoxic and anoxic areas in the Baltic Sea by a simplified coupled hydrodynamic-oxygen consumption model approach. J Mar Syst 134: 20-28
Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer-Praxis Books in Geophysical Sciences. Berlin, Germany, Springer- Berlin. 378 pp.
Ljunggren, L., Sandström, A., Bergström, U., Mattila, J., Lappalainen, A., Johansson, G., … & Eriksson, B. K. (2010). Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES Journal of Marine Science, 67(8), 1587-1595.
Lutz, R. V., Marcus, N. H., & Chanton, J. P. (1992). Effects of low oxygen concentrations on the hatching and viability of eggs of marine calanoid copepods. Marine Biology, 114(2), 241-247.
MacKenzie BR, Schiedeck D (2007) Daily ocean monitoring since 1860s shows record warming on northern European seas. Glob Change Biol 13: 1335-1347
Mäkinen, K., Vuorinen, I., & Hänninen, J. (2017). Climate-induced hydrography change favours small-bodied zooplankton in a coastal ecosystem. Hydrobiologia, 792(1), 83-96.
Meier HEM, Hordoir R, Andersson HC, Dieterich C, Eilola K, Gustafsson BG, Höglund A, Schimanke S (2012) Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Clim Dynam 39: 2421-2441
Norkko J, Gammal J, Hewitt JE, Josefson AB, Carstensen J, Norkko A (2015) Seafloor ecosystem function relationships: in situ patterns of change across gradients of increasing hypoxic stress. Ecosystems 18:1424-1439
Ojaveer, H. (1997). Environmentally induced changes in distribution of fish aggregations on the coastal slope in the Gulf of Riga. In Proceedings of the 14th Baltic Marine Biologists Symposium (Ojaveer, E., ed.), Pärnu, Estonia, 5–6 August 1995, pp. 170–183.
O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae, 14, 313-334.
Richardson AJ (2008) In hot water: Zooplankton and climate change. ICES Journal of Marine Science 65: 279-295
Sherman, K., Solow, A., Jossi, J., & Kane, J. (1998). Biodiversity and abundance of the zooplankton of the Northeast Shelf ecosystem. ICES Journal of Marine Science, 55(4), 730-738.
Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S., & Brutemark, A. (2013). Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS one, 8(6), e66475.
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Siqueira MFD, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld ASV, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427: 145–148
Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, 105(40), 15452-15457.
Vehmaa, A., Katajisto, T., & Candolin, U. (2018). Long‐term changes in a zooplankton community revealed by the sediment archive. Limnology and Oceanography, 63(5), 2126-2139.
Vuorinen I, Hänninen J, Viitasalo M, Helminen U, Kuosa H (1998) Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES Journal of Marine Science 55 (4), 767-774.