REFERENCES
Akinosho, H., Dumitrache, A., Natzke, J., Muchero, W., & Ragauskas, A. J. (2017). Effects of Biomass Accessibility and Klason Lignin Contents during Consolidated Bioprocessing in Populus trichocarpa. Acs Sustain Chem, 6 (6).
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76 (5), 965-977. doi:10.1016/j.talanta.2008.05.019
Borchardt, J. (2013). Cloning and functional expression of three xylanase genes from Aspergillus fumigatus in Saccharomyces cerevisiae.Stellenbosch Stellenbosch University .
Bradfield, M. F., Mohagheghi, A., Salvachua, D., Smith, H., Black, B. A., Dowe, N., . . . Nicol, W. (2015). Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuels, 8 , 181. doi:10.1186/s13068-015-0363-3
Chen, K., Han, Z., Miao, Y., Min, J., & Chen, J. (2010). Succinic acid production from enzymatic hydrolysate of sake lees usingActinobacillus succinogenes 130Z. Enzyme Microb Technol, 47 (5), 236-240.
Cui, F., Li, Y., Liu, Z., Zhao, H., Ping, L., Ping, L., . . . Yan, L. (2009). Optimization of fermentation conditions for production of xylanase by a newly isolated strain, Penicillium thiersii ZH-19.World J Microbiol Biotechnol, 25 (4), 721-725.
Dai, Z., Gu, H., Zhang, S., Xin, F., Zhang, W., Dong, W., . . . Jiang, M. (2017). Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae . Bioresour Technol, 245 (Pt B), 1407-1412. doi:10.1016/j.biortech.2017.05.100
Dessie, W., Xin, F., Zhang, W., Jiang, Y., Wu, H., Ma, J., & Jiang, M. (2018). Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes . Appl Microbiol Biotechnol, 102 (23), 9893-9910. doi:10.1007/s00253-018-9379-5
Ganjali Dashti, M., Abdeshahian, P., Wan Yusoff, W. M., Kalil, M. S., & Abdul Hamid, A. (2014). Repeated batch fermentation biotechnology for the biosynthesis of lipid and gamma-linolenic acid byCunninghamella bainieri 2A1. Biomed Res Int, 2014 , 831783. doi:10.1155/2014/831783
Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging Technologies for the Pretreatment of Lignocellulosic Biomass.Bioresour Technol, 262 , S0960852418306229.
Hol, F. J. H., Peter, G., Krisztina, N., Woolthuis, R. G., Cees, D., & Keymer, J. E. (2013). Spatial structure facilitates cooperation in a social dilemma: empirical evidence from a bacterial community.Plos One, 8 (10), e77042.
Hu, S., You, Y., Xia, F., Liu, J., Dai, W., Liu, J., & Wang, Y. (2019). Genome shuffling improved acid-tolerance and succinic acid production ofActinobacillus succinogenes . Food Sci Biotechnol, 28 (3), 817-822. doi:10.1007/s10068-018-0505-z
Hyohak, S., Jeong Wook, L., Sol, C., Jong Kyun, Y., Won Hi, H., & Yup, L. S. (2010). Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production. Biotechnol Bioeng, 98 (6), 1296-1304.
Isar, J., Agarwal, L., Saran, S., Kaushik, R., & Saxena, R. K. (2007). A statistical approach to study the interactive effects of process parameters on succinic acid production from Bacteroides fragilis .Anaerobe, 13 (2), 50-56.
Jiang, Y., Guo, D., Lu, J., Durre, P., Dong, W., Yan, W., . . . Xin, F. (2018). Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5.Biotechnol Biofuels, 11 , 89. doi:10.1186/s13068-018-1092-1
Kim, E. H., You, S.-S., & Kang, J. W. (2017). Effective separation of succinic acid by combined crystallization. Korean J Chem Eng, 35 (1), 204-209. doi:10.1007/s11814-017-0232-9
Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess, 4 (1), 7.
Li, C., Yang, X., Gao, S., Wang, H., & Lin, C. S. K. (2017). High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica .Bioresour Technol, 225 , 9-16. doi:10.1016/j.biortech.2016.11.016
Li, Q., Yang, M., Wang, D., Li, W., Wu, Y., Zhang, Y., . . . Su, Z. (2010). Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes . Bioresour Technol, 101 (9), 3292-3294. doi:10.1016/j.biortech.2009.12.064
Liu, R., Liang, L., Ma, J., Ren, X., Jiang, M., Chen, K., . . . Ouyang, P. (2013). An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem, 48 (11), 1603-1609. doi:10.1016/j.procbio.2013.07.020
Longanesi, L., Frascari, D., Spagni, C., DeWever, H., & Pinelli, D. (2018). Succinic acid production from cheese whey by biofilms of