REFERENCES
Allison, S.D. (2012). A
trait-based approach for modelling microbial litter decomposition.Ecol. Lett., 15, 1058–1070.
Allison, S.D. (2014).
Modeling adaptation of carbon use efficiency in microbial communities.Front. Microbiol., 5, 571.
Allison, S.D., Wallenstein,
M.D. & Bradford, M.A. (2010). Soil-carbon response to warming dependent
on microbial physiology. Nat. Geosci., 3, 336.
Alster, C.J., Baas, P.,
Wallenstein, M.D., Johnson, N.G. & von Fischer, J.C. (2016).
Temperature Sensitivity as a Microbial Trait Using Parameters from
Macromolecular Rate Theory. Front. Microbiol., 7, 1821.
Bennett, A.F. & Lenski, R.E.
(2007). An experimental test of evolutionary trade-offs during
temperature adaptation. Proc. Natl. Acad. Sci. U. S. A., 104
Suppl 1, 8649–8654.
Boon, E., Meehan, C.J.,
Whidden, C., Wong, D.H.-J., Langille, M.G.I. & Beiko, R.G. (2014).
Interactions in the microbiome: communities of organisms and communities
of genes. FEMS Microbiol. Rev., 38, 90–118.
Bradford, M.A., Davies, C.A.,
Frey, S.D., Maddox, T.R., Melillo, J.M., Mohan, J.E., et al.(2008). Thermal adaptation of soil microbial respiration to elevated
temperature. Ecol. Lett., 11, 1316–1327.
Brännström, Å., Johansson, J.
& von Festenberg, N. (2013). The Hitchhiker’s Guide to Adaptive
Dynamics. Games, An Introduction to Population Genetics Theory,
4, 304–328.
Burns, R.G., DeForest, J.L.,
Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D.,et al. (2013). Soil enzymes in a changing environment: Current
knowledge and future directions. Soil Biol. Biochem., 58,
216–234.
Carreiro, M.M., Sinsabaugh,
R.L., Repert, D.A. & Parkhurst, D.F. (2000). MICROBIAL ENZYME SHIFTS
EXPLAIN LITTER DECAY RESPONSES TO SIMULATED NITROGEN DEPOSITION.Ecology, 81, 2359–2365.
Creamer, C.A., de Menezes,
A.B., Krull, E.S., Sanderman, J., Newton-Walters, R. & Farrell, M.
(2015). Microbial community structure mediates response of soil C
decomposition to litter addition and warming. Soil Biol.
Biochem., 80, 175–188.
Davidson, E.A. & Janssens,
I.A. (2006). Temperature sensitivity of soil carbon decomposition and
feedbacks to climate change. Nature, 440, 165–173.
Driscoll, W.W. & Pepper,
J.W. (2010). Theory for the evolution of diffusible external goods.Evolution, 64, 2682–2687.
Falkowski, P.G., Fenchel, T.
& Delong, E.F. (2008). The microbial engines that drive Earth’s
biogeochemical cycles. Science, 320, 1034–1039.
Follows, M.J., Dutkiewicz,
S., Grant, S. & Chisholm, S.W. (2007). Emergent biogeography of
microbial communities in a model ocean. Science, 315,
1843–1846.
Frey, S.D., Lee, J., Melillo,
J.M. & Six, J. (2013). The temperature response of soil microbial
efficiency and its feedback to climate. Nat. Clim. Chang., 3,
395.
Geritz, S.A.H., Kisdi, E.,
Mesze´NA, G. & Metz, J.A.J. (1998). Evolutionarily singular strategies
and the adaptive growth and branching of the evolutionary tree.Evol. Ecol., 12, 35–57.
German, D.P., Marcelo,
K.R.B., Stone, M.M. & Allison, S.D. (2012). The Michaelis-Menten
kinetics of soil extracellular enzymes in response to temperature: a
cross-latitudinal study. Glob. Chang. Biol., 18, 1468–1479.
Glassman, S.I., Weihe, C.,
Li, J., Albright, M.B.N., Looby, C.I., Martiny, A.C., et al.(2018). Decomposition responses to climate depend on microbial community
composition. Proc. Natl. Acad. Sci. U. S. A., 115, 11994–11999.
Gómez, P., Paterson, S., De
Meester, L., Liu, X., Lenzi, L., Sharma, M.D., et al. (2016).
Local adaptation of a bacterium is as important as its presence in
structuring a natural microbial community. Nat. Commun., 7,
12453.
Hagerty, S.B., van Groenigen,
K.J., Allison, S.D., Hungate, B.A., Schwartz, E., Koch, G.W., et
al. (2014). Accelerated microbial turnover but constant growth
efficiency with warming in soil. Nat. Clim. Chang., 4, 903.
Harder, W. & Dijkhuizen, L.
(1983). Physiological responses to nutrient limitation. Annu. Rev.
Microbiol., 37, 1–23.
Harte, J. & Kinzig, A.P.
(1993). Mutualism and competition between plants and decomposers:
implications for nutrient allocation in ecosystems. Am. Nat.,
141, 829–846.
Hochachka, P.W. & Somero,
G.N. (2002). Biochemical Adaptation: Mechanism and Process in
Physiological Evolution. Oxford University Press.
Kaiser, C., Franklin, O.,
Richter, A. & Dieckmann, U. (2015). Social dynamics within decomposer
communities lead to nitrogen retention and organic matter build-up in
soils. Nat. Commun., 6, 8960.
Koskella, B. & Vos, M.
(2015). Adaptation in Natural Microbial Populations. Annu. Rev.
Ecol. Evol. Syst., 46, 503–522.
Li, J., Wang, G., Allison,
S.D., Mayes, M.A. & Luo, Y. (2014). Soil carbon sensitivity to
temperature and carbon use efficiency compared across
microbial-ecosystem models of varying complexity.Biogeochemistry, 119, 67–84.
Malik, A.A., Puissant, J.,
Goodall, T., Allison, S.D. & Griffiths, R.I. (2019). Soil microbial
communities with greater investment in resource acquisition have lower
growth yield. Soil Biol. Biochem., 132, 36–39.
Metz, J.A.J., Nisbet, R.M. &
Geritz, S.A.H. (1992). How should we define “fitness” for general
ecological scenarios? Trends Ecol. Evol., 7, 198–202.
Monroe, J.G., Markman, D.W.,
Beck, W.S., Felton, A.J., Vahsen, M.L. & Pressler, Y. (2018).
Ecoevolutionary Dynamics of Carbon Cycling in the Anthropocene.Trends Ecol. Evol., 33, 213–225.
O’Brien, S., Hodgson, D.J. &
Buckling, A. (2013). The interplay between microevolution and community
structure in microbial populations. Curr. Opin. Biotechnol., 24,
821–825.
Padfield, D., Yvon-Durocher,
G., Buckling, A., Jennings, S. & Yvon-Durocher, G. (2016). Rapid
evolution of metabolic traits explains thermal adaptation in
phytoplankton. Ecol. Lett., 19, 133–142.
Rainey, P.B. & Rainey, K.
(2003). Evolution of cooperation and conflict in experimental bacterial
populations. Nature, 425, 72–74.
Ratledge, C. (1994).
Biodegradation of oils, fats and fatty acids. In: Biochemistry of
microbial degradation (ed. Ratledge, C.). Springer Netherlands,
Dordrecht, pp. 89–141.
Rebolleda-Gómez, M. &
Travisano, M. (2018). The Cost of Being Big: Local Competition,
Importance of Dispersal, and Experimental Evolution of Reversal to
Unicellularity. Am. Nat., 192, 731–744.
Romero-Olivares, A.L.,
Taylor, J.W. & Treseder, K.K. (2015). Neurospora discreta as a model to
assess adaptation of soil fungi to warming. BMC Evolutionary
Biology.
Sauterey, B., Ward, B.A.,
Follows, M.J., Bowler, C. & Claessen, D. (2015). When everything is not
everywhere but species evolve: an alternative method to model adaptive
properties of marine ecosystems. J. Plankton Res., 37, 28–47.
Schaum, C.-E., Barton, S.,
Bestion, E., Buckling, A., Garcia-Carreras, B., Lopez, P., et al.(2017). Adaptation of phytoplankton to a decade of experimental warming
linked to increased photosynthesis. Nat Ecol Evol, 1, 94.
Scheiner, S.M. (1993).
Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol.
Syst., 24, 35–68.
Schimel, J.P. & Weintraub,
M.N. (2003). The implications of exoenzyme activity on microbial carbon
and nitrogen limitation in soil: a theoretical model. Soil Biol.
Biochem., 35, 549–563.
Singh, B.K., Bardgett, R.D.,
Smith, P. & Reay, D.S. (2010). Microorganisms and climate change:
terrestrial feedbacks and mitigation options. Nat. Rev.
Microbiol., 8, 779–790.
Sinsabaugh, R.L., Manzoni,
S., Moorhead, D.L. & Richter, A. (2013). Carbon use efficiency of
microbial communities: stoichiometry, methodology and modelling.Ecol. Lett., 16, 930–939.
Sinsabaugh, R.L. & Moorhead,
D.L. (1994). Resource allocation to extracellular enzyme production: A
model for nitrogen and phosphorus control of litter decomposition.Soil Biol. Biochem., 26, 1305–1311.
Steinweg, J.M., Dukes, J.S.,
Paul, E.A. & Wallenstein, M.D. (2013). Microbial responses to
multi-factor climate change: effects on soil enzymes. Front.
Microbiol., 4, 146.
Stone, M.M., Weiss, M.S.,
Goodale, C.L., Adams, M.B., Fernandez, I.J., German, D.P., et al.(2012). Temperature sensitivity of soil enzyme kinetics under
N-fertilization in two temperate forests. Glob. Chang. Biol., 18,
1173–1184.
Strauss, S.Y. (2014).
Ecological and evolutionary responses in complex communities:
implications for invasions and eco-evolutionary feedbacks. Oikos,
123, 257–266.
Sulman, B.N., Moore, J.A.M.,
Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., et al.(2018). Multiple models and experiments underscore large uncertainty in
soil carbon dynamics. Biogeochemistry, 141, 109–123.
Tang, J. & Riley, W.J.
(2014). Weaker soil carbon–climate feedbacks resulting from microbial
and abiotic interactions. Nat. Clim. Chang., 5, 56.
Treseder, K.K., Balser, T.C.,
Bradford, M.A., Brodie, E.L., Dubinsky, E.A., Eviner, V.T., et
al. (2012). Integrating microbial ecology into ecosystem models:
challenges and priorities. Biogeochemistry, 109, 7–18.
Trivedi, P.,
Delgado-Baquerizo, M., Trivedi, C., Hu, H., Anderson, I.C., Jeffries,
T.C., et al. (2016). Microbial regulation of the soil carbon
cycle: evidence from gene-enzyme relationships. ISME J., 10,
2593–2604.
Tucker, C.L., Bell, J.,
Pendall, E. & Ogle, K. (2013). Does declining carbon-use efficiency
explain thermal acclimation of soil respiration with warming?Glob. Chang. Biol., 19, 252–263.
Velicer, G.J. (2003). Social
strife in the microbial world. Trends Microbiol., 11, 330–337.
Waksman, S.A. & Starkey,
R.L. (1931). The soil and the microbe. John Wiley And Sons; New
York.
Waldrop, M.P., Zak, D.R.,
Sinsabaugh, R.L., Gallo, M. & Lauber, C. (2004). NITROGEN DEPOSITION
MODIFIES SOIL CARBON STORAGE THROUGH CHANGES IN MICROBIAL ENZYMATIC
ACTIVITY. Ecol. Appl., 14, 1172–1177.
Wallenstein, M.D., Mcmahon,
S.K. & Schimel, J.P. (2009). Seasonal variation in enzyme activities
and temperature sensitivities in Arctic tundra soils. Glob. Chang.
Biol., 15, 1631–1639.
Wang, G., Post, W.M. &
Mayes, M.A. (2013). Development of microbial-enzyme-mediated
decomposition model parameters through steady-state and dynamic
analyses. Ecol. Appl., 23, 255–272.
Wei, H., Guenet, B., Vicca,
S., Nunan, N., AbdElgawad, H., Pouteau, V., et al. (2014).
Thermal acclimation of organic matter decomposition in an artificial
forest soil is related to shifts in microbial community structure.Soil Biol. Biochem., 71, 1–12.
Wieder, W.R., Bonan, G.B. &
Allison, S.D. (2013). Global soil carbon projections are improved by
modelling microbial processes. Nat. Clim. Chang., 3, 909.
Zhang, X., Niu, G.-Y.,
Elshall, A.S., Ye, M., Barron-Gafford, G.A. & Pavao-Zuckerman, M.
(2014). Assessing five evolving microbial enzyme models against field
measurements from a semiarid savannah—What are the mechanisms of soil
respiration pulses? Geophys. Res. Lett., 41, 6428–6434.