Beopoulos, A., Desfougéres, T., Sabirova, J., & Nicaud, J.-M. (2010). Yarrowia lipolytica as a Cell Factory for Oleochemical Biotechnology. In K. N. Timmis (Ed.), Handbook of Hydrocarbon and Lipid Microbiology (pp. 3003-3010). Berlin, Heidelberg: Springer Berlin Heidelberg. Bogacz-Radomska, L., & Harasym, J. (2018). β-Carotene—properties and production methods. Food Quality and Safety, 2 (2), 69-74. doi:10.1093/fqsafe/fyy004 Cruz, M. V., Gouveia, A. R., Dionísio, M., Freitas, F., & Reis, M. A. M. (2019). A Process Engineering Approach to Improve Production of P(3HB) by Cupriavidus necator from Used Cooking Oil. International Journal of Polymer Science, 2019 , 1-7. doi:10.1155/2019/2191650 Gao, S., Tong, Y., Zhu, L., Ge, M., Zhang, Y., Chen, D., . . . Yang, S. (2017). Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 41 , 192-201. doi:10.1016/j.ymben.2017.04.004 He, Z., Wang, S., Yang, Y., Hu, J., Wang, C., Li, H., . . . Yuan, Q. (2017). β-Carotene production promoted by ethylene in Blakeslea trispora and the mechanism involved in metabolic responses. Process Biochemistry, 57 , 57-63. doi:10.1016/j.procbio.2017.02.028 Hejazi, M. A., Holwerda, E., & Wijffels, R. H. (2004). Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnology and Bioengineering, 85 (5), 475-481. doi:10.1002/bit.10914 Hu, Z.-C., Zheng, Y.-G., & Shen, Y.-C. (2010). Dissolved-oxygen-stat fed-batch fermentation of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112. Biotechnology and Bioprocess Engineering, 15 (4), 651-656. doi:10.1007/s12257-009-3068-2 Jang, I. S., Yu, B. J., Jang, J. Y., Jegal, J., & Lee, J. Y. (2018). Improving the efficiency of homologous recombination by chemical and biological approaches in Yarrowia lipolytica. PLoS One, 13 (3), e0194954. doi:10.1371/journal.pone.0194954 Kawaguchi, H., Miyagawa, H., Nakamura-Tsuruta, S., Takaya, N., Ogino, C., & Kondo, A. (2019a). Enhanced phenyllactic acid production in Escherichia coli via oxygen limitation and shikimate pathway gene expression.Biotechnology Journal , e1800478. doi:10.1002/biot.201800478 Kawaguchi, H., Miyagawa, H., Nakamura-Tsuruta, S., Takaya, N., Ogino, C., & Kondo, A. (2019b). Enhanced Phenyllactic Acid Production in Escherichia coli Via Oxygen Limitation and Shikimate Pathway Gene Expression. Biotechnology Journal, 14 (6), e1800478. doi:10.1002/biot.201800478 Khatri, N. K., & Hoffmann, F. (2006). Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris.Biotechnology and Bioengineering, 93 (5), 871-879. doi:10.1002/bit.20773 Kildegaard, K. R., Adiego-Perez, B., Domenech Belda, D., Khangura, J. K., Holkenbrink, C., & Borodina, I. (2017). Engineering of Yarrowia lipolytica for production of astaxanthin. Synthetic and Systems Biotechnology, 2 (4), 287-294. doi:10.1016/j.synbio.2017.10.002 Kim, B., Binkley, R., Kim, H. U., & Lee, S. Y. (2018). Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine. Biotechnology and Bioengineering, 115 (10), 2554-2564. doi:10.1002/bit.26797 Kim, B. S., Lee, S. C., Lee, S. Y., Chang, Y. K., & Chang, H. N. (2004). High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess and Biosystems Engineering, 26 (3), 147-150. doi:10.1007/s00449-003-0347-8 Larroude, M., Celinska, E., Back, A., Thomas, S., Nicaud, J. M., & Ledesma-Amaro, R. (2018). A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of beta-carotene. Biotechnology and Bioengineering, 115 (2), 464-472. doi:10.1002/bit.26473 Li, X., Huang, C., Xu, C. Q., Tan, Y. L., Luo, Y. D., Zou, K., . . . Zheng, N. (2019a). High cell density culture of baker’s yeast FX-2 based on pH-stat coupling with respiratory quotient. Biotechnology and Applied Biochemistry , 389-397. doi:10.1002/bab.1735 Li, X., Huang, C., Xu, C. Q., Tan, Y. L., Luo, Y. D., Zou, K., . . . Zheng, N. (2019b). High cell density culture of baker’s yeast FX-2 based on pH-stat coupling with respiratory quotient. Biotechnology and Applied Biochemistry . 389-397. doi:10.1002/bab.1735 Maghsoudi, A., Hosseini, S., Shojaosadati, S. A., Vasheghani-Farahani, E., Nosrati, M., & Bahrami, A. (2012). A new methanol-feeding strategy for the improved production of β-galactosidase in high cell-density fed-batch cultures of Pichia pastoris Mut+ strains. Biotechnology and Bioprocess Engineering, 17 (1), 76-83. doi:10.1007/s12257-011-0201-9 Martinez, I., Bennett, G. N., & San, K. Y. (2010). Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metabolic Engineering, 12 (6), 499-509. doi:10.1016/j.ymben.2010.09.002 Nester, R. (2019). Beta-carotene Market : Global Demand Analysis & Opportunity Outlook 2024. Retrieved from (https://www.researchnester.com/reports/beta-carotene-market-global-demand-analysis-opportunity-outlook-2024/267Picotto, L. D., Sguazza, G. H., Tizzano, M. A., Galosi, C. M., Cavalitto, S. F., & Pecoraro, M. R. (2017). An effective and simplified DO-stat control strategy for production of rabies glycoprotein in Pichia pastoris. Protein Expression and Purification, 132 , 124-130. doi:10.1016/j.pep.2017.02.004 Hoek, Pim, Dijken, Johannes. Pronk, Jack.. (1998). Effect of Specific Growth Rate on Fermentative. Applied and environmental microbiology, 64 (11), 4226-4233. doi: 10.1128/AEM.64.11.4226-4233.1998 Song, P., Chen, C., Tian, Q., Lin, M., Huang, H., & Li, S. (2013). Two-stage oxygen supply strategy for enhanced lipase production by Bacillus subtilis based on metabolic flux analysis. Biochemical Engineering Journal, 71 , 1-10. doi:10.1016/j.bej.2012.11.011 Van Hoek, P., Van Dijken, Johannes P. Pronk, Jack T. (1998). Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast.Applied and environmental microbiology, 64 (11), 4226-4233. Retrieved fromhttps://aem.asm.org/content/aem/64/11/4226.full.pdfWang, R., Gu, X., Yao, M., Pan, C., Liu, H., Xiao, W., . . . Yuan, Y. (2017). Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 11 (1), 89-99. doi:10.1007/s11705-017-1628-0 Wang, Y., Meng, H., Cai, D., Wang, B., Qin, P., Wang, Z., & Tan, T. (2016). Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation.Bioresource Technology, 211 , 291-297. doi:10.1016/j.biortech.2016.03.095 Wen, S., Zhang, T., & Tan, T. (2005). Optimization of the amino acid composition in glutathione fermentation. Process Biochemistry, 40 (11), 3474-3479. doi:10.1016/j.procbio.2005.02.027 Wen, S., Zhang, T., & Tan, T. (2006). Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomyces cerevisiae. Process Biochemistry, 41 (12), 2424-2428. doi:10.1016/j.procbio.2006.06.030 Wu, T., Ye, L., Zhao, D., Li, S., Li, Q., Zhang, B., . . . Zhang, X. (2017). Membrane engineering - A novel strategy to enhance the production and accumulation of beta-carotene in Escherichia coli.Metabolic Engineering, 43 (Pt A), 85-91. doi:10.1016/j.ymben.2017.07.001 Xu, H., Dou, W., Xu, H., Zhang, X., Rao, Z., Shi, Z., & Xu, Z. (2009). A two-stage oxygen supply strategy for enhanced l-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis.Biochemical Engineering Journal, 43 (1), 41-51. doi:10.1016/j.bej.2008.08.007