References
Chu, V. T., Weber, T., Wefers, B., Wurst, W., Sander, S., Rajewsky, K.,
& Kühn, R. (2015). Increasing the efficiency of homology-directed
repair for CRISPR-Cas9-induced precise gene editing in mammalian cells.Nature Biotechnology, 33 (5), 543-548.
https://doi.org/10.1038/nbt.3198
Concordet, J. P., & Haeussler, M. (2018). CRISPOR: intuitive guide
selection for CRISPR/Cas9 genome editing experiments and screens.Nucleic Acids Research, 46 (W1), W242-W245.
https://doi.org/10.1093/nar/gky354
Cristea, S., Freyvert, Y., Santiago, Y., Holmes, M. C., Urnov, F. D.,
Gregory, P. D., & Cost, G. J. (2013). In vivo cleavage of transgene
donors promotes nuclease-mediated targeted integration.Biotechnology and Bioengineering, 110 (3), 871-880.
https://doi.org/10.1002/bit.24733
Gaidukov, L., Wroblewska, L., Teague, B., Nelson, T., Zhang, X., Liu,
Y., … Weiss, R. (2018). A multi-landing pad DNA integration
platform for mammalian cell engineering. Nucleic Acids Research,
46 (8), 4072-4086. https://doi.org/10.1093/nar/gky216
Grav, L. M., Sergeeva, D., Lee, J. S., Marin de Mas, I., Lewis. N. E.,
Andersen, M. R., … Kildegaard, H. F. (2018). Minimizing Clonal
Variation during Mammalian Cell Line Engineering for Improved Systems
Biology Data Generation. ACS Synthetic Biology, 7 (9), 2148-2159.
https://doi.org/10.1021/acssynbio.8b00140
He, X., Tan, C., Wang, F., Wang, Y., Zhou, R., Cui, D., … Feng,
B. (2016). Knock-in of large reporter genes in human cells via
CRISPR/Cas9-induced homology dependent and independent DNA repair.Nucleic Acids Research, 44 (9), e85.
https://doi.org/10.1093/nar/gkw064
Ho, S. C., Koh, E. Y., van Beers, M., Mueller, M., Wan, C., Teo, G.,
… Yang, Y. (2013). Control of IgG LC:HC ratio in stably
transfected CHO cells and study of the impact on expression,
aggregation, glycosylation and conformational stability. Journal
of Biotechnology, 165 (3-4), 157-166.
https://doi.org/10.1016/j.jbiotec.2013.03.019
Lee, J. S., Grav, L. M., Lewis, N. E., & Faustrup Kildegaard, H.
(2015a). CRISPR/Cas9-mediated genome engineering of CHO cell factories:
Application and perspectives. Biotechnology Journal, 10 (7),
979–994. https://doi.org/10.1002/biot.201500082
Lee J. S., Grav, L. M., Pedersen, L. E., Lee, G. M., & Kildegaard, H.
F. (2016). Accelerated homology-directed targeted integration of
transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and
fluorescent enrichment. Biotechnology and Bioengineering,
113 (11), 2518-2523. https://doi.org/10.1002/bit.26002
Lee, J. S., Kallehauge, T. B., Pedersen, L. E., & Kildegaard, H. F.
(2015b). Site-specific integration in CHO cells mediated by CRISPR/Cas9
and homology-directed DNA repair pathway. Scientific Reports, 5 ,
8572. https://doi.org/10.1038/srep08572
Lee, J. S., Kildegaard, H. F., Lewis, N. E., & Lee, G. M. (2019).
Mitigating Clonal Variation in Recombinant Mammalian Cell Lines.Trends in Biotechnology, 37 (9), 931-942.
https://doi.org/10.1016/j.tibt ech.2019.02.007
Lee, J. S., Park, J. H., Ha, T. K.,
Samoudi, M., Lewis, N. E., Palsson, B. O., … Lee, G. M. (2018).
Revealing Key Determinants of Clonal Variation in Transgene Expression
in Recombinant CHO Cells Using Targeted Genome Editing. ACS
Synthetic Biology, 7 (12), 2867-2878.
https://doi.org/10.1021/acssynbio.8b00290
Pybus, L. P., Dean, G., West, N. R., Smith, A., Daramola, O., Field, R.,
… James, D. C. (2014). Model-directed engineering of
”difficult-to-express” monoclonal antibody production by Chinese hamster
ovary cells. Biotechnology and Bioengineering, 111 (2), 372-385.
https://doi.org/10.1002/bit.25116
Spiess, C., Zhai, Q., & Carter, P. J. (2015). Alternative molecular
formats and therapeutic applications for bispecific antibodies.Molecular Immunology, 67 (2 Pt A), 95-106.
https://doi.org/10.1016/j.molimm.2015.01.003
Walsh, G. (2018). Biopharmaceutical benchmarks 2018. Nature
Biotechnology, 36 (12), 1136-1145. https://doi.org/10.1038/nbt.4305
Yao, X., Wang, X., Hu, X., Liu, Z., Liu, J., … Yang, H. (2017).
Homology-mediated end joining-based targeted integration using
CRISPR/Cas9. Cell Research, 27 (6), 801-814.
https://doi.org/10.1038/cr.2017.76
Zhang, J. P, Li, X. L., Li, G. H., Chen, W., Arakaki, C., Botimer, G.
D., … Zhang, X. B. (2017). Efficient precise knockin with a
double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA
cleavage. Genome Biology, 18 (1), 35.
https://doi.org/10.1186/s13059-017-1164-8
Zhang, L., Inniss, M. C., Han, S., Moffat, M., Jones, H., Zhang, B.,
… Young, R. J. (2015). Recombinase-mediated cassette exchange
(RMCE) for monoclonal antibody expression in the commercially relevant
CHOK1SV cell line. Biotechnology Progress, 31 (6), 1645-1656.
https://doi.org/10.1002/btpr.2175