References
Aghaie, E., Pazouki, M., Hosseini, M. R., Ranjbar, M., & Ghavipanjeh,
F. (2009). Response surface methodology (RSM) analysis of organic acid
production for Kaolin beneficiation by Aspergillus niger. Chemical
Engineering Journal, 147 (2-3), 245-251.
Azevedo, D. L. L., Santos, D. R. H., Vieira, d. Q. M., Gomes, F. L., &
Batista, d. S. W. (2018). Screening of Yeasts Isolated from Brazilian
Environments for the 2-Phenylethanol (2-PE) Production.Biotechnology & Bioprocess Engineering, 23 (3), 326-332.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., &
Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool
for optimization in analytical chemistry. Talanta, 76 (5), 0-977.
Cárdenas-Fernández, M., López, C., álvaro, G., & López-Santín, J.
(2012). l-Phenylalanine synthesis catalyzed by immobilized aspartate
aminotransferase. Biochemical Engineering Journal, 63 (none),
15-21.
Diniz, R. H. S., Rodrigues, M. Q. R. B., Fietto, L. G., Passos, F. M.
L., & Silveira, W. B. (2013). Optimizing and validating the production
of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3.Biocatalysis and Agricultural Biotechnology, 3 (2), 111-117.
Eshkol, N., Sendovski, M., Bahalul, M., Kashi, Y., & Fishman, A.
(2015). Production of 2-phenylethanol from L-phenylalanine by a stress
tolerant Saccharomyces cerevisiae strain. Chemical Engineering
Journal, 259 (45), 795–805.
Etschmann, M., Bluemke, W., Sell, D., & Schrader, J. (2002).
Biotechnological production of 2-phenylethanol. Applied
Microbiology & Biotechnology, 59 (1), 1-8.
Feng, L., Wang, M., Wang, J., Zang, S., Xia, W., & Sheng, L. (2015).
Isolation of 2-phenylethanol biosynthesis related genes and their
relationship with 2-phenylethanol accumulation in Rosa rugosa.Acta Physiologiae Plantarum, 37 (12), 256.
Ferreira, P. G., da Silveira, F. A., Vieira dos Santos, R. C., Andre
Genier, H. L., Santos Diniz, R. H., Ribeiro Junior, J. I., . . . da
Silveira, W. B. (2015). Optimizing ethanol production by thermotolerant
Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and
ricotta whey. Food Science and Biotechnology, 24 (4), 1421-1427.
Hua, D., & Xu, P. (2011). Recent advances in biotechnological
production of 2-phenylethanol. BIotechnology Advances, 29 (6),
654-660.
Huang, C. J., Lee, S.-L., & Chou, C.-C. (2001). Production of
2-phenylethanol, a flavor ingredient, by Pichia fermentans L-5 under
various culture conditions. Food Research International, 34 (4),
0-282.
Isar, J., Agarwal, L., Saran, S., & Saxena, R. K. (2006). A statistical
method for enhancing the production of succinic acid from Escherichia
coli under anaerobic conditions. Bioresource Technology, 97 (13),
1443-1448.
Karolina, C., Katarzyna, S. M., Daria, K. P., & Jolanta, M. (2017).
Screening of yeasts for the production of 2-phenylethanol (rose aroma)
in organic waste-based media. Letters in Applied Microbiology .
Kim, B., Cho, B.-R., & Hahn, J.-S. (2014). Metabolic engineering of
Saccharomyces cerevisiae for the production of 2-phenylethanol via
Ehrlich pathway. Biotechnology and Bioengineering, 111 (1),
115-124.
Livak, K., & Schmittgen, T. (2000). Analysis of Relative Gene
Expression Data Using Real-Time Quantitative PCR and the 2-△△Ct Method.Methods, 25 (4).
Masuo, S., Osada, L., Zhou, S., Fujita, T., & Takaya, N. (2015).
Aspergillus oryzae pathways that convert phenylalanine into the flavor
volatile 2-phenylethanol. Fungal Genetics and Biology, 77 , 22-30.
Mu, L., Hu, X., Liu, X., Zhao, Y., & Xu, Y. (2014). PRODUCTION OF
2-PHENYLETHANOL BY MICROBIAL MIXED CULTURES ALLOWS RESOURCE RECOVERY OF
CANE MOLASSES WASTEWATER. Fresenius Environmental Bulletin,
23 (6), 1356-1365.
Papon, N., Savini, V., Lanoue, A., Simkin, A. J., Creche, J. l.,
Giglioli-Guivarca’h, N., Clastre, M., Courdavault, V., Sibirny, A. A.
(2013). Candida guilliermondii: biotechnological applications,
perspectives for biological control, emerging clinical importance and
recent advances in genetics. Current Genetics, 59 (3), 73-90.
Perdiguero, P., Collada, C., Barbero, M. d. C., Casado, G. G., Cervera,
M. T., & Soto, á. (2012). Identification of water stress genes in Pinus
pinaster Ait. by controlled progressive stress and
suppression-subtractive hybridization. Plant Physiology and
Biochemistry, 50 (none), 44-53.
Schrader, J., Etschmann, M. M. W., Sell, D., Hilmer, J. M., &
Rabenhorst, J. (2004). Applied biocatalysis for the synthesis of natural
flavour compounds - Current industrial processes and future prospects.Biotechnology Letters, 26 (6), 463-472.
Scognamiglio, J., Jones, L., Letizia, C. S., & Api, A. M. (2012).
Fragrance material review on phenylethyl alcohol. Food and
Chemical Toxicology, 50 (supp_S2), S224-S239.
Seward, R., Willetts, J. C., Dinsdale, M. G., & Lloyd, D. (1996). THE
EFFECTS OF ETHANOL, HEXAN-1-OL, AND 2-PHENYLETHANOL ON CIDER YEAST
GROWTH, VIABILITY, AND ENERGY STATUS; SYNERGISTIC INHIBITION.Journal of the Institute of Brewing, 102 (6), 439-443.
Shen, L., Nishimura, Y., Matsuda, F., Ishii, J., & Kondo, A. (2016).
Overexpressing enzymes of the Ehrlich pathway and deleting genes of the
competing pathway in Saccharomyces cerevisiae for increasing
2-phenylethanol production from glucose. Journal of Bioscience and
Bioengineering, 122 (1), 34-39.
Shrawder, E., & Martinez-Carrion, M. (1972). Evidence of phenylalanine
transaminase activity in the isoenzymes of aspartate transaminase.Journal of Biological Chemistry, 247 (8), 2486-2492.
Sikkema, J., de Bont, J. a., & Poolman, B. (1995). Mechanisms of
membrane toxicity of hydrocarbons. Microbiological reviews,
59 (2), 201-222.
Stark, D. (2003). In situ product removal (ISPR) in whole cell
biotechnology during the last twenty years. Advances in
Biochemical Engineering Biotechnology, 80 .
Stark, D., Münch, T., Sonnleitner, B., Marison, I. W., & Stockar, U. V.
(2002). Extractive Bioconversion of 2-Phenylethanol from L-Phenylalanine
by Saccharomyces cerevisiae. Biotechnology Progress, 18 (3),
514-523.
Stark, D., Zala, D., Münch, T., Sonnleitner, B., Marison, I. W., &
Stockar, U. v. (2003). Inhibition aspects of the bioconversion of
l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae.Enzyme and Microbial Technology, 32 (2), 212-223.
Weber, F. J., & Bont, J. A. M. d. (1996). Adaptation mechanisms of
microorganisms to the toxic effects of organic solvents on membranes.Biochimica et Biophysica Acta, 1286 (3), 225-245.
Yin, S., Zhou, H., Xiao, X., Lang, T., Liang, J., & Wang, C. (2015).
Improving 2-Phenylethanol Production via Ehrlich Pathway Using Genetic
EngineeredSaccharomyces cerevisiaeStrains. Current Microbiology,
70 (5), 762-767.