References
- Algapani, D.E., Qiao, W., Su, M., Di, P.F., Wandera, S.M., Adani, F.
& Dong, R. (2016). Biohydrolysis and bio-hydrogen production from
food waste by thermophilic and hyperthermophilic anaerobic process.
Bioresour. Technol. 216,768-777.
http://dx.doi.org/10.1016/j.biortech.2016.06.016.
- APHA (2005). Standard Methods for the Examination of Water and
Wastewater, American Public Health Association (APHA), Washington, DC,
USA.
- Bayrakdar, A., Sürmeli, R.Ö. & Çalli, B. (2017). Dry anaerobic
digestion of chicken manure coupled with membrane separation of
ammonia. Bioresour. Technol. 244,816-823.
https://doi.org/10.1016/j.biortech.2017.08.047.
- Carballa, M., Regueiro, L., Lema, J.M. (2015). Microbial management of
anaerobic digestion: exploiting the microbiome-functionality nexus.
Curr. Opin. Biotech.
33,103-111.https://dio.org/10.1016/j.copbio.2015.01.008
- Chen, T., Jin, Y., Liu, F., Meng, X., Li, H. & Nie, Y. (2012). Effect
of hydrothermal treatment on the levels of selected indigenous
microbes in food waste. J. Environ. Manage. 106,17-21.
https://doi.org/10.1016/j.jenvman.2012.03.045.
- Cho, K., Shin, S.G., Kim, W., Lee, J., Lee, C. & Hwang, S. (2017).
Microbial community shifts in a farm-scale anaerobic digestion
treating swine waste: Correlations between bacteria communities
associated with hydrogenotrophic methanogens and environmental
conditions. Sci. Total Environ. 601-602,
167-176.http://dx.doi.org/10.1016/j.scitotenv.2017.05.188
- Conners, S.B., Mongodin, E.F., Johnson, M.R., Montero, C.I., Nelson,
K.E. & Kelly, R.M. (2006). Microbial biochemistry, physiology, and
biotechnology of hyperthermophilic Thermotoga species. FEMS
Microbiol, Rev. 30,872-905.
https://doi.org/10.1111/j.1574-6976.2006.00039.x.
- De Vrieze, J., Christiaens, M.E.R., Walraedt, D., Devooght, A., Ijaz,
U.Z. & Boon, N. (2017). Microbial community redundancy in anaerobic
digestion drives process recovery after salinity exposure. Water Res.
111, 109-117.
https://doi.org/10.1016/j.watres.2016.12.042
- Dongyan, Y., Yunzhi, P., Hairong, Y., Shulin, C., Jingwei, M. &
Liang, Y. (2014). Enhancing biogas production from an anaerobically
digested wheat straw through ammonia pretreatment. Chin. J. Chem. Eng.
22,576-582. https://doi.org/10.1016/S1004-9541(14)60075-6
- Hania, W.B., Godbane, R., Postec, A., Hamdi, M., Ollivier, B. &
Fardeau, M.L. (2012). Defluviitoga tunisiensis gen. Nov., sp.
Nov., a thermophilic bacterium isolated from a mesothermic and
anaerobic whey digester. Int. J. Syst. Evol. Microbiol. 62,1377-1382.
https://doi.org/10.1099/ijs.0.033720-0.
- Hansen, K.H., Ahring, B.K. & Raskin, L. (1999). Quantification of
syntrophic fatty acid beta-oxidizing bacteria in a mesophilic biogas
reactor by oligonucleotide probe hybridization. Appl, Environ.
Microbiol. 65(11), 4767-4774.
- Hobbs, S.R., Landis, A.E., Rittmann, B.E., Young, M.N. &
Parameswaran, P. (2019). Enhancing anaerobic digestion of food waste
through biochemical methane potential assays at different substrate:
inoculum ratios. Waste Manage. 71, 612-617.
http://dx.doi.org/10.1016/j.wasman.2017.06.029.
- Huber, H., Thomm, M., König, H., Thies, G. & Stetter, K.O. (1982).Methanococcus thermolithotrophicus , a novel thermophilic
lithotrophic methanogen. Arch. Microbiol.132,47-50.
https://doi.org/10.1007/BF00690816.
- Jang, H.M., Ha, J.H., Kim, M.S., Kim, J.O., Kim, Y.M. & Park, J.M.
(2016). Effect of increased load of high-strength food wastewater in
thermophilic and mesophilic anaerobic co-digestion of waste activated
sludge on bacterial community structure. Water Res. 99, 140-148.
https://doi.org/10.1016/j.watres.2016.04.051.
- Jiang, M., Qiao, W., Ren, Z., Mahdy, A., Wandera, S.M., Li, Y. &
Dong, R. (2019). Influence of operation conditions on methane
production from swine wastewater treated by a self-agitation anaerobic
reacto. Int. Biodeter. Biodegr. 143,104710.
https://doi.org/10.1016/j.ibiod.2019.05.027
- Kim, J.K., Oh, B.R., Chun, Y.N. & Kim, S.W. (2006). Effects of
temperature and hydraulic retention time on anaerobic digestion of
food waste. J. Biosci. Bioeng. 102, 328-332.
https://doi.org/10.1263/jbb.102.328.
- Li, D., Ran, Y., Chen, L., Cao, Q., Li, Z. & Liu, X. (2018b).
Instability diagnosis and syntrophic acetate oxidation during
thermophilic digestion of vegetable waste. Water Res. 139, 263-271.
https://doi.org/10.1016/j.watres.2018.04.019.
- Li, W., Khalid, H., Zhu, Z., Zhang, R., Liu, G., Chen, C. & Thorin,
E. (2018a). Methane production through anaerobic digestion:
participation and digestion characteristics of cellulose,
hemicellulose and lignin. Appl. Energy 226, 1219-1228.
https://doi.org/10.1016/j.apenergy.2018.05.055
- Li, L., He, Q., Ma, Y., Wang, X. & Peng, X. (2015). Dynamics of
microbial community in a mesophilic anaerobic digester treating food
waste: relationship between community structure and process stability.
Bioresour. Technol. 189, 113-120.
- Li, L., He, Q., Ma, Y., Wang, X. and Peng, X. (2016). A mesophilic
anaerobic digester for treating food waste: process stability and
microbial community analysis using pyrosequencing. Microb. Cell Fact.
15,65. https://doi.org/10.1186/s12934-016-0466-y
- Li, L., Qin, Y., Kong, Z., Wu, J., Kubota, K. & Li, Y-Y (2019).
Characterization of microbial community and main functional groups of
prokaryotes in thermophilic anaerobic cod-digestion of food waste and
paper waste. Sci. Total Environ. 652, 709-717.
https://doi.org/10.1016/j.scitotenv.2018.10.292
- Liu, J.F., Mbadinga, S.M., Sun, X.B., Yang, G.C., Yang, S.Z., Gu, J.D.
& Mu, B,Z. (2016). Microbial communities responsible for fixation of
co2 revealed by using mcra, cbbm, cbbl, fthfs, fefe-hydrogenase genes
as molecular biomarkers in petroleum reservoirs of different
temperatures. Int. Biodeter. Biodegr. 114,164-175.
https://doi.org/10.1016/j.ibiod.2016.06.019.
- Liu, P., Ji, J., Wu, Q., Ren, J., Wu, G., Yu, Z., Xiong, J., Tian, F.,
Zafar, Y. & Li, X. (2018). Klebsiella pneumoniae sp lzu10
degrades oil in food waste and enhances methane production from
co-digestion of food waste and straw. Int. Biodeter. Biodegr.
126,28-36. https://doi.org/10.1016/j.ibiod.2017.09.019.
- Mahdy, A., Wandera, S.M., Bi, S., Song, Y., Qiao, W. & Dong, R.
(2019a). Response of the microbial community to the methanogenic
performance of biologically hydrolyzed sewage sludge with variable
hydraulic retention times. Bioresour. Technol. 288, 121581.
https://doi.org/10.1016/j.biortech.2019.121581
- Mahdy, A., Mendez, L., Ballesteros, M. & Gonzalez-Fernandez, C.
(2015). Protease pretreated Chlorella vulgaris biomass
bioconversion to methane via semi-continuous anaerobic digestion. Fuel
158, 35-41.
- Mahdy, A., Wandera, S.M., Qiao, W. & Dong, R. (2019b). Biostimulation
of sewage sludge solubilization and methanization by
hyper-thermophilic pre-hydrolysis stage and the shifts of microbial
structure profiles. Sci. Total Environ.
https://doi.org/10.1016/j.scitotenv.2019.134373.
- Marchaim, U. & Krause, C. (1993). Propionic to acetic acid ratios in
overloaded anaerobic digestion. Bioresour. Technol.43, 195-203.
https://doi.org/10.1016/0960-8524(93)90031-6.
- Maus, I., Koeck, D.E., Cibis, K.G., Hahnke, S., Kim, Y.S., Langer, T.,
Kreubel, J., Erhard, M., Bremges, A., Off, S., Stolze, Y., Jaenicke,
S., Goesmann, A., Sczyrba, A., Scherer, P., König, H., Schwarz, W.H.,
Zverlov, V.V., Liebl, W., Pühler, A., Schlüter, A. & Klocke, M.
(2016). Unraveling the microbiome of a thermophilic biogas plant by
metagenome and meta transcriptome analysis complemented by
characterization of bacterial and archaeal isolates. Biotechnol.
Biofuels 9, 171-198. https://doi.org/10.1186/s13068-016-0581-3.
- Nag, R., Auer, A., Markey, B.K., Whyte, P., Nolan, S., O’flaherty, V.,
Russell, L., Declan, B., Fenton, O., Richards, K. & Cummins, E.
(2019). Anaerobic digestion of agricultural manure and biomass-
Critical indicators of risk and knowledge gaps. Sci. Total Environ.
690, 460-479.
- Nayak, A. & Bhushan, B. (2019). An overview of the recent trends on
the waste valorization technologies for food wastes. J. Environ.
Manage. 233, 352-370.
https://doi.org/10.1016/j.jenvman.2018.12.041
- Peng. X., Nges, I.A. & Liu, J. (2016). Improving methane production
form wheat straw by digestate liquor recirculation in continuous
stirred tank processes. Renew. Energy 5,12-8.
https://doi.org/10.1016/j.renene.2015.06.023
- Ratanatamskul. C. & Manpetch, P. (2016). Comparative assessment of
prototype digester configuration for biogas recovery from anaerobic
co-digestion of food waste and rain tree leaf as feedstock. Int.
Biodeter. Biodegr. 13,367-374.
http://dx.doi.org/10.1016/j.ibiod.2016.05.008.
- Seely, R.J. & Fahrney, D.E. (1983). A novel diphospho-p,p’-diester
from Methanobacterium thermoautotrophicum . J. Biol. Chem. 258,
10835-10838. https://doi.org/10.1159/000177690
- Sekiguchi, Y., Imachi, H., Susilorukmi, A., Muramatsu, M., Ohashi, A.,
Harada, H., Hanada, S. & Kamagata, Y. (2006). Tepidanaerobacter
syntrophicus gen. nov. sp. nov. an anaerobic, moderately
thermophilic, syntrophic alcohol- and lactate-degrading bacterium
isolated from thermophilic digested sludges. Int. J. Syst. Evol.
Microbiol. 56,1621-1629. https://doi.org/10.1002/jps.20638.
- Shi, X., Guo, X., Zuo, J., Wang, Y. & Zhang, M. (2018). A comparative
study of thermophilic and mesophilic anaerobic co-digestion of food
waste and wheat straw: process stability and microbial community
structure shifts. Waste Manage. 75,261-269.
http://doi.org/10.1016/j.wasman.2018.02.004.
- Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. &
Templeton, D. (2005). Determination of Ash in biomass. Standard
Biomass Analytical Procedures. National Laboratory of the U.S.
Determent of Energy, Office of Energy Efficiency & Renewable Energy,
United States.
- Sun. L., Pope, P.B., Eijsink, V.G.H. & Schnurer, A. (2015).
Characterization of microbial community structure during continuous
anaerobic digestion of straw and cow manure. Microbial Biotechnol. 8,
815-827. https://doi.org/10.1111/1751-7915.12298.
- Tachaapaikoon, C., Kosugi, A., Pason, P., Waeonukul, R.,
Ratanakhanokchai, K., Kyu, K.L., Arai, T., Murata, Y. & Mori, Y.
(2012). Isolation and characterization of a new cellulosome-producingClostridium thermocellum strain. Biodegradation 23(1), 57-68.
https://doi.org/10.1007/s10532-011-9486-9.
- Tian, H., Fotidis, I.A., Mancini, E., Treu, L., Mahdy, A.,
Ballesteros, M., González-Fernández, C. & Angelidaki, I. (2018).
Acclimation to extremely high ammonia levels in continuous
biomethanation process and the associated microbial community
dynamics. Bioresour. Technol. 247, 616-623.
http://dx.doi.org/10.1016/j.biortech.2017.09.148
- Wagner, A.O., Reitschuler, C. & Illmer, P. (2014). Effect of
different acetate:propionate ratios on the methanogenic community
during thermophilic anaerobic digestion in batch experiments. Biochem.
Eng. J. 90, 154-161. https://doi.org/10.1016/j.bej.2014.05.014.
- Westerholm, M., Moestedt, J. & Schnürer, A. (2016). Biogas production
through syntrophic acetate oxidation and deliberate operating
strategies for improved digester performance. Appl. Energy 179,
124-135. https://doi.org/10.1016/j.apenergy.2016.06.061.
- Westerholm, M., Roos, S. & Schnürer, A. (2011).Tepidanaerobacter acetatoxydans sp. nov. an anaerobic,
syntrophic acetate-oxidizing bacterium isolated from two
ammonium-enriched mesophilic methanogenic processes. Syst. Appl.
Microbiol. 34, 260-266.
https://doi.org/10.1016/j.syapm.2010.11.018.
- Yin, D.M., Westerholm, M., Qiao, W., Bi, S.J., Wandera, S.M., Fan, R.,
Jiang, M. & Dong, R. (2018). An explanation of the methanogenic
pathway for methane production in anaerobic digestion of nitrogen-rich
materials under mesophilic and thermophilic conditions. Bioresour.
Technol. 264, 42-50.
https://doi.org/10.1016/j.biortech.2018.05.062.
- Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R. & Horn, S.J.
(2017). Biogas production from food waste via co-digestion and
digestion- effects on performance and microbial ecology. Sci. Rep. 7,
17664-17676. https://doi.org/10.1038/s41598-017-15784-w.
- Zhang, Q., Wang M., Ma, X., Gao, Q., Wang, T., Shi, X., Zhou, J., Zuo,
J. & Yang, Y. (2019). High variations of methanogenic microorganisms
drive full-scale anaerobic digestion process. Environ. Int. 126,
543-551. https://doi.org/10.1016/j.envint.2019.03.005