ADDOR, N., R SSLER, O., K PLIN, N., HUSS, M., WEINGARTNER, R. & SEIBERT, J. 2015. Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 50, 7541-7562. B RDOSSY, A. 2007. Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences Discussions, 11, 703-710. B RDOSSY, A. & SINGH, S. 2008. Robust estimation of hydrological model parameters. Hydrology and Earth System Sciences, 12, 1273-1283. BENNETT, K. E., URREGO BLANCO, J. R., JONKO, A., BOHN, T. J., ATCHLEY, A., URBAN, N. M. & MIDDLETON, R. 2018. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin. Water Resources Research,54. BOSSHARD, T., CARAMBIA, M., GOERGEN, K., KOTLARSKI, S., KRAHE, P., ZAPPA, M. & SCH R, C. 2013. Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resources Research, 49, 1523-1536. CAMPOLONGO, F., CARIBONI, J. & SALTELLI, A. 2007. An effective screening design for sensitivity analysis of large models. Environmental Modelling & Software,22, 1509-1518. CHEN, X., MOLINA-CRIST BAL, A., GUENOV, M. D. & RIAZ, A. 2019. Efficient method for variance-based sensitivity analysis. Reliability Engineering & System Safety,181, 97-115. CIBIN, R., SUDHEER, K. P. & CHAUBEY, I. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes,24, 1133-1148. FAN, Y. R., HUANG, G. H., BAETZ, B. W., LI, Y. P. & HUANG, K. 2017. Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resources Research, 53, 4850-4875. FAN, Y. R., HUANG, G. H., BAETZ, B. W., LI, Y. P., HUANG, K., LI, Z., CHEN, X. & XIONG, L. H. 2016. Parameter uncertainty and temporal dynamics of sensitivity for hydrologic models: A hybrid sequential data assimilation and probabilistic collocation method. Environmental Modelling & Software, 86, 30-49. FREER, J., BEVEN, K. & AMBROISE, B. 1996. Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach. Water Resources Research, 32, 2161-2173. G TZINGER, J. & B RDOSSY, A. 2008. Generic error model for calibration and uncertainty estimation of hydrological models. Water Resources Research, 44. GAMERITH, V., NEUMANN, M. B. & MUSCHALLA, D. 2013. Applying global sensitivity analysis to the modelling of flow and water quality in sewers. Water Res,47, 4600-11. GIUNTOLI, I., VIDAL, J. P., PRUDHOMME, C. & HANNAH, D. M. 2015. Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models.Earth System Dynamics,6,1(2015-05-18), 6, 267-285. HAMBY, D. M. 1995. A comparison of sensitivity analysis techniques. Health Physics, 68,195-204. HEIDELBERGER, P. & WELCH, P. D. 1983. Simulation run length control in the presence of an initial transient. Operations Research, 31, 1109-1144. HERMAN, J. D., KOLLAT, J. B., REED, P. M. & WAGENER, T. 2013. Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrology and Earth System Sciences, 17, 2893-2903. HU, Y., GARCIA-CABREJO, O., CAI, X., VALOCCHI, A. J. & DUPONT, B. 2015. Global sensitivity analysis for large-scale socio-hydrological models using Hadoop. Environmental Modelling & Software, 73, 231-243. JIN, X., XU, C.-Y., ZHANG, Q. & SINGH, V. P. 2010. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model.Journal of Hydrology, 383, 147-155. KELLY, R. A., JAKEMAN, A. J., BARRETEAU, O., BORSUK, M. E., ELSAWAH, S., HAMILTON, S. H., HENRIKSEN, H. J., KUIKKA, S., MAIER, H. R. & RIZZOLI, A. E. 2013. Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental modelling & software, 47,159-181. KHORASHADI ZADEH, F., NOSSENT, J., SARRAZIN, F., PIANOSI, F., VAN GRIENSVEN, A., WAGENER, T. & BAUWENS, W. 2017. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model.Environmental Modelling & Software, 91, 210-222. LEGATES, D. R. & JR, M. C. 1999. Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation. Water Resources Research,35, 233-241. LIU, Y., LI, Y. P., HUANG, G. H., ZHANG, J. L. & FAN, Y. R. 2017. A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model. Journal of Hydrology, 553, 750-762. LOOSVELT, L., VERNIEUWE, H., PAUWELS, V. R. N., DE BAETS, B. & VERHOEST, N. E. C. 2013. Local sensitivity analysis for compositional data with application to soil texture in hydrologic modelling. Hydrology and Earth System Sciences,17, 461-478. MA, M., REN, L., SINGH, V. P., YUAN, F., CHEN, L., YANG, X. & LIU, Y. 2016. Hydrologic model-based Palmer indices for drought characterization in the Yellow River basin, China.Stochastic Environmental Research & Risk Assessment,30, 1-20. MORRIS, M. D. 1991. Factorial Sampling Plans for Preliminary Computational Experiments.Technometrics, 33, 161-174. NASH, J. E. & SUTCLIFFE, J. V. 1970. River flow forecasting through conceptual models part I — A discussion of principles ☆. Journal of Hydrology, 10, 282-290. NOSSENT, J., ELSEN, P. & BAUWENS, W. 2011. Sobol’sensitivity analysis of a complex environmental model.Environmental Modelling & Software, 26, 1515-1525. OUDIN, L., PERRIN, C., MATHEVET, T., ANDR ASSIAN, V. & MICHEL, C. 2006. Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models. Journal of Hydrology, 320, 62-83. PERRIN, C., MICHEL, C. & ANDR ASSIAN, V. 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279, 275-289. PIANOSI, F., BEVEN, K., FREER, J., HALL, J. W., ROUGIER, J., STEPHENSON, D. B. & WAGENER, T. 2016. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software,79, 214-232. QI, W., ZHANG, C., FU, G., SWEETAPPLE, C. & ZHOU, H. 2016a. Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations. Hydrology and Earth System Sciences,20, 903-920. QI, W., ZHANG, C., FU, G. & ZHOU, H. 2016b. Imprecise probabilistic estimation of design floods with epistemic uncertainties. Water Resources Research, 52. QI, W., ZHANG, C., FU, G. & ZHOU, H. 2016c. Quantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibration. Journal of Hydrology, 533, 213-223. REFSGAARD, J. C. & STORM, B. 1990.Construction, Calibration And Validation of Hydrological Models , Springer Netherlands. REUSSER, D. E., BUYTAERT, W. & ZEHE, E. 2011. Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test. Water Resources Research, 47. SALTELLI, A., ALEKSANKINA, K., BECKER, W., FENNELL, P., FERRETTI, F., HOLST, N., LI, S. & WU, Q. 2019. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software, 114, 29-39. SALTELLI, A., ANNONI, P., AZZINI, I., CAMPOLONGO, F., RATTO, M. & TARANTOLA, S. 2010. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181,259-270. SALTELLI, A., RATTO, M., ANDRES, T., CAMPOLONGO, F., CARIBONI, J., GATELLI, D., SAISANA, M. & TARANTOLA, S. 2008. Global Sensitivity Analysis: the Primer. . In: JOHN WILEY & SONS LTD (ed.). The Atrium, Southern Gate, Chichester. SALTELLI, A., RATTO, M., ANDRES, T., CAMPOLONGO, F., CARIBONI, J., GATELLI, D., SAISANA, M. & TARANTOLA, S. 2008. Global Sensitivity Analysis: the Primer, Chichester. SHIN, M.-J., GUILLAUME, J. H. A., CROKE, B. F. W. & JAKEMAN, A. J. 2013. Addressing ten questions about conceptual rainfall–runoff models with global sensitivity analyses in R. Journal of Hydrology, 503, 135-152. SOBOL’, I. Y. M. 1990. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe modelirovanie, 2, 112-118. SOBOL’, B. I. M. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computational Experiment, 2010. SONG, X., ZHANG, J., ZHAN, C., XUAN, Y., YE, M. & XU, C. 2015. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. Journal of Hydrology, 523, 739-757. TANG, T., REED, P., WAGENER, T. & VAN WERKHOVEN, K. 2006. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation.Hydrology and Earth System Sciences Discussions, 3,3333-3395. TANG, Y., REED, P., WAGENER, T. & VAN, W. K. 2007. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences,11,2(2007-02-05), 3, 793-817. TANG, Y., REED, P. M., WAGENER, T. & VAN WERKHOVEN, K. Comparison of Parameter Sensitivity Analysis Methods for Lumped Watershed Model. World Environmental and Water Resources Congress 2008: Ahupua’A, 2008. 1-8. TAO, Z., GAO, Q., WANG, Z., ZHANG, S., XIE, C., LIN, P., RUAN, X., LI, S. & MAO, H. 2011. Estimation of carbon sinks in chemical weathering in a humid subtropical mountainous basin. Chinese Science Bulletin, 56, 3774-3782. TIAN, W. 2013. A review of sensitivity analysis methods in building energy analysis.Renewable and sustainable energy reviews, 20, 411-419. VAN GRIENSVEN, A., MEIXNER, T., GRUNWALD, S., BISHOP, T., DILUZIO, M. & SRINIVASAN, R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of hydrology, 324, 10-23. VEGA, M., PARDO, R., BARRADO, E. & DEB N, L. 1998. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581-3592. VRUGT, J. A. 2016. Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environmental Modelling & Software,75, 273-316. WANG, J., LI, X., LU, L. & FANG, F. 2013. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environmental modelling & software, 48, 171-182. WANG, S., ANCELL, B. C., HUANG, G. H. & BAETZ, B. W. 2018. Improving Robustness of Hydrologic Ensemble Predictions Through Probabilistic Pre‐ and Postprocessing in Sequential Data Assimilation. Water Resources Research . ZHAN, C.-S., SONG, X.-M., XIA, J. & TONG, C. 2013. An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environmental Modelling & Software, 41, 39-52. ZHANG, C., CHU, J. & FU, G. 2013. Sobol’s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China. Journal of Hydrology, 480,58-68. ZHANG, J., LI, Y., HUANG, G., CHEN, X. & BAO, A. 2016. Assessment of parameter uncertainty in hydrological model using a Markov-Chain-Monte-Carlo-based multilevel-factorial-analysis method. Journal of Hydrology,538, 471-486.