References
ABEM, A. (2012). Terrameter LS Instruction Manual.
ANA - Nacional Agency of Water. (2017). Usos da Água. In: Relatório Conjuntura Brasil - Recursos Hídricos. Agência Nacional de Águas-Ministério do Meio Ambiente (MMA),
Brasilia (DF). 51- 86.
Anache, J. A., Flanagan, D. C., Srivastava, A., & Wendland, E. C. (2018). Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Science of the Total Environment , 622, 140-151.
ANDERSON, Karen; GASTON, Kevin J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, v. 11, n. 3, p. 138-146, 2013.
Antonellini, M., Giambastiani, B.M.S., Greggio, N., Bonzi, L., Calabrese, L., Luciani, P., Perini, L., Severi, PP., 2019. Processes governing natural land subsidence in the shallow coastal aquifer of the Ravenna coast, Italy. Catena 172, 76–86.
Appels, W.M., Graham, C.B., Freer, J.E., McDonnell, J.J. (2015). Factors affecting the spatial pattern of bedrock groundwater recharge at the hillslope scale. Hydrological
Processes , 29, 4594–4610.
Brannen, R., Spence, C., & Ireson, A. (2015). Influence of shallow groundwater–surface water interactions on the hydrological connectivity and water budget of a wetland complex. Hydrological Processes , 29(18), 3862-3877.
Carrara, E., Pece, R., & Roberti, N. (1994). Geoelectrical and seismic prospections in hydrogeology: model and master curves for the evaluation of porosity and water saturation. Pure and Applied Geophysics , 143(4), 729-751.
Carrazza, L. P., Moreira, C. A., & Helene, L. P. I. (2016). Gully cavity identification through electrical resistivity tomography.Revista Brasileira de Geofísica , 34(2), 241- 250.
Chandra, S., Ahmed, S., Ram, A., & Dewandel, B. (2008). Estimation of hard rockaquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application.Journal of Hydrology , 357(3-4), 218-227.
Chukwudi, C. E. (2011). Geoelectrical studies for estimating aquifer hydraulic properties in Enugu State, Nigeria. International Journal of Physical Sciences , 6(14), 3319-3329.
deGroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two- dimensional models from magnetotelluric data. Geophysics , 55(12), 1613-1624.
d’Oleire-Oltmanns, S., Marzolff, I., Peter, K. D., & Ries, J. B. (2012). Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sensing , 4(11), 3390-3416.
Evans, C.V., Freeland, J.A., 2000. Wetland soils of basins and depressions of glacial terrains. In: Richardson, J.L., Vepraskas, M.J. (Eds.), Wetland Soils: Their Genesis, Morphology, Hydrology, Landscapes, and Classification . CRC Press, Boca Raton, FL, pp. 251–266.
FAO – Food and Agriculture Organization of the United Nations. (2016). AQUASTAT website, Land and Water Division. Website accessed on 2018/12/10.
Fernandes, L. A., & Ribeiro, C. M. M. (2015). Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil).Journal of South American Earth Sciences , 61,
71-90.
Freer, J., McDonnell, J. J., Beven, K. J., Peters, N. E., Burns, D. A., Hooper, R. P., Kendall, C. (2002). The role of bedrock topography on subsurface storm flow. Water Resources Research , 38(12), 5-1.
Greer, B.M., Burbey, T.J., Zipper, C.E., Hester, E.T. (2017). Electrical resistivity imaging of hydrologic flow through surface coal mine valley fills with comparison to other landforms. Hydrological Processes , 31:2244–2260.
Geotomo Software. (2003). Res2Dinv (v.3.54) for 98/ME/2000/ NT/XP. Geoelectrical Imaging 2D and 3D.
Griffiths, D. H., & Barker, R. D. (1993). Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics , 29(3-4), 211-226.
Haque, A., Ali, G., & Badiou, P. (2018). Hydrological dynamics of prairie pothole wetlands: Dominant processes and landscape controls under contrasted conditions. Hydrological Processes , 32(15), 2405-2422.
Harman, C. J., & Kim, M. (2019). A low‐dimensional model of bedrock weathering and lateral flow coevolution in hillslopes: 1. Hydraulic theory of reactive transport. Hydrological Processes , 33, 466–475.
Helaly, A. S. (2017). Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt–Case stuldy. NRIAG Journal of Astronomy and Geophysics, 6(2), 408-421.
Helene, L. P. I., Moreira, C. A., & Carrazza, L. P. (2016). Applied geophysics on a soil contaminated site by chromium of a tannery in Motuca (SP). Brazilian Journal of Geophysics34 (3), 309-317.
Junk, W. J., Piedade, M. T. F., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L. D., .& Schöngart, J. (2013). Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems, 24(1), 5-22.
Kearey, P., Brooks, M., & Hill, I. (1991). An introduction to geophysical exploration. John Wiley & Sons.
Kelly, W. E. (1977). Geoelectric sounding for estimating aquifer hydraulic conductivity. Groundwater , 15(6), 420-425.
Kelly, W. E., & Frohlich, R. K. (1985). Relations between aquifer electrical and hydraulic properties. Groundwater, 23(2), 182-189.
Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting. Pergamon Press, Inc.
LEJOT, Jérôme et al. Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, v. 32, n. 11, p. 1705-1725, 2007.
Lin, H. (2012). Understanding soil architecture and its functional manifestation across scales. In Lin, H. (Ed.), Hydropedology: Synergistic Integration of Soil Science and Hydrology Hydropedology(pp. 41-74), Walthan:MA, Academic Press.
Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections. In 56th EAEG Meeting.
Loke, M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys.
Lucas, Y., Chauvel, A., 1992. Soil formation in tropically weathered terrains. In: Butt, C.R.M., Zeegers, H. (Eds.), Handbook on Exploration Geochemistry, Regolith Exploration Geochemistry in Tropical and Subtropical Terrains. Elsevier , Amsterdan, pp. 57–77.
Luo, W., Xu, X., Liu, W., Liu, M., Li, Z., Peng, T., … & Zhang, R. (2019). UAV based soil moisture remote sensing in a karst mountainous catchment. Catena, 174, 478-489.
Madden, M., Jordan, T., Bernardes, S., Cotten, D. L., O’Hare, N., & Pasqua, A. (2015). Unmanned Aerial Systems and Structure from Motion Revolutionize Wetlands Mapping. Remote sensing of wetlands: Applications and advances , 195.
Matsuoka, M. T., de Azambuja, J. L. F., de Souza, S. F., & Veronez, M. R. (2009). Potencialidades do serviço on-line de Posicionamento por Ponto Preciso (CSRS-PPP) em aplicações geodésicas. Gaea-Journal of Geoscience , 5(1), 42-48.
McLachlan, P.J., Chambers, J.E., Uhlemann, S.S., Binley, A. (2018). Geophysical characterisation of the groundwater–surface water interface. Advances in Water Resources 109, 302–319.
Millington, N. (2018). Producing water scarcity in São Paulo, Brazil: The 2014-2015 water crisis and the binding politics of infrastructure.Political Geography , 65, 26-34.
Moore, I.D., Grayson, R.B., Ladson, A.R., 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol. Process. 5, 3–30.
Moreira, C. A., Lopes, S. M., Schweig, C., & da Rosa Seixas, A. (2012). Geoelectrical prospection of disseminated sulfide mineral occurrences in Camaquã sedimentary basin, Rio Grande do Sul state, Brazil. Brazilian Journal of Geophysics30 (2).
Moreira, C. A., Cavalheiro, M. L. D., Pereira, A. M., & Sardinha, D. D. S. (2013). Análise das relações entre parâmetros geolétricos e vazões para o aquífero livre de Caçapava do Sul-RS. Águas Subterrâneas , 45-59.
Moreira, C. A., Reis, S. S., Malagutti Filho, W., & Hansen, M. A. F. (2016). Geoelectric modeling of supergenic manganese ocurrence in heliodora region, Southern Minas Gerais. Brazilian Journal of Geophysics34 (3), 299-308.
Moreira, C. A., Borsatto, K., Ilha, L. M., Santos, S. F. D., & Rosa, F. T. G. (2016). Geophysical modeling in gold deposit through DC Resistivity and Induced Polarization methods. REM - International Engineering Journal , 69(3), 293-299.
Moreira, C. A., Carrara, A., Helene, L. P. I., Hansen, M. A., Malagutti Filho, W., & Dourado, J. C. (2017). Electrical resistivity tomography (ERT) applied in the detection of inorganic contaminants in suspended aquifer in Leme city (Brazil). Brazilian Journal of Geophysics35 (3), 213-225.
Moreira, C. A., Paes, R. A. S., Ilha, L. M., & da Cruz Bittencourt, J. (2018). Reassessment of Copper Mineral Occurrence Through Electrical Tomography and Pseudo 3D Modeling in Camaquã Sedimentary Basin, Southern Brazil. Pure and Applied Geophysics , 1-14.
Rodriguez, R. D. G., Scanlon, B. R., King, C. W., Scarpare, F. V., Xavier, A. C., & Pruski, F. F. (2018). Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado.Applied Energy , 231, 1330-1345.
Rosolen, V., de Oliveira, D. A., & Bueno, G. T. (2015). Vereda and Murundu wetlands and changes in Brazilian environmental laws: challenges to conservation. Wetlands Ecology and Management, 23(2), 285-292.
Rosolen, V., Bueno, G. T., Mutema, M., Moreira, C. A., Junior, I. R. F., Nogueira, G., & Chaplot, V. (2019). On the link between soil hydromorphy and geomorphological development in the Cerrado (Brazil) wetlands. Catena , 176, 197-208.
Telford, W. M., Telford, W. M., Geldart, L. P., Sheriff, R. E., & Sheriff, R. E. (2004). Applied geophysics. Cambridge university press.
Tardy, Y., 1993. Pètrologie des laterites et des sols tropicaux. Masson, Paris.
Urish, D. W. (1981). Electrical resistivity—hydraulic conductivity relationships in glacial outwash aquifers. Water Resources Research , 17(5), 1401-1408.
van der Kamp, G., & Hayashi, M. (2009). Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America.Hydrogeology Journal , 17(1), 203-214.
Vepraskas, M.J., Lindbo, D.L., 2012. Redoximorphic features as related to soil hydrology and hydric soils. In: Lin, H. (Ed.),Hydropedology: Synergistic Integration of Soil Science and Hydrology. Academic Press, USA, pp. 143–172.
Verones, F., Bartl, K., Pfister, S., Jiménez Vílchez, R., & Hellweg, S. (2012). Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru. Environmental science & technology , 46(9), 4966-4974.
Vieira, L. B., Moreira, C. A., Côrtes, A. R., & Luvizotto, G. L. (2016). Geophysical modeling of the manganese deposit for Induced Polarization method in Itapira (Brazil). Geofísica Internacional,55(2), 107-117.
Watts Adam C.; Ambrosia, Vincent G.; Hinkley, Everett A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, v. 4, n. 6, p. 1671-1692, 2012.
Wester, S. J., Grimson, R., Minotti, P. G., Booij, M. J., & Brugnach, M. (2018). Hydrodynamic modelling of a tidal delta wetland using an enhanced quasi-2D model. Journal of hydrology559 , 315-326.
Zhang, G., Zhang, G. B., Chen, C. C., Chang, P. Y., Wang, T. P., Yen, H. Y., … & Jia, Z. Y. (2016). Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method. Pure and Applied Geophysics, 173(6), 2227-2239.