References
ABEM, A. (2012). Terrameter LS Instruction Manual.
ANA - Nacional Agency of Water. (2017). Usos da Água. In: Relatório
Conjuntura Brasil - Recursos Hídricos. Agência Nacional de
Águas-Ministério do Meio Ambiente (MMA),
Brasilia (DF). 51- 86.
Anache, J. A., Flanagan, D. C., Srivastava, A., & Wendland, E. C.
(2018). Land use and climate change impacts on runoff and soil erosion
at the hillslope scale in the Brazilian Cerrado. Science of the
Total Environment , 622, 140-151.
ANDERSON, Karen; GASTON, Kevin J. Lightweight unmanned aerial vehicles
will revolutionize spatial ecology. Frontiers in Ecology and the
Environment, v. 11, n. 3, p. 138-146, 2013.
Antonellini, M., Giambastiani, B.M.S., Greggio, N., Bonzi, L.,
Calabrese, L., Luciani, P., Perini, L., Severi, PP., 2019. Processes
governing natural land subsidence in the shallow coastal aquifer of the
Ravenna coast, Italy. Catena 172, 76–86.
Appels, W.M., Graham, C.B., Freer, J.E., McDonnell, J.J. (2015). Factors
affecting the spatial pattern of bedrock groundwater recharge at the
hillslope scale. Hydrological
Processes , 29, 4594–4610.
Brannen, R., Spence, C., & Ireson, A. (2015). Influence of shallow
groundwater–surface water interactions on the hydrological connectivity
and water budget of a wetland complex. Hydrological Processes ,
29(18), 3862-3877.
Carrara, E., Pece, R., & Roberti, N. (1994). Geoelectrical and seismic
prospections in hydrogeology: model and master curves for the evaluation
of porosity and water saturation. Pure and Applied Geophysics ,
143(4), 729-751.
Carrazza, L. P., Moreira, C. A., & Helene, L. P. I. (2016). Gully
cavity identification through electrical resistivity tomography.Revista Brasileira de Geofísica , 34(2), 241- 250.
Chandra, S., Ahmed, S., Ram, A., & Dewandel, B. (2008). Estimation of
hard rockaquifers hydraulic conductivity from geoelectrical
measurements: a theoretical development with field application.Journal of Hydrology , 357(3-4), 218-227.
Chukwudi, C. E. (2011). Geoelectrical studies for estimating aquifer
hydraulic properties in Enugu State, Nigeria. International
Journal of Physical Sciences , 6(14), 3319-3329.
deGroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to
generate smooth, two- dimensional models from magnetotelluric
data. Geophysics , 55(12), 1613-1624.
d’Oleire-Oltmanns, S., Marzolff, I., Peter, K. D., & Ries, J. B.
(2012). Unmanned aerial vehicle (UAV) for monitoring soil erosion in
Morocco. Remote Sensing , 4(11), 3390-3416.
Evans, C.V., Freeland, J.A., 2000. Wetland soils of basins and
depressions of glacial terrains. In: Richardson, J.L., Vepraskas, M.J.
(Eds.), Wetland Soils: Their Genesis, Morphology, Hydrology,
Landscapes, and Classification . CRC Press, Boca Raton, FL, pp.
251–266.
FAO – Food and Agriculture Organization of the United Nations. (2016).
AQUASTAT website, Land and Water Division. Website accessed on
2018/12/10.
Fernandes, L. A., & Ribeiro, C. M. M. (2015). Evolution and
palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil).Journal of South American Earth Sciences , 61,
71-90.
Freer, J., McDonnell, J. J., Beven, K. J., Peters, N. E., Burns, D. A.,
Hooper, R. P., Kendall, C. (2002). The role of bedrock topography on
subsurface storm flow. Water Resources Research , 38(12), 5-1.
Greer, B.M., Burbey, T.J., Zipper, C.E., Hester, E.T. (2017). Electrical
resistivity imaging of hydrologic flow through surface coal mine valley
fills with comparison to other landforms. Hydrological Processes ,
31:2244–2260.
Geotomo Software. (2003). Res2Dinv (v.3.54) for 98/ME/2000/ NT/XP.
Geoelectrical Imaging 2D and 3D.
Griffiths, D. H., & Barker, R. D. (1993). Two-dimensional resistivity
imaging and modelling in areas of complex geology. Journal of
Applied Geophysics , 29(3-4), 211-226.
Haque, A., Ali, G., & Badiou, P. (2018). Hydrological dynamics of
prairie pothole wetlands: Dominant processes and landscape controls
under contrasted conditions. Hydrological Processes , 32(15),
2405-2422.
Harman, C. J., & Kim, M. (2019). A low‐dimensional model of bedrock
weathering and lateral flow coevolution in hillslopes: 1. Hydraulic
theory of reactive transport. Hydrological Processes , 33,
466–475.
Helaly, A. S. (2017). Assessment of groundwater potentiality using
geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt–Case
stuldy. NRIAG Journal of Astronomy and Geophysics, 6(2), 408-421.
Helene, L. P. I., Moreira, C. A., & Carrazza, L. P. (2016). Applied
geophysics on a soil contaminated site by chromium of a tannery in
Motuca (SP). Brazilian Journal of Geophysics , 34 (3),
309-317.
Junk, W. J., Piedade, M. T. F., Lourival, R., Wittmann, F., Kandus, P.,
Lacerda, L. D., .& Schöngart, J. (2013). Brazilian wetlands: their
definition, delineation, and classification for research, sustainable
management, and protection. Aquatic Conservation: Marine and
Freshwater Ecosystems, 24(1), 5-22.
Kearey, P., Brooks, M., & Hill, I. (1991). An introduction to
geophysical exploration. John Wiley & Sons.
Kelly, W. E. (1977). Geoelectric sounding for estimating aquifer
hydraulic conductivity. Groundwater , 15(6), 420-425.
Kelly, W. E., & Frohlich, R. K. (1985). Relations between aquifer
electrical and hydraulic properties. Groundwater, 23(2), 182-189.
Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in
geophysical prospecting. Pergamon Press, Inc.
LEJOT, Jérôme et al. Very high spatial resolution imagery for channel
bathymetry and topography from an unmanned mapping controlled
platform. Earth Surface Processes and Landforms: The Journal of
the British Geomorphological Research Group, v. 32, n. 11, p.
1705-1725, 2007.
Lin, H. (2012). Understanding soil architecture and its functional
manifestation across scales. In Lin, H. (Ed.), Hydropedology:
Synergistic Integration of Soil Science and Hydrology Hydropedology(pp. 41-74), Walthan:MA, Academic Press.
Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of
apparent resistivity pseudosections. In 56th EAEG Meeting.
Loke, M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys.
Lucas, Y., Chauvel, A., 1992. Soil formation in tropically weathered
terrains. In: Butt, C.R.M., Zeegers, H. (Eds.), Handbook on Exploration
Geochemistry, Regolith Exploration Geochemistry in Tropical and
Subtropical Terrains. Elsevier , Amsterdan, pp. 57–77.
Luo, W., Xu, X., Liu, W., Liu, M., Li, Z., Peng, T., … & Zhang, R.
(2019). UAV based soil moisture remote sensing in a karst mountainous
catchment. Catena, 174, 478-489.
Madden, M., Jordan, T., Bernardes, S., Cotten, D. L., O’Hare, N., &
Pasqua, A. (2015). Unmanned Aerial Systems and Structure from Motion
Revolutionize Wetlands Mapping. Remote sensing of wetlands:
Applications and advances , 195.
Matsuoka, M. T., de Azambuja, J. L. F., de Souza, S. F., & Veronez, M.
R. (2009). Potencialidades do serviço on-line de Posicionamento por
Ponto Preciso (CSRS-PPP) em aplicações geodésicas. Gaea-Journal of
Geoscience , 5(1), 42-48.
McLachlan, P.J., Chambers, J.E., Uhlemann, S.S., Binley, A. (2018).
Geophysical characterisation of the groundwater–surface water
interface. Advances in Water Resources 109, 302–319.
Millington, N. (2018). Producing water scarcity in São Paulo, Brazil:
The 2014-2015 water crisis and the binding politics of infrastructure.Political Geography , 65, 26-34.
Moore, I.D., Grayson, R.B., Ladson, A.R., 1991. Digital terrain
modelling: a review of hydrological, geomorphological, and biological
applications. Hydrol. Process. 5, 3–30.
Moreira, C. A., Lopes, S. M., Schweig, C., & da Rosa Seixas, A. (2012).
Geoelectrical prospection of disseminated sulfide mineral occurrences in
Camaquã sedimentary basin, Rio Grande do Sul state,
Brazil. Brazilian Journal of Geophysics , 30 (2).
Moreira, C. A., Cavalheiro, M. L. D., Pereira, A. M., & Sardinha, D. D.
S. (2013). Análise das relações entre parâmetros geolétricos e vazões
para o aquífero livre de Caçapava do Sul-RS. Águas Subterrâneas ,
45-59.
Moreira, C. A., Reis, S. S., Malagutti Filho, W., & Hansen, M. A. F.
(2016). Geoelectric modeling of supergenic manganese ocurrence in
heliodora region, Southern Minas Gerais. Brazilian Journal of
Geophysics , 34 (3), 299-308.
Moreira, C. A., Borsatto, K., Ilha, L. M., Santos, S. F. D., & Rosa, F.
T. G. (2016). Geophysical modeling in gold deposit through DC
Resistivity and Induced Polarization methods. REM - International
Engineering Journal , 69(3), 293-299.
Moreira, C. A., Carrara, A., Helene, L. P. I., Hansen, M. A., Malagutti
Filho, W., & Dourado, J. C. (2017). Electrical resistivity tomography
(ERT) applied in the detection of inorganic contaminants in suspended
aquifer in Leme city (Brazil). Brazilian Journal of
Geophysics , 35 (3), 213-225.
Moreira, C. A., Paes, R. A. S., Ilha, L. M., & da Cruz Bittencourt, J.
(2018). Reassessment of Copper Mineral Occurrence Through Electrical
Tomography and Pseudo 3D Modeling in Camaquã Sedimentary Basin, Southern
Brazil. Pure and Applied Geophysics , 1-14.
Rodriguez, R. D. G., Scanlon, B. R., King, C. W., Scarpare, F. V.,
Xavier, A. C., & Pruski, F. F. (2018). Biofuel-water-land nexus in the
last agricultural frontier region of the Brazilian Cerrado.Applied Energy , 231, 1330-1345.
Rosolen, V., de Oliveira, D. A., & Bueno, G. T. (2015). Vereda and
Murundu wetlands and changes in Brazilian environmental laws: challenges
to conservation. Wetlands Ecology and Management, 23(2), 285-292.
Rosolen, V., Bueno, G. T., Mutema, M., Moreira, C. A., Junior, I. R. F.,
Nogueira, G., & Chaplot, V. (2019). On the link between soil
hydromorphy and geomorphological development in the Cerrado (Brazil)
wetlands. Catena , 176, 197-208.
Telford, W. M., Telford, W. M., Geldart, L. P., Sheriff, R. E., &
Sheriff, R. E. (2004). Applied geophysics. Cambridge university press.
Tardy, Y., 1993. Pètrologie des laterites et des sols tropicaux. Masson,
Paris.
Urish, D. W. (1981). Electrical resistivity—hydraulic conductivity
relationships in glacial outwash aquifers. Water Resources
Research , 17(5), 1401-1408.
van der Kamp, G., & Hayashi, M. (2009). Groundwater-wetland ecosystem
interaction in the semiarid glaciated plains of North America.Hydrogeology Journal , 17(1), 203-214.
Vepraskas, M.J., Lindbo, D.L., 2012. Redoximorphic features as related
to soil hydrology and hydric soils. In: Lin, H. (Ed.),Hydropedology: Synergistic Integration of Soil Science and
Hydrology. Academic Press, USA, pp. 143–172.
Verones, F., Bartl, K., Pfister, S., Jiménez Vílchez, R., & Hellweg, S.
(2012). Modeling the local biodiversity impacts of agricultural water
use: case study of a wetland in the coastal arid area of Peru.
Environmental science & technology , 46(9), 4966-4974.
Vieira, L. B., Moreira, C. A., Côrtes, A. R., & Luvizotto, G. L.
(2016). Geophysical modeling of the manganese deposit for Induced
Polarization method in Itapira (Brazil). Geofísica Internacional,55(2), 107-117.
Watts Adam C.; Ambrosia, Vincent G.; Hinkley, Everett A. Unmanned
aircraft systems in remote sensing and scientific research:
Classification and considerations of use. Remote Sensing, v. 4,
n. 6, p. 1671-1692, 2012.
Wester, S. J., Grimson, R., Minotti, P. G., Booij, M. J., & Brugnach,
M. (2018). Hydrodynamic modelling of a tidal delta wetland using an
enhanced quasi-2D model. Journal of hydrology , 559 ,
315-326.
Zhang, G., Zhang, G. B., Chen, C. C., Chang, P. Y., Wang, T. P., Yen, H.
Y., … & Jia, Z. Y. (2016). Imaging rainfall infiltration processes
with the time-lapse electrical resistivity imaging method. Pure and
Applied Geophysics, 173(6), 2227-2239.