DT: daytime temperature (oC), NT: nighttime
temperature (oC), DTD: diurnal temperature difference
(oC). ASL: elevation above sea level (m).
4. Conclusions
The study demonstrated the utility of MODIS LST products to monitor the
spatial, diurnal, seasonal, and annual variations of lakes water surface
temperature (LWST) across Eurasia where long-term in-situmeasurements are very limited. In particular, this is an effective
approach for monitoring LWST in some of the wild, inaccessible and
protected areas in high latitude regions of the word. The inter-annual
and intra-annual variations of LWST across Eurasia were derived from
11,978 maps of daytime and nighttime 8-day composite MODIS LST products
during the period 2001-2015. Lakes in high latitude regions, especially
those situated in the boreal or the Taiga biome displayed low LWST.
Lakes in the Tibetan Plateau also exhibited low LWST. However, the LWST
pattern in nighttime showed a more homogeneous distribution, and the
pattern mostly resembled that of air temperature at Eurasian scale.
Large spatial variations of DTDs were observed for large lakes in
Eurasia. Small variations in DTDs were measured in high latitude lakes,
and also in lakes situated in the tropical rainforest region. Several
factors, e.g., lake depth and area (volume), altitude, and water source,
may have contributed to the spatiotemporal variations in LWST. The
shallow lakes showed a rapid response of LWST to solar and atmospheric
forcing, while in the large deep lakes, the response time was much
slower. Finally, it should be noted that LWST and ice-free duration can
be influenced by water salinity and ground water input, but these
factors were not considered in the present study. Further investigation
is thus needed to assess the impact of these factors on the thermal
dynamics of large water bodies across the Eurasian continent.
References
Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O.,
Keller, W., … & Weyhenmeyer, G. A. (2009). Lakes as sentinels of
climate change. Limnology and oceanography , 54 (6part2),
2283-2297.
https://doi.org/10.4319/lo.2009.54.6_part_2.2283.
Deo, R. C., & Şahin, M. (2017). Forecasting long-term global solar
radiation with an ANN algorithm coupled with satellite-derived (MODIS)
land surface temperature (LST) for regional locations in
Queensland. Renewable and Sustainable Energy Reviews , 72 ,
828-848.
https://doi.org/10.1016/j.rser.2017.01.114.
Dörnhöfer, K., & Oppelt, N. (2016). Remote sensing for lake research
and monitoring–Recent advances. Ecological
Indicators , 64 , 105-122.https://doi.org/10.1016/j.ecolind.2015.12.009.
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L.
J., Striegl, R. G., Middelburg, J. J. (2006). The global abundance and
size distribution of lakes, ponds, and impoundments. Limnology
and Oceanography . 51(5), 2388-2397.https://doi.org/10.4319/lo.2006.51.5.2388.
Gorham, E. (1964). MORPHOMETRIC CONTROL OF ANNUAL HEAT BUDGETS IN
TEMPERATE LAKES 1. Limnology and Oceanography , 9 (4),
525-529.
https://doi.org/10.4319/lo.1964.9.4.0525.
Hook, S. J., Vaughan, R. G., Tonooka, H., & Schladow, S. G. (2007).
Absolute radiometric in-flight validation of mid infrared and thermal
infrared data from ASTER and MODIS on the Terra spacecraft using the
Lake Tahoe, CA/NV, USA, automated validation site. IEEE
Transactions on Geoscience and Remote Sensing , 45 (6), 1798-1807.
https://doi.org/10.1109/TGRS.2007.894564.
IPCC (2014). “Climate Change 2014: Synthesis Report,” in Proceedings
of the Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, eds
Core Writing Team, R. K. Pachauri, and L. A. Meyer (Geneva: IPCC), 151.
Ke, L., & Song, C. (2014). Remotely sensed surface temperature
variation of an inland saline lake over the central Qinghai–Tibet
Plateau. ISPRS journal of photogrammetry and remote
sensing , 98 , 157-167.https://doi.org/10.1016/j.isprsjprs.2014.09.007.
Kraemer, B. M., Mehner, T., & Adrian, R. (2017). Reconciling the
opposing effects of warming on phytoplankton biomass in 188 large
lakes. Scientific reports , 7(1), 10762.
Leblanc, J., Akbarzadeh, A., Andrews, J., Lu, H., & Golding, P. (2011).
Heat extraction methods from salinity-gradient solar ponds and
introduction of a novel system of heat extraction for improved
efficiency. Solar Energy , 85 (12), 3103-3142.https://doi.org/10.1016/j.solener.2010.06.005.
Lehner, B., & Döll, P. (2004). Development and validation of a global
database of lakes, reservoirs and wetlands. Journal of
Hydrology , 296 (1-4), 1-22.https://doi.org/10.1016/j.jhydrol.2004.03.028.
Li, R., Chen, Q., Zhang, X., & Recknagel, F. (2015). Effects of
temperature and macronutrients on phytoplankton communities across three
largely different lakes identified by a time–space trade-off
approach. Ecological informatics , 29 , 174-181.https://doi.org/10.1016/j.ecoinf.2014.09.004.
Lyons, E. A., & Sheng, Y. (2018). Laketime: Automated seasonal scene
selection for global lake mapping using landsat etm+ and
oli. Remote Sensing , 10 (1), 54.https://doi.org/10.3390/rs10010054.
Ma, N., Szilagyi, J., Niu, G. Y., Zhang, Y., Zhang, T., Wang, B., & Wu,
Y. (2016). Evaporation variability of Nam Co Lake in the Tibetan Plateau
and its role in recent rapid lake expansion.
Journal of
hydrology ,
537 , 27-35.
https://doi.org/10.1016/j.jhydrol.2016.03.030.Meybeck, M. (1995). Global distribution of lakes. In Physics and
chemistry of lakes (pp. 1-35). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-85132-2_1.
Moukomla, S., & Blanken, P. (2016). Remote sensing of the North
American Laurentian Great Lakes’ surface temperature. Remote
Sensing , 8 (4), 286.https://doi.org/10.3390/rs8040286.
NASA Land Processes Distributed Active Archive Center (LP DAAC) (2001)
MODIS 11A2. USGS/Earth Resources Observation and Science (EROS) Center,
Sioux Falls, South Dakota.
O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S.,
Rowley, R. J., … & Weyhenmeyer, G. A. (2015). Rapid and highly
variable warming of lake surface waters around the
globe. Geophysical Research Letters , 42 (24),
10-773. https://doi.org/10.1002/2015GL066235.
Parastatidis, D., Mitraka, Z., Chrysoulakis, N., Abrams, M., 2017.
Online global land surface temperature estimation from Landsat. Remote.
Sens Basel. 9(12), 1208.
https://doi.org/10.3390/rs9121208.
Parastatidis, D., Mitraka, Z., Chrysoulakis, N., & Abrams, M. (2017).
Online global land surface temperature estimation from
landsat. Remote Sensing , 9 (12), 1208.
https://doi.org/10.1007/s10201-016-0481-z.
Schmidt, S. R., Gerten, D., Hintze, T., Lischeid, G., Livingstone, D.
M., & Adrian, R. (2018). Temporal and spatial scales of water
temperature variability as an indicator for mixing in a polymictic
lake. Inland Waters , 8 (1), 82-95.https://doi.org/10.1080/20442041.2018.1429067.
Sheng, Y., Song, C., Wang, J., Lyons, E. A., Knox, B. R., Cox, J. S., &
Gao, F. (2016). Representative lake water extent mapping at continental
scales using multi-temporal Landsat-8 imagery. Remote Sensing of
Environment , 185 , 129-141.
https://doi.org/10.1016/j.rse.2015.12.041.
Song, K., Wang, M., Du, J., Yuan, Y., Ma, J., Wang, M., & Mu, G.
(2016). Spatiotemporal variations of lake surface temperature across the
Tibetan Plateau using MODIS LST product.
Remote
Sensing ,
8 (10), 854.
https://doi.org/10.3390/rs8100854.
Trumpickas, J., Shuter, B. J., Minns, C. K., & Cyr, H. (2015).
Characterizing patterns of nearshore water temperature variation in the
North American Great Lakes and assessing sensitivities to climate
change. Journal of Great Lakes Research , 41 (1), 53-64.https://doi.org/10.1016/j.jglr.2014.11.024.
Wang, S. M., & Dou, H. S. (1998). Lakes in China . Science
professional publishing.
Wetzel, R. G. (2001). Limnology: lake and river ecosystems . gulf
professional publishing.
Winslow, L. A., Read, J. S., Hansen, G. J., Rose, K. C., & Robertson,
D. M. (2017). Seasonality of change: Summer warming rates do not fully
represent effects of climate change on lake
temperatures. Limnology and Oceanography , 62 (5),
2168-2178.
https://doi.org/10.1002/lno.10557.
Woolway, R. I., Verburg, P., Lenters, J. D., Merchant, C. J., Hamilton,
D. P., Brookes, J., … & Laas, A. (2018). Geographic and temporal
variations in turbulent heat loss from lakes: A global analysis across
45 lakes.
Limnology and Oceanography ,
63 (6), 2436-2449.
https://doi.org/10.1002/lno.10950.
Yuan, Y., Zeng, G., Liang, J., Huang, L., Hua, S., Li, F., … & He, Y.
(2015). Variation of water level in Dongting Lake over a 50-year period:
Implications for the impacts of anthropogenic and climatic
factors. Journal of Hydrology , 525 , 450-456.https://doi.org/10.1016/j.jhydrol.2015.04.010.
Zhang, G., Yao, T., Xie, H., Qin, J., Ye, Q., Dai, Y., & Guo, R.
(2014). Estimating surface temperature changes of lakes in the Tibetan
Plateau using MODIS LST data. Journal of Geophysical Research:
Atmospheres , 119 (14),
8552-8567. https://doi.org/10.1002/2014JD021615.
Zhang, G., Xie, H., Kang, S., Yi, D., & Ackley, S. F. (2011).
Monitoring lake level changes on the Tibetan Plateau using ICESat
altimetry data (2003–2009). Remote Sensing of
Environment , 115 (7), 1733-1742.https://doi.org/10.1016/j.rse.2011.03.005.
Zhong, Y., Notaro, M., & Vavrus, S. J. (2019). Spatially variable
warming of the Laurentian Great Lakes: an interaction of bathymetry and
climate. Climate Dynamics , 52 (9-10), 5833-5848.https://doi.org/10.1007/s00382-018-4481-z.