https://doi.org/10.1016/j.jhydrol.2016.03.030.
Meybeck, M. (1995). Global distribution of lakes. In Physics and
chemistry of lakes (pp. 1-35). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-85132-2_1.
Moukomla, S., & Blanken, P. (2016). Remote sensing of the North
American Laurentian Great Lakes’ surface temperature. Remote
Sensing , 8 (4), 286.https://doi.org/10.3390/rs8040286.
NASA Land Processes Distributed Active Archive Center (LP DAAC) (2001)
MODIS 11A2. USGS/Earth Resources Observation and Science (EROS) Center,
Sioux Falls, South Dakota.
O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S.,
Rowley, R. J., … & Weyhenmeyer, G. A. (2015). Rapid and highly
variable warming of lake surface waters around the
globe. Geophysical Research Letters , 42 (24),
10-773. https://doi.org/10.1002/2015GL066235.
Parastatidis, D., Mitraka, Z., Chrysoulakis, N., Abrams, M., 2017.
Online global land surface temperature estimation from Landsat. Remote.
Sens Basel. 9(12), 1208.https://doi.org/10.3390/rs9121208.
Parastatidis, D., Mitraka, Z., Chrysoulakis, N., & Abrams, M. (2017).
Online global land surface temperature estimation from
landsat. Remote Sensing , 9 (12), 1208.
https://doi.org/10.1007/s10201-016-0481-z.
Schmidt, S. R., Gerten, D., Hintze, T., Lischeid, G., Livingstone, D.
M., & Adrian, R. (2018). Temporal and spatial scales of water
temperature variability as an indicator for mixing in a polymictic
lake. Inland Waters , 8 (1), 82-95.https://doi.org/10.1080/20442041.2018.1429067.
Sheng, Y., Song, C., Wang, J., Lyons, E. A., Knox, B. R., Cox, J. S., &
Gao, F. (2016). Representative lake water extent mapping at continental
scales using multi-temporal Landsat-8 imagery. Remote Sensing of
Environment , 185 , 129-141.
https://doi.org/10.1016/j.rse.2015.12.041.
Song, K., Wang, M., Du, J., Yuan, Y., Ma, J., Wang, M., & Mu, G.
(2016). Spatiotemporal variations of lake surface temperature across the
Tibetan Plateau using MODIS LST product. Remote
Sensing , 8 (10), 854.https://doi.org/10.3390/rs8100854.
Trumpickas, J., Shuter, B. J., Minns, C. K., & Cyr, H. (2015).
Characterizing patterns of nearshore water temperature variation in the
North American Great Lakes and assessing sensitivities to climate
change. Journal of Great Lakes Research , 41 (1), 53-64.https://doi.org/10.1016/j.jglr.2014.11.024.
Wang, S. M., & Dou, H. S. (1998). Lakes in China . Science
professional publishing.
Wetzel, R. G. (2001). Limnology: lake and river ecosystems . gulf
professional publishing.
Winslow, L. A., Read, J. S., Hansen, G. J., Rose, K. C., & Robertson,
D. M. (2017). Seasonality of change: Summer warming rates do not fully
represent effects of climate change on lake
temperatures. Limnology and Oceanography , 62 (5),
2168-2178.
https://doi.org/10.1002/lno.10557.
Woolway, R. I., Verburg, P., Lenters, J. D., Merchant, C. J., Hamilton,
D. P., Brookes, J., … & Laas, A. (2018). Geographic and temporal
variations in turbulent heat loss from lakes: A global analysis across
45 lakes. Limnology and Oceanography , 63 (6), 2436-2449.
https://doi.org/10.1002/lno.10950.
Yuan, Y., Zeng, G., Liang, J., Huang, L., Hua, S., Li, F., … & He, Y.
(2015). Variation of water level in Dongting Lake over a 50-year period:
Implications for the impacts of anthropogenic and climatic
factors. Journal of Hydrology , 525 , 450-456.https://doi.org/10.1016/j.jhydrol.2015.04.010.
Zhang, G., Yao, T., Xie, H., Qin, J., Ye, Q., Dai, Y., & Guo, R.
(2014). Estimating surface temperature changes of lakes in the Tibetan
Plateau using MODIS LST data. Journal of Geophysical Research:
Atmospheres , 119 (14),
8552-8567. https://doi.org/10.1002/2014JD021615.
Zhang, G., Xie, H., Kang, S., Yi, D., & Ackley, S. F. (2011).
Monitoring lake level changes on the Tibetan Plateau using ICESat
altimetry data (2003–2009). Remote Sensing of
Environment , 115 (7), 1733-1742.https://doi.org/10.1016/j.rse.2011.03.005.
Zhong, Y., Notaro, M., & Vavrus, S. J. (2019). Spatially variable
warming of the Laurentian Great Lakes: an interaction of bathymetry and
climate. Climate Dynamics , 52 (9-10), 5833-5848.https://doi.org/10.1007/s00382-018-4481-z.