
Research Article

Mathematical
Methods in the
Applied Sciences

Received XXXX

(www.interscience.wiley.com) DOI: 10.1002/sim.0000

MOS subject classi�cation:

Existence and uniqueness of solutions of
di�erential equations with respect to
non-additive measures

Shekhar Singh Negi�, Vicen�c Torra

By taking Sugeno-derivative into account, �rstly, we investigate the existence of solutions to the initial value problems (IVP)

of �rst-order di�erential equations with respect to non-additive measure (more precisely, distorted Lebesgue measure). It

particularly occurs in the mathematical modeling of biology. We begin by expressing the di�erential equation in terms

of ordinary derivative and the derivative with respect to the distorted Lebesgue measure. Then, by using the �xed point

theorem on cones, we construct an operator and prove the existence of positive increasing solutions on cones in semi-order

Banach spaces. In addition, we also use Picard's-Lindel�of theorem to prove the existence and uniqueness of the solution

of the equation.

Second, we investigate the existence of a solution to the boundary value problem (BVP) on cones with integral boundary

conditions of a mix-order di�erential equation with respect to non-additive measures. Moreover, the Krasnoselskii �xed

point theorem is also applied to both BVP and IVP and obtains at least one positive increasing solution. Examples with

graphs are provided to validate the results. Copyright © 0000 John Wiley & Sons, Ltd.

Keywords: Initial Value Problem; Boundary Value Problem; Fixed Point Theorem on cone; Choquet Integral;

Non-additive Measure; Di�erential Equation; Semi-order Banach Space; Krasnoselskii �xed point;

Picard's-Lindel�of.

1. Introduction

A derivative plays a signi�cant role in several disciplines of mathematics, in both pure and applied mathematics. Its uses include

solving practical problems, real-world, theoretical, and non-applied mathematics problems, and so on. On the other hand, a

derivative of a function with respect to a set function, which is an extended version of the usual derivative, has a crucial role and

applications in measure theory, �nancial mathematics, and computer science, among other �elds, see [8, 29, 30] and references

cited therein. Particularly, in probability theory and �nancial mathematics, derivative of the set function with respect to set,

i.e., the Radon{Nikodym derivative is frequently used. It is expressed as d�=d�; where � and � are additive measures with the

measure � is absolutely continuous with respect to another measure �, see Section 6:3 [30]. That is,

�([0; &]) = �(0) +

∫
[0;&]

(d�=d�) d�: (1.1)

In the case of non-additive measure, however, it is not like that. That is, Equation 1.1 does Besides, some authors have also

studied the Randon-Nykodym type theorem with respect to strongly subadditive capacities, e.g., see [19, 17] and references cited
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therein, where the Hahn decomposition properties are used to obtain the theorem. On the other hand, as a new research paradigm

[34], the author \Sugeno" has de�ned a new path to Choquet calculus and presented the Choquet integral and derivative with

respect to the set function (subadditive and superadditive), speci�cally, a distorted Lebesgue measures on the non-negative real

line. That is, for a continuous and non-decreasing function p : R+ ! R
+ and m 2M+, if we have the Choquet integral equation

with respect to �m; where �m is generated by a monotone transformation (\m") from a Lebesgue measure (\�"); such that

p(&) = p(0) + (C)

∫
[0;&]

q�m:

Then, the derivative of p with respect to a fuzzy measure �m is de�ned by the solution q as

dp(&)

d�m
= q(&);

if q 2 F+: Here, F+ denotes the collection of all positive, continuous and increasing functions on [0; 1], the set M+ denotes a

class of non-decreasing and continuously di�erentiable function: m : [0; 1]! [0;1) with m(0) = 0. In addition, such a concept

of this new derivative, the following initial value problem as model has also been noticed in biology

dy(&)

d�m
= 1� y(&); & � 0

y(0) = 0:

It represents the transfer dynamics of HIV patients from asymptomatic to the symptomatic stage, for more detail, see [23]. Here,

the Choquet integral (see [10]) plays a vital role to solve the equation and it is with respect to distorted Lebesgue measure (�m)

rather than the Lebesgue integral. In general, the Choquet integral di�ers from the Lebesgue integral in that it is more general

and coincides with the Lebesgue integral (i.e., m(&) = & on [0; 1]) and it has many applications too, see [15, 16, 20, 25, 7]

and references cited therein. Many researchers have contributed to the �eld of Choquet integrals on non-additive measures in

continuous and discrete domains. The readers are compelled to move forward in a variety of directions as a result of these. We

recommend some books [12, 36, 14] for a basic understanding of the non-additive measure theory.

Inspired by Sugeno's derivative, in this paper, we concern the existence of positive increasing solutions of both the general

initial value problem (IVP) and mix-order boundary value problem (BVP). That is, we provide su�cient conditions for existence of

solution of both the general equations. To the best of our knowledge, with this derivative, no such problems have been discussed

before. Particularly, however, Sugeno [34] has discussed some numerical examples of solutions of �rst-order homogeneous and

non-homogeneous di�erential equations with respect to �m for particular m. But, here, we deal with the existence of a solution

of the general di�erential equations with respect to �m for all m 2M+. For more details about this derivative, readers may

consult the paper [34] by Sugeno in which the author has gone over some basic fundamental properties and results with good

explanation.

Let us consider a �rst-order di�erential equation with respect to a non-additive measure (precisely, distorted Lebesgue measure,

i.e., �m for m 2M+) with initial value y(0) = 0, of the form

dy(&)

d�m
= F (&; y(&)); y(0) = 0; (1.2)

for all & 2 [0; 1]: Here, F : [0; 1]� R+ ! R
+ is a function. Note that, whenever we use dy

d�m
; we mean y is di�erentiable with

respect to �m; where m 2M+ and F+: Equation 1.2, indeed, is called non-autonomous di�erential equation with respect to �m:

Particularly, for m(&) = &; it is actually a non-autonomous ordinary di�erential equation.

Moreover, we also discuss the existence of solution of the following mix-order autonomous di�erential equation boundary

value problem (BVP) with integral boundary condition. Let us consider a mix order-
(

d
d�n

; d
d�m

)
- di�erential equation of the form

d

d�n

(
dy(&)

d�m

)
= g(y(&)) for all & 2 [0; 1] (1.3)

y(0) = 0; y(1) = �; (1.4)

where � 2 R+; m; n 2M+ and g : [0;1)! [0;1) is a function.

In order to study the existence of their solutions, we use some well-known theorems, like; �xed point theorem on cones in the

semi-order Banach space, Krasnoselskii and Picard's-Lindel�of �xed point theorem. Two of them are stated as follows:.

Theorem 1.1 [38] Let S and C be a semi-order Banach space and cone, respectively and A is a subset of C: Also, let F : A ! X
be a non-decreasing function. If there exist &1; &2 2 A such that &1 � &2; < &1; &2 >� A and &1; &2 are a lower and upper solution

of equation F (&) = &; then the equation f (&) = & has maximum and minimum solution a; b in < &1; &2 >, such that a � b; when

one of the following condition holds:

1. C is normal and F is compact continuous,
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2. C is normal and F is continuous,

3. X is re
exive, C is normal, and F is continuous or weak continuous.

Theorem 1.2 [9] Krasnoselskii �xed point theorem. Let U � X be any non-empty, closed convex subset, where (X ; k � k) is
Banach space. Suppose Y1 and Y2 map U into X such that

1. Y1z1 + Y2z2 2 U for all z1; z2 2 U ;
2. Y1 is continuous and compact,

3. Y2 is contraction with constant � < 1:

Then there is a point z� 2 U with Y1z
� + Y2z

� = z�:

Theorem 1.1 has sparked a surge in interest in the study of existence of solutions to various di�erential equations on cones

in the semi-Banach spaces over the last several decades, see [4, 37, 5, 24] and references cited therein. On the other hand, the

Krasnoselskii and Picard's-Lindel�of iterative �xed point theorem have also been noticed in the study of the existence of solutions

to various di�erent types of di�erential equations. See [6, 2, 24, 18, 21, 27, 26, 1] and the reader can also look up the references

cited in the papers for more information.

We begin our main section by dealing with the existence of solution of initial value problem (IVP) 1.2 and Theorem 1.1.

For this, we �rst construct a suitable form of an operator for whom we make our di�erential equation as a combination of an

ordinary derivative and derivative with respect to distorted Lebesgue measure. Then after, along with certain conditions, we

apply it over Theorem 1.1 and Picard's-Lindel�of theorem to get the desired result. Besides, some possible associated results are

also discussed.

In addition, before going to solve BVP 1.3-1.4, we �rst study similar BVP of it, i.e., consider a function on the right-hand

side of Equation 1.3 as only the function of & rather than y(&) for all & 2 [0; 1]: And then, we obtain an expression of solution in

terms of a Choquet integral with respect to a distorted Lebesgue measure. We further illustrate the outcome by putting several

examples. Thus, by observing the expression of solution, we prepare an operator in terms of the Choquet integral with respect

to a distorted Lebesgue measure for the original BVP 1.3-1.4. Finally, use this operator for the �xed point theorem of cones and

along with some conditions, we get at least one positive increasing solution. In the end, for an enhancement in the results, we

also study Krasnoselskii �xed point theorem for both the di�erential equations.

The rest of the paper is organized as follows: In Section 2; we present de�nitions of non-additive measures and some essential

properties of Sugeno's derivative along with the Choquet integral. Further, some useful theorems and propositions from the

papers [33, 38, 34] are presented. For the main results, in Section 3; we �rst provide su�cient conditions of existence of solution

for the �rst order non-autonomous di�erential equation of Equation 1.2. Further, a well-known Picard's iteration method is also

used to �nd a unique solution of the di�erential equation. Then, in Section 4; we also discuss the existence of solutions to the

boundary value problem 1.3-1.4. In which, we �rst present the expression of the solution of a particular mix-order boundary value

problem with respect to �m. We then present some numerical examples corresponding to various di�erent values of functions

m and n. After that, we look for the existence of a solution of the original problem 1.3-1.4 (mix-order autonomous di�erential

equation). Throughout Section 3 and 4; we follow the �xed point theorem on the cone of the semi-order Banach space. By

using Krasnoselskii Fixed Point Theorem, we also provide a theorem of the existence of a solution of BVP in Section 5. Finally,

in Section 6; we conclude the paper.

2. Preliminaries

In this section, we present all those de�nitions, theorems and propositions which make our proof easily understandable and

readable.

De�nition 2.1 [33] Let a triplet ([0;1);S; �) be a measurable space, where � is measure and S is �-algebra ( smallest) which

contains all the closed interval in [0;1): Then, the set function � : S ! [0;1) is called non-additive measure if and only if

1. �(;) = 0 (Initial condition),

2. �(A) � �(B); if A � B for A;B 2 S(Monotone),

3. �(Ak) # �(A) if Ak # A and �(Bk) " �(B); if Bk " B(Continuity).

We can understand it through a particular way, for instance, consider a non-additive measure � as � = �2([&1; &2]) = (&2 � &1)
2;

where � is Lebesgue measure.

We next see a speci�c particular form of non-additive measure (�), which is known as distorted Lebesgue measure and

generalizing the above particular way.

De�nition 2.2 [33] Let us consider a continuous and increasing function m : [0;1)! [0;1) such that m(0) = 0: Then a

non-additive measure � has a form � = �m; which is known as distorted Lebesgue measure, where � is the Lebesgue measure.

It is de�ned by �m(�) = m(�(�)): Moreover, when � = �m is non-additive measure unless m is linear.
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Let W+ denotes the class of positive measurable functions on [0;1); where ([0;1);S) is a measurable space. We now de�ne

co-monotonicity of functions.

De�nition 2.3 [12] Let p; q 2 W
+; then p and q are co-monotonic, if &; &� 2 [0;1)

p(&) < p(&�) =) q(&) � q(&�): (2.5)

Moreover, the following also holds

(C)

∫
(p + q)d� = (C)

∫
pd�+ (C)

∫
qd�: (2.6)

Choquet integral in terms of usual Lebesgue integral on continuous domain.

Theorem 2.4 [33] If f 2 F+, then the Choquet integral of f with respect to a fuzzy measure, say �� on [0; &] is represented as

(C)

∫
[0;&]

f (�)d ��(�) = �

∫ &

0

��0([�; &])f (�)d�:

In particular, for �� = �m;

(C)

∫
[0;&]

f (�)d ��(�) =

∫ &

0

m0(& � �)f (�)d�: (2.7)

Commutativity of derivative with respect to distorted Lebesgue measures.

Propostion 2.5 [34] For m and n in M+ such that m 6= n: Then, for f 2 F+; we have

d

d�m

df

d�n
=

d

d�n

df

d�m
; (2.8)

provided df
d�m

(0) = df
d�n

(0) = 0:

Propostion 2.6 [34] For p; q 2 F+ and m; n 2M+; we have

1. if p � q; then (C)
∫
[0;&]

pd�m � (C)
∫
[0;&]

qd�m;

2. if m � n; then (C)
∫
[0;&]

pd�m � (C)
∫
[0;&]

pd�n;

3. if &1 � &2; then (C)
∫
[0;&1]

pd�m � (C)
∫
[0;&2]

pd�m:

Propostion 2.7 [34] For p; q 2 F+ and m; n 2M+; we have

1. if m � n; then dp
d�n

� dp
d�m

;

2. if p � q; then dp
d�m

� dq
d�m

:

Following de�nition follows from De�nition 17 [34].

De�nition 2.8 For m and n in M+; then de�ne a binary relation \� " on M+ by

m � n ()
m

n
exists, i.e.,

m

n
2M+: (2.9)

We immediately de�ne a result from [34] which plays an important role in one of our main theorems.

Corollary 2.9 For m � n and f 2 F+; we have

d

d�m

(
(C)

∫
[0;&]

f �n

)
=

df

d�m=n

: (2.10)

Propostion 2.10 [34] For m; n 2M+; we have

d

d�m

df

d�n
=

df

d�r
; if

df

d�n
(0) = 0; (2.11)

where r = (C)
∫
md�n:
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Theorem 2.11 [11] A function p : A � R! R is said to be Lipschitz continuous at & 2 A if there exists a constant L such that

jp(&1)� p(&2)j � Lj&1 � &2j for all &1; &2:

Theorem 2.12 [11] Let A � R be any interval and let p : A! R be continuous on A and di�erentiable on the interior int(A)

of A. Then function p is Lipschitz () p0 is bounded on int(A).

Let us denote the set X = C[0; 1] as the class of all continuous functions de�ned on [0; 1] with the sup norm. Also, the set

C denotes the collection of all non-negative functions of X ; clearly, C � X :

De�nition 2.13 [32] A nonempty, closed, convex set C � X is said to be a cone provided the following are satis�ed

1. if y 2 C and � � 0; then �y 2 C;
2. if y 2 C and �y 2 C; then y = 0:

For a given cone C; de�ne a partial ordering (\ � ") with respect to cone C by y1 � y2 () y2 � y1 2 C:

De�nition 2.14 [32] A cone C is said to be \Normal" if 9 a number � > 0 such that

0 � y1 � y2 implies ky1k � �ky2k; for all y1; y2 2 C: (2.12)

Before going to start our main sections, let us �rst de�ne a set

A = fy 2 Xjy � 0 is non-decreasing on [0; 1]g: (2.13)

It will not di�cult to see that the set A is non-empty closed subset of cone C:

3. Existence of solution of initial value problem 1.2

This section contains some results of the existence of the solution of the initial and boundary value problem of the mix-order

di�erential equation with respect to non-additive measure (or distorted Lebesgue measure) on continuous domain.

Following de�nition presents the lower and upper solution for both problems 1.2 (IVP) and 1.3-1.4 (BVP), it can also see in

[39].

De�nition 3.1 Function q 2 X will be called a lower solution for Equation 1.2(also with respect to operator Y) if

dq(&)

d�m
� F (&; q(&)); (3.14)

and q(&) � Yq(&) for all & 2 [0; 1]: Similarly, we upper solution for Equation 1.2 and operator Y such that

dq(&)

d�m
� F (&; q(&)); (3.15)

and q(&) � Yq(&) for all & 2 [0; 1]:

In a similar manner, this de�nition can also be used for problem 1.3-1.4. Further, it is also noted that it will also hold for the

general semi-Banach space, see [3].

Theorem 3.2 Assumem 2M+ withm(&) < & for & 2 [0; 1]; andm � iid ; where iid is identity function. Moreover, if the following

hold:

1. F : [0; 1]� [0;1)! [0;1) is continuous and F (&; �) is an increasing function with respect to the second variable for all

& 2 [0; 1] with F (0; 0) = 0: Moreover, F (&; �) is strictly increasing on [0; �] for all & 2 [0; 1]; where � is a positive real

number.

2. m0 is continuously di�erentiable on [0; 1],

3. y � and y �� are lower and upper solution of Equation 1.2 such that y �(&) � y ��(&) for & 2 [0; 1];

then Equation 1.2 has at least one positive solution.

Proof 3.1 For & 2 [0; 1]; Equation 1.2 can be written as

d

d�m

(
dy1(&)

d&

)
= F (&; y 01(&)); (3.16)

Math. Meth. Appl. Sci. 0000, 00 1{18 Copyright © 0000 John Wiley & Sons, Ltd. 5
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where y1(&) =
∫ &

0
y(�)d� for a function y 2 F+: Now, in order to interchange the order of derivative in the later equation, we

�rst claim dy1(&)
d�m

∣∣∣
&=0

= 0:

Since m � iid on [0; 1]; where iid is identity function, then we can obtain the following

dy1(&)

d�m

∣∣∣
&=0

=
d

d�m

(
(C)

∫
[0;&]

yd�iid

) ∣∣∣
&=0

Eq.-2.10
=

dy

d�m=iid

∣∣∣
&=0

Prop.-2.7(2)

�
dy

d�m

∣∣∣
&=0

= F (0; 0) = 0: (3.17)

We also have m(&) < & for all & 2 [0; 1]: Then, we get

dy1(&)

d�m

∣∣∣
&=0

Prop.-2.7(1)

�
dy1(&)

d&

∣∣∣
&=0

= y(0) = 0: (3.18)

Consequently, from Equations 3.17 and 3.18, we get

dy1(&)

d�m

∣∣∣
&=0

= 0: (3.19)

After setting n(&) = & in Proposition 2.5, we can write Equation 3.16 as follows

d

d&

(
dy1(&)

d�m

)
= F (&; y 01(&)): (3.20)

Integrating equation 3.20 from 0 to &; we obtain

dy1(&)

d�m
=

∫ &

0

F (�; y 01(�))d�; (3.21)

then by Equation 2.6, we have Equation 3.21 in the form

y1(&) = (C)

∫
[0;&]

(∫ (�)

0

F (s; y 01(s))ds

)
d�m

We also have

y(&) =

∫ &

0

m00(& � �)

(∫ �

0

F (s; y(s))ds

)
d� +m0(0)

∫ &

0

F (s; y(s))ds

=

∫ &

0

m0(& � �)F (�; y(�))d�:

Now, let us consider an operator Y : A ! C such that

Yy(&) =

∫ &

0

m0(& � �)F (�; y(�))d�; (3.22)

It is not di�cult to show that Y is positive and continuous because of positiveness and continuity of functions m0; m00; y and

F in the expression of operator Y.
In order to apply Theorem 1.1, it su�ces to check the operator Y for compact continuity and increasingness because we

already have Yy �� � y �� and Yy � � y � from condition (2) and De�nition 3.1. For compact continuity, we will use a well-known

Arzela-Ascoli Theorem [35].

We now claim the operator Y is bounded and completely continuous. Therefore, let B be any bounded subset of the A: Then,
for all y 2 B; from equation 3.22 we conclude the following

jYy(&)j �

∫ &

0

m0(& � �)jF (�; y(�))jd�; 8& 2 [0; 1]: (3.23)

Let � be a positive constant and there exits � > 0 such that � > max
s2[0;1];y2[0;�]

F (s; y(s)). Then, from Equation 3.23, we arrive

at

kYy(&)k � �m(&) � �m(1) := ��: (3.24)
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Thus, Y(B) is uniformly bounded.

Next, for each y 2 B and &1; &2 2 [0; 1] such that &1 < &2; let us consider

jYy(&1)� Yy(&2)j =

∣∣∣∣∫ &1

0

m0(&1 � �)F (�; y(�))d� �

∫ &2

0

m0(&2 � �)F (�; y(�))d�

∣∣∣∣
�

∫ &1

0

jm0(&1 � �)�m0(&2 � �)jjF (�; y(�))jd� +

∫ &2

&1

m0(&2 � �)jF (�; y(�))jd�: (3.25)

Since the function m0 continuously di�erentiable implies Lipschitz continuous with Lipchitz constant L and m(&) � & for all

& 2 [0; 1]; then Equation 3.25 becomes

jYy1(&1)� Yy1(&2)j � �(L+ 1)j&2 � &1j: (3.26)

Further, whenever j&1 � &2j < �; where � > 0; that is, for all � > 0; � is taken as � =
�

�(L+ 2)
> 0: Thus, Equation 3.26 can

be written as

jYy1(&1)� Yy1(&2)j � �; (3.27)

which implies the equicontinuity of Y(B): Therefore, by using Arzela-Ascoli Theorem [35], Y(B) is compact.

Next, our aim is to check the operator Y is increasing. Therefore, let y1; y2 be any two elements of A such that y1 � y2:

Then, from Equation 3.22 and condition (1), we have

Yy1(&) =

∫ &

0

m0(& � �)F (�; y1(�))d�

�

∫ &

0

m0(& � �)F (�; y2(�))d� = Yy2(&): (3.28)

for all & 2 [0; 1]: Thus, the operator Y : hy�; y
�i ! hy�; y

�i is compact continuous, and C is normal cone. Therefore, Theorem

1.1 is applicable for the operator Y and then it preserves �xed point in hy�; y
�i : Hence, we complete the proof.

Remark 3.3 It is noticed that the Theorem 3.2 does not apply to the ordinary case m(&) = & for all & 2 [0; 1] because m � iid
does not hold, i.e., m(&)

&
= 1 =2M+:

The following theorem answers the Remark 3.3.

Theorem 3.4 Assume m 2M+ with m(&) � & for & 2 [0; 1]: Moreover, if the following hold:

1. F : [0; 1]� [0;1)! [0;1) is continuous and F (&; �) is increasing function with respect to the second variable for all

& 2 [0; 1] with F (0; 0) = 0: Moreover, F (&; �) is strictly increasing on [0; �] for all & 2 [0; 1]; where � is positive real

number.

2. m0 is continuously di�erentiable on [0; 1],

3. y � and y �� are lower and upper solution of Equation 1.2 such that y �(&) � y ��(&) for & 2 [0; 1];

then Equation 1.2 has at least one positive solution.

Proof 3.2 Since we have y1(&) =
∫ &

0
y(�)d� for y 2 F+; then obviously, y1(&) � y(&) for all & 2 [0; 1]: It is easy to get

dy1(&)
d�m

∣∣∣
&=0

� 0 and then after keeping Equation 3.18 in hand, we must have dy1(&)
d�m

∣∣∣
&=0

= 0: Now, we proceed the proof of

Theorem 3.2. Hence, proof is done.

For a special case of Theorem 3.4, consider m(&) = & for & 2 [0; 1]: then, we have the following result of a existence of a

solution of the di�erential equation.

Corollary 3.5 If the following conditions

1. F : [0; 1]� [0;1)! [0;1) is continuous and F (&; �) is increasing function with respect to the second variable for all

& 2 [0; 1] with F (0; 0) = 0: Moreover, F (&; �) is strictly increasing on [0; �] for all & 2 [0; 1]; where � is positive real

number,

2. y � and y �� are lower and upper solution of Equation 1.2 such that y �(&) � y ��(&) for & 2 [0; 1];

hold, then the �rst-order non-autonomous di�erential equation y 0(&) = F (&; y(&)) for & 2 [0; 1]; has at least one positive solution.

A proposition is presented for the next main theorem.
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Propostion 3.6 If m;m0 2M+; then m(&) = (C)
∫
[0;&]

iidd�m0 ; where \iid" is an identity function.

Proof 3.3 Since m;m0 2M+; we have

m(&) =

∫ &

0

m0(�)d� =

∫ &

0

m0(& � �)d� =

∫ &

0

m00(& � �)�d� = (C)

∫
[0;&]

�d�m0 : (3.29)

Thus, we arrive at the required expression.

Example 3.7 For & 2 [0;1); we have
&k+1

k + 1
= (C)

∫
[0;&]

�d�&k ; where k is a real positive constant. Particularly, for k = 1;∫ &

0

�d� = &2=2:

Following theorem contains less su�cient conditions than the Theorem 3.2. That is, here condition on m such that m(&) � &

for & 2 [0; 1]; and m � iid ; where iid is identity function, are not necessary.

Theorem 3.8 Assume conditions (1) and (3) in Theorem 3.2 hold, also if dy(&)
d�m0

∣∣∣
&=0

= 0 for m0 2M+: Then, Equation 1.2 has

at least one positive solution.

Proof 3.4 From Equation 1.2, Proposition 2.10 and 3.6, we easily conclude dy(&)
d�m

= d
d&

(
dy(&)
d�m0

)
= F (&; y(&)) for & 2 [0; 1]: Now,

follow the steps from 3.20 to 3.28 in the proof of Theorem 3.2. Hence, we reached the desired conclusion and have at least one

positive solution of Equation 1.2.

Next, we discuss a well-known Picard's method for the existence and uniqueness of Equation 1.2.

3.1. Picard-Lindel�of

Through this section, our motive is to provide another way of �nding the su�cient conditions of existence and uniqueness of

Equation 1.2.

Theorem 3.9 Let W = f(&; y)j 0 � & � �; 0 � y � �g; and assume m 2M+ such that m(&) < & for & 2 [0; 1]; and m � iid ;

where iid is identity function. Moreover, if the following conditions hold:

1. F : [0; 1]� [0;1)! [0;1) is Lipschitz continuous with respect to the second variable with Lipschitz constant �. Also,

there exists a positive real constant � such that jF (&; y(&))j � � on [0,1],

2. m(1) � min
{
�; �

�

}
; �m(1) < 1 and m(1) < 1

��
;

then Equation 1.2 has exactly one positive increasing solution on [0; m(1)].

Proof 3.5 Existence: We proceed with the proof of Theorem 3.2 till Equation 3.22. Then, for (&; y(&)) 2 W and from the

expression of Equation 3.22, we construct the iterations as follows

y0(&) = 0

y1(&) =

∫ &

0

m0(& � �)F (�; y0(&))d�

...

yk(&) =

∫ &

0

m0(& � �)F (�; yk�1(&))d�: (3.30)

For & 2 [0; m(1)] for all m 2M+; then �rst we show (&; yk(&)) 2 W: It is clearly seen that jy1(&)j � �m(1) � �; i.e.,

(&; y1(&)) 2 W: Now, if we assume (&; yk�1(&)) 2 W; i.e., the relation jyk�1(&)j � � for all & 2 [0; 1] holds, then it is easy

to have the following

jyk j �

∫ &

0

m0(& � �) jF (�; yk�1(�))j d� � �m(1) � �:
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Thus, by mathematical induction, the above expression leads to (&; yk(&)) 2 W for all k 2 N and & 2 [0; m(1)]: Next, we also

have

jyk(&)� yk�1(&)j �

∫ &

0

m0(& � �)jF (�; yk�1(�))� F (�; yk�2(�))jd�

� �

∫ &

0

m0(& � �)jyk�1(�)� yk�2(�)jd�

� �k�1

∫ &

0

m0(& � �)

∫ �

0

m0(� � s) � � �

∫ �

0

m0(� � �)jy1(�)jd�ds � � � d�dz

� �k�1�mk(1): (3.31)

That implies,

1∑
k=1

jyk(&)� yk�1(&)j � �

1∑
k=1

�k�1mk(1);

which converges absolutely as m(1) � 1=�� and also straightforward to see that the series converges uniformly on the interval

[0; m(1)]: Consequently, yk(&) =
k∑

j=1

(yj(&)� yj�1(&)) is convergent on [0; m(1)]. Further, being the series converges uniformly

and function F is Lipschitz continuous, we must have an expression of solution y of Equation 1.2 as y(&) = lim
k!1

yk(&) =∫ &

0
m0(& � �)F (�; y(�)): That ensures the existence of a solution of a given di�erential equation with respect to �m, see 1.2.

Uniqueness: Suppose z1 and z2 be two di�erent solutions of Equation 1.2 on [0; m(1)]. Clearly, z1(0)� z2(0) = 0; and for

& 2 [0; m(1)]; we have

jz1(&)� z2(&)j �

∫ &

0

m0(& � �)jF (�; z1(�))� F (�; z2(�))jd�

� �

∫ &

0

m0(& � �)jz1(�)� z2(�)jd�: (3.32)

From the Gronwall inequality (see [31]), if y(&) � y0 +
∫ &

0
a(�)y(�)d�; for all & 2 [0;1) holds, then

y(&) � y0 exp

(∫ &

0

y(�)d�

)
; (3.33)

where y0 is a non-negative real constant, and a and y are two non-negative function on [0;1): Hence, from Equation 3.32 and

3.33, we conclude y0 = 0 and then we have jz1 � z2j � 0 implies z1 = z2:

Example 3.10 Consider a �rst order di�erential equation with respect to distorted Lebesgue measure (�m) on [0; 0:25], of the

form

dy

d�m
= log (3� y) with y(0) = 0; (3.34)

where � = 1 and � = 2 such thatW = f(&; y(&))j 0 � & � 1; 0 � y(&) � 2g; and m(&) = &4

4
such that m(&) � & and m(&)

&
2M+

for all & 2 [0; 1]: Clearly, we have 0 � F = log(3� y(&)) � log(3) = � and jF(&; y1(&))�F(&; y2(&))j � jy1(&)� y2(&)j for all
y1 and y2; implies, Lipschitz constant � = 1: It is now seen that the conditions of Theorem 3.2 for the existence and uniqueness

of solution of Equation 3.34 are satis�ed. Hence, Equation 3.34 has exactly one positive increasing solution on [0; 0:25]:

4. Existence of solution of boundary value problem 1.3-1.4

In this section, we �rst discuss the solution of following mix order-
(

d
d�n

; d
d�m

)
; where m; n 2M+: This result will be very helpful

in the study of existence of solution of boundary value problem 1.3-1.4. Throughput this section, we use the notation gc as

gc(s) = (C)
∫
[0;s]

gd�n; for all s 2 [0; 1] and n 2M+:

Theorem 4.1 If n;m 2M+ with m0 : [0; 1]! [0;1) an increasing function, and g 2 F+: Then, the boundary value problem

1.3-1.4 with � = (C)

∫
[0;1]

(
1

m0(1� �)
+ 1

)
gcd�m <1; has a solution of the form

y(&) = (C)

∫
[0;&]

gcd�m1
+ (C)

∫
[&;1]

gcd�m2
; (4.35)

wherem1(s) =
m(&)
m(1)

s +m(s) and m2(s) =
m(&)
m(1)

s for s; & 2 [0; 1]:
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Proof 4.1 Let us consider d
d�n

(
dy
d�m

)
= 0 for & 2 [0; 1]; then it has solution y(&) = am(&) + b; where a; b 2 R+: Thus, in view

of boundary value problem 1.3-1.4, it is not di�cult to get the desire expression as solution along with two arbitrary constants

y(&) = am(&) + b + (C)

∫
[0;&]

gcd�m: (4.36)

Putting y(0) = 0 in Equation 4.36, we obtain b = 0: Similarly, by second condition of Equation 1.4, we have a =
1

m(1)
(C)

∫
[0;1]

1
m0(1�(�))

gc(�)d�m: Now, using these values together in Equation 4.36, we yield

y(&) =
m(&)

m(1)
(C)

∫
[0;1]

gc
m0(1� (�))

d�m + (C)

∫
[0;&]

gc(�)d�m

=

∫ 1

0

m(&)

m(1)
gc(�)d� +

∫ &

0

m0(& � �)gc(�)d�

=

∫ &

0

m(&)

m(1)
gc(�)d� +

∫ 1

&

m(&)

m(1)
gc(�)d� +

∫ &

0

m0(& � �)gc(�)d�

=

∫ &

0

(
m(&)

m(1)
+m0(& � �)

)
gc(�)d� +

∫ 1

&

m(&)

m(1)
gc(�)d�

= (C)

∫
[0;&]

gcd�m1
+ (C)

∫
[&;1]

gcd�m2
; (4.37)

where m1(s) =
m(&)
m(1)

s +m(s) and m2(s) =
m(&)
m(1)

s for s 2 [0; 1]: Thus, we complete the proof.

Remark 4.2 Results on [a; b] for all a; b 2 R+ also hold.

The special case (i.e., m(&) = & = n(&)) of Theorem 4.1 is given.

Corollary 4.3 If g : [0;1)! [0;1) is continuous function, then the boundary value problem

y 00(&) = g(&) for all & 2 [0; 1] (4.38)

y(0) = 0; y(1) = 2(C)

∫
[0;1]

gcd�; (4.39)

has solution

y(&) = (& + 1)

∫ &

0

gc(�)d� + &

∫ 1

&

gc(�)d�; (4.40)

where gc(&) =

∫ &

0

g(s)ds:

Corollary 4.4 If n;m 2M+ with m(&) = &, then the problem

d

d�n

(
dy(&)

d&

)
= g(&) for all & 2 [0; 1] (4.41)

y(0) = 0; y(1) = 2(C)

∫
[0;1]

gcd�m; (4.42)

has solution

y(&) = (& + 1)

∫ &

0

gc(�)d� + &

∫ 1

&

gc(�)d�; (4.43)

where gc(&) = (C)

∫
[0;&]

gd�n:

The following examples illustrate Theorem 4.1 on various aspects of the parameters in the theorem.

Example 4.5 For & 2 [0; 1]; let us consider mix order-
(

d
d�n

; d
d�m

)
di�erential equation

d

d�n

(
dy(&)

d�m

)
= e& for all & 2 [0; 1] (4.44)

y(0) = 0; y(1) =
7e

6
; (4.45)
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where g(&) = e& ; m(&) = e& � 1 and n(&) = &e& for all & 2 [0; 1]: It is concluded that gc(&) =
e& &(&+2)

2
for all & 2 [0; 1]: Therefore,

from Theorem 4.1, we have y as solution of problem 4.44-4.45 such that

y(&) =
1

e � 1

∫ &

0

(e&��+1 � e&�� + e& � 1)gc(�)d� +

∫ 1

&

e& � 1

e � 1
gc(�)d�

=
&2e&

6(e � 1)
(3e& + (e � 1)& + 3e � 6) +

1

2(e � 1)
(e& � 1)(e � &2e&)

=
1

6(e � 1)
(e&+1(&3 + 3(&2 + 1))� &2e&(& + 3)� 3e): (4.46)

We now consider mix order-
(

d
d&
; d
d�m

)
boundary value problem.

Example 4.6 For & 2 [0; 1]; let us consider mix order-
(

d
d&
; d
d�m

)
di�erential equation

d

d&

(
dy(&)

d�m

)
= log(1 + &) for all & 2 [0; 1] (4.47)

y(0) = 0; y(1) =
(96 log(2)� 6)

18
; (4.48)

where g(&) = log(1 + &); m(&) = & + &2

2
and n(&) = & for all & 2 [0; 1]: Thus, we have gc(&) = (& + 1) log(1 + &)� & for all

& 2 [0; 1]: Therefore, by Theorem 4.1, we obtain

y(&) =
1

3

∫ &

0

(&2 + 5& + 3(1� �))((� + 1) log(1 + �)� �)d� +
1

3

∫ 1

&

(&2 + 2&)((� + 1) log(1 + �)� �)d�

=
1

36
(log(1 + &)(6&3 + 36&2 + 54& + 24) + 24&(& + 2) log(2)� 11&3 � 57&2 � 54&): (4.49)

The following graphs represent the solutions of their corresponding boundary value problems.

Figure 1. Solution of problem 4.44-4.45. Figure 2. Solution of problem 4.47-4.48.

In the next example, we validate Theorem 4.1 by considering various order of BVP with m(&) = n(&) = &k ; k 2 N and for all

& 2 [0; 1]:

Example 4.7 Let us consider mix order-
(

d
d�n

; d
d�m

)
or second-order di�erential equation

d

d�n

(
dy(&)

d�m

)
= sin(&) for all & 2 [0; 1] (4.50)

y(0) = 0; y(1) = �; (4.51)

where � is as in Theorem 4.1, m(&) = n(&) = &a; a > 0 and g(&) = sin(&) for all & 2 [0; 1]: Thus, in view of Theorem 4.1, we

have

y(&) = (C)

∫
[0;&]

gcd�m1
+ (C)

∫
[&;1]

gcd�m2
; (4.52)

where gc(s) = (C)
∫
[0;s]

sin(s)d�n; m1(s) = s(&a + sa�1) and m2(s) = &as for s; & 2 [0; 1]:
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Particularly, for a = 1; we have the following second-order boundary value problem

y 00 = sin(&) for all & 2 [0; 1] (4.53)

y(0) = 0; y(1) = 2(1� sin(1)); (4.54)

where m(&) = n(&) = & for all & 2 [0; 1]: It is to have gc(&) = 1� cos(&) for all & 2 [0; 1]: Thus, from Corollary 4.3, we have y

as solution of problem 4.53-4.54 such that

y(&) =

∫ &

0

(& + 1)(1� cos(�))d� +

∫ 1

&

&(1� cos(�))d�

= (& + 1)(& � sin(&)) + &(sin(&)� & � sin(1) + 1)

= 2&(1� 0:5 sin(1))� sin(&): (4.55)

The �gures below show the behavior of solutions to the problem 4.50-4.51 corresponding to m(&) = n(&) = &k ; for k 2 N.

Figure 3. Solutions of problem 4.50-4.51 with m(&) = n(&) = &k for k = 1; 2; 3; 10; 100 and 1000:

In a similar manner, for a = 1=k; we have m(&) = n(&) = &1=k for k 2 N:

Figure 4. Solutions of problem 4.50-4.51 with m(&) = n(&) = &1=k for k = 1; 2; 3; 10; 100 and 1000:

Remark 4.8 From Fig. 3, we observe that the solution y goes upwards when a = k = 1; 2; 3; � � � ; 1000. In contrast, in Fig. 4,

solution y is going downwards corresponding to each a = 1=k = 1; 1=2; 1=3; � � � ; 1=1000:
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We have su�cient supporting results to the study of existence of solution of boundary value problem 1.3-1.4.

Theorem 4.9 Assume m; n 2M+ with m(&) � & for all & 2 [0; 1]. If the following hold:

1. m0 : [0; 1]! (0;1) is Lipschitz continuous and increasing function and g : [0;1)! [0;1) is continuous and increasing

function,

2. y � and y� are a upper and lower solution of problem 1.3-1.4 along with condition y �(&) � y�(&) for all & 2 [0; 1]:

Then, for � = (C)

∫
[0;1]

(
1

m0(1� �)
+ 1

)
(g � y)cd�m > 0; the problem 1.3-1.4 has at least one positive solution.

Proof 4.2 In view of Theorem 4.1, let us consider a operator Y : A ! C such that

Yy(&) = (C)

∫
[0;&]

(g � y)cd�m1
+ (C)

∫
[&;1]

(g � y)cd�m2
; (4.56)

where (g � y)c(s) = (C)

∫
[0;s]

g � yd�n; m1(s) =
m(&)

m(1)
s +m(s) and m2(s) =

m(&)
m(1)

s for s; & 2 [0; 1]: It is noted that the operator

Y is continuous and positive because the functions g and G are positive and continuous. In order to apply Theorem 1.1 for the

existence of positive solution of problem 1.3-1.4, we de�ne some steps.

Step-1, show that the operator Y is bounded. Let us consider a bounded subset, say B; of C; i.e., there exists �1 > 0; such

that kyk � �1 for all y 2 B: Furthermore, let �2 be any positive constant then jg(y(&))j < �2 for all & 2 [0; 1] and y 2 B:
Now, it follows from Equation 4.56 that

jYy(&)j =

∣∣∣∣(C)∫
[0;&]

(g � y)cd�m1
+ (C)

∫
[&;1]

(g � y)cd�m2

∣∣∣∣
�

∣∣∣∣(C)∫
[0;&]

(g � y)cd�m1

∣∣∣∣+ ∣∣∣∣(C)∫
[&;1]

(g � y)cd�m2

∣∣∣∣
� �2(m1(&) +m2(1� &))

� �2(m1(1) +m2(1))

� �2(2 +m(1)); (4.57)

thus, we conclude Y(B) is uniformly bounded.

Step-2, show that Y(B) is equicontinuous. Therefore, for &1; &2 2 [0; 1] such that &1 � &2; let us consider

jYy(&1)� Yy(&2)j =

∣∣∣∣(C)∫
[0;&1]

(g � y)cd�m1
+ (C)

∫
[&1;1]

(g � y)cd�m2
� (C)

∫
[0;&2]

(g � y)cd�m1

� (C)

∫
[&2;1]

(g � y)cd�m2

∣∣∣∣
�

∣∣∣∣(C)∫
[0;&1]

(g � y)cd�m1
� (C)

∫
[0;&2]

(g � y)cd�m1

∣∣∣∣+ ∣∣∣∣(C)∫
[&1;1]

(g � y)cd�m2

�(C)

∫
[&2;1]

(g � y)cd�m2

∣∣∣∣
�

∣∣∣∣∫ &1

0

(m0

1(&2 � �)�m0

1(&1 � �))(g � y)c(�)d�

∣∣∣∣+ ∣∣∣∣∫ &2

&1

m0

1(&2 � �)(g � y)c(�)d�

∣∣∣∣
+

∣∣∣∣∫ &2

&1

m0

2(1� �)(g � y)c(�)d�

∣∣∣∣
� �2

[∫ &1

0

jm0

1(&2 � �)�m0

1(&1 � �)jd� +m1(&2 � &1) + jm2(1� &2)�m2(1� &1)j

]
� �2

[∫ &1

0

jm0(&2 � �)�m0(&1 � �)jd� +
m(&)

m(1)
j&2 � &1j+m(&2 � &1)

+
m(&)

m(1)
j&2 � &1j

]
: (4.58)

Since m0 is Lipschitz continuous, so there exits a positive real constant L such that

jm0(&1)�m0(&2)j � Lj&1 � &2j; for all &; &2 2 [0; 1]: (4.59)
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Thus, from Equation 4.58 and 4.59, we obtain

jYy(&1)� Yy(&2)j � �2

[
L

∫ &1

0

j&2 � &1jd� +
m(&)

m(1)
j&2 � &1j+ j&2 � &1j

+
m(&)

m(1)
j&2 � &1j

]
� �2(L+ 3)j&2 � &1j: (4.60)

Whenever j&1 � &2j < �; where for all � > 0 we consider � as � = ��12 (L+ 3)�1 : Finally, with Equation 4.60, we reach to the

following relation

jYy(&1)� Yy(&2)j < �; for all &1; &2 2 [0; 1]: (4.61)

Hence, Y(B) is equicontinuous. Therefore, by using Arzela-Ascoli theorem [35], we have Y(B) is compact.

Step-3, we now show the operator Y is increasing with respect to y 2 C: So, if y1; y2 2 C such that y1 � y2; and since g is

increasing, then we conclude the following

Yy1(&) = (C)

∫
[0;&]

(g � y1)cd�m1
+ (C)

∫
[&;1]

(g � y1)cd�m2

� (C)

∫
[0;&]

(g � y2)cd�m1
+ (C)

∫
[&;1]

(g � y2)cd�m2
= Yy2(&): (4.62)

for all & 2 [0; 1]: Thus, the operator Y : hy�; y
�i ! hy�; y

�i is compact continuous, and C is normal cone. Therefore, Theorem

1.1 is applicable for the operator Y (see Equation 4.56) and then it preserves �xed point in hy�; y
�i : Hence, we complete the

proof.

Next theorem is immediately obtained from the observation of the above theorem.

Theorem 4.10 Assume m 2M+; and let us consider boundary value problem

d

d&

(
dy(&)

d�m

)
= F (&; y(&)) for all & 2 [0; 1] (4.63)

y(0) = 0; y(1) = (C)

∫
[0;1]

(
1

m0(1� �)
+ 1

)
Fcd�m; (4.64)

where Fc(&) =

∫ &

0

F (�; y(�))d�: If the following hold:

1. F : [0; 1]� [0;1)! [0;1) is continuous and F (&; �) is increasing function with respect to the second variable for all

& 2 [0; 1] with F (0; 0) = 0: Moreover, F (&; �) is strictly increasing on [0; �] for all & 2 [0; 1]; where � is positive real

number,

2. m0 : [0; 1]! (0;1) is Lipschitz continuous and increasing function,

3. y � and y� are a upper and lower solution of problem 1.3-1.4 along with condition y �(&) � y�(&) for all & 2 [0; 1];

then, problem 4.63-4.64 has at least one positive solution.

Proof 4.3 The proof of this theorem can be followed by the proof of the Theorem 4.9, therefore, it is omitted.

Remark 4.11 With the help of Theorem 3.2, we can also discuss the existence of solution of the problem 4.63-4.64. Indeed,

if we replace condition (2) of Theorem 4.10 by the condition (2) of Theorem 3.2 along with m0 2M+ and m00 a.e=
1 +m0

m0
on

[0; 1], then we have at least one positive and increasing solution of the BVP 4.63-4.64.

In the coming theorem, we present some new su�cient conditions for existence of given boundary value problems, i.e., Eq.

1.2 and 1.3-1.4.

Theorem 4.12 Assume m; n 2M+ with m(&) � & for all & 2 [0; 1]. If the following hold:

1. m0 : [0; 1]! (0;1) is Lipschitz continuous and increasing function,

2. g : [0;1)! [0;1) is continuous and increasing function such that 0 < lim
y!1

g(y(&)) <1:

Then, for � = (C)

∫
[0;1]

(
1

m0(1� �)
+ 1

)
(g � y)cd�m > 0; the problem 1.3-1.4 has at least one positive solution.
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Proof 4.4 In view of statement of Theorem 4.9, we just need to have lower and upper solution of Equation 1.3. From condition

(2); let �; � be two positive constants such that for 0 � y � �; 
 = max
y2[0;�]

g(y) > 0; and for y � �; we have g � �: Clearly, we

have g(y) � �+ � for all y � 0:

Let us consider the mix order-
(

d
d�n

; d
d�m

)
di�erential equation

d

d�n

(
dz1(&)

d�m

)
= �+ � for 0 < & < 1; (4.65)

Note that, Equation 4.65 has solution

z1(&) = (�+ �)(C)

∫
[0;&]

nd�m for 0 < & < 1; (4.66)

clearly, z1 is an upper solution of Equation 4.65, that is, d
d�n

(
dz1
d�m

)
� g(z1): Similarly, let z2 = 0 be a lower solution of Equation

4.65, and then we have z1(&) � z2(&) = 0 for all & 2 [0; 1]: Thus, conditions (1) and (2) of Theorem 4.9 hold. Hence, proof is

done.

Theorem 4.13 Assume that the conditions of Theorem 3.2 hold except condition (3): Moreover, if the following condition

(E) : 0 < lim
y!1

F (&; y(&)) <1:

holds, then the problem 1.2 has at least one positive solution.

Proof 4.5 Proceeding the proof of Theorem 4.12 for equation 1.2 and then by using Theorem 3.2. Thus, we compete the proof.

Remark 4.14 In all above theorems, we can also consider m0 as continuously di�erentiable function on [0; 1] instead of conditions

on m0 because every continuously di�erentiable function is Lipschitz continuous on [0; 1]:

Remark 4.15 In view of Theorem 4.13, similar theorem can be done for problem 1.2 with some di�erent conditions.

5. Krasnoselskii Fixed Point Theorem

In this section, we are going to discuss a well-known Krasnoselskii �xed point theorem for the considered boundary value problem

(BVP) 1.3-1.4. In the end, one simple example is given to illustrate the �nding.

Theorem 5.1 Assume m; n 2M+ with m0 is positive increasing function on [0; 1]; and if the following

1. g : [0;1)! [0;1) is continuous and increasing function, and there exists a constant L > 0 such that

jg(z1)� g(z2)j � Lkz1 � z2kX : (5.67)

where z1; z2 2 X with L �
1

m(1)n(1)
;

holds. Then, for � = (C)

∫
[0;1]

(
1

m0(1� �)
+ 1

)
(g � y)cd�m > 0; the BVP 1.3-1.4 has at least one positive increasing solution

in U .

Proof 5.1 Let kg � ykX � �2; and �x �2(1 +m(1)) � 
; where 
 is positive real number. In order to apply Theorem 1.2 to the

given boundary value problem, we �rst need to consider a bounded set

U = fy 2 Xj y is non-negative and increasing with kykX � 
; 
 > 0g: (5.68)

Implies, U is non-empty closed bounded convex subset of X ; and then de�ne the operators Y1 and Y2 on U such that

(Y1y)(&) = (C)

∫
[0;1]

(g � y)cd�m2
; (5.69)

and

(Y2y)(&) = (C)

∫
[0;&]

(g � y)cd�m; (5.70)
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where m2(s) =
m(&)
m(1)

s for all s 2 [0; 1] (see Equation 4.56). Clearly, Y1y and Y2y both are non-negative and increasing, then so

Y1y1 + Y2y2 for all y1; y2 2 U . Now, for y1; y2 2 U ; we have

jY1y1 + Y2y2j �

∫ 1

0

m(&)

m(1)
j(g � y1)c(�)jd� +

∫ &

0

m0(& � �)j(g � y2)c(�)jd�

� �2(1 +m(1)) � 
: (5.71)

Hence, kY1y1 + Y2y2kX � �2 implies Y1y1 + Y2y2 2 U : Thus, condition (1) of Theorem 1.2 holds.

Being the continuity of the functions g; y and m; we have the continuity of Y1: It is also uniformly bounded as for all y 2 U
and & 2 [0; 1]; we have

j(Y1y)&j �

∣∣∣∣∫ 1

0

m(&)

m(1)
(g � y)c(�)d�

∣∣∣∣ � �2; (5.72)

that is, kY1ykX � �2: Therefore, Y1 is uniformly bounded operator. Next to show the equicontinuity of the operator Y1; so, let

y 2 U and &1; &2 2 [0; 1] such that &1 < &2: Then, we conclude

jY1y(&1)� Y1y(&2)j =

∣∣∣∣∫ 1

0

m(&1)

m(1)
(g � y)c(�)d� �

∫ 1

0

m(&2)

m(1)
(g � y)c(�)d�

∣∣∣∣
�

�2

m(1)
j&1 � &2j � �; (5.73)

whenever j&1 � &2j < �; where � = �m(1)
�2

for each � > 0: Hence, Y1(U) is equicontinuous and then by Arzela-Ascoli Theorem, we

obtain the compactness of Y1: It is now enough to show the contraction of the operator Y2: For y1; y2 2 U and from condition

(1) of Theorem 5.1, we obtain

j(Y1y1)(&)� (Y1y2)(&)j �

∣∣∣∣∫ &

0

m0(& � �)(g � y1)c(�)d� �

∫ &

0

m0(& � �)(g � y2)c(�)d�

∣∣∣∣
�

∫ &

0

m0(& � �) j(g � y1)c(�)� (g � y2)c(�)j d�

�

∫ &

0

m0(& � �)

(∫ �

0

n0(� � s) jg(y1(s))� g(y2(s))j ds

)
d�

� Ln(1)m(1)jy1 � y2j: (5.74)

Implies k(Y1y1)(&)� (Y1y2)(&)kX � Ln(1)m(1)ky1 � y2kX : Since L �
1

m(1)n(1)
; therefore, operator Y is a contraction. Finally,

by using Krasnoselskii Fixed Point Theorem 1.2, there is a point y 2 U such that

y = L1y + Y2y

= (C)

∫
[0;&]

(g � y)cd�m1
+ (C)

∫
[&;1]

(g � y)cd�m2
; (5.75)

where m1 and m2 are in Equation 4.56. It is a positive increasing solution of BVP 1.3-1.4, i.e., it has at least one solution.

Hence, proof is done.

Example 5.2 Consider the following boundary value problem (BVP)

d

d�n

(
dy(&)

d�m

)
=

ey

3
for all & 2 [0; 1] (5.76)

y(0) = 0; y(1) =
2

3

∫ 1

0

∫ �

0

(1 + e1�� )(� � s)ey(s)dsd�; (5.77)

here, m(&) = e& � 1; and n(&) = &2 for all & 2 [0; 1]; and g(&) = e& for & � 0: Therefore, it is easy to see that the functions

m; n 2M+ and g is positive, increasing and satisfy equation 5.67 such that

1

3
jey1(&) � ey2(&)j �

1

3
ky1 � y2kX ; for each y1; y2 2 [0;1); & 2 [0; 1]; (5.78)

where L = 1
3
and Lm(1)n(1) = (e�1)

3
< 1: Thus, from Theorem 5.1, it is straightforward to conclude that the problem 5.76-5.77

has at least one positive solution in U :

Remark 5.3 Similarly, Theorem 1.2 can also be used for IVP 1.2, where the two important operators can be taken as Y1y(&) =

(C)
∫
[0;&]

(∫ �

0

F (s; y(s))ds

)
d�m0 and Y2y(&) = m0(0)

∫ &

0

F (s; y(s))ds: It is not di�cult to show that Y1y1 + Y2y2 2 U for all

y1; y2 2 U : Also, under certain conditions on m00 and F; we can have the continuity and compactness of Y1; and contraction of

operator Y2:
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6. Conclusion

Motivated by the Sugeno derivative, we have studied the existence of solutions of the new �rst and mix-order di�erential

equation with respect to distorted Lebesgue measure. These equations are more general than the ordinary di�erential equations

(IVP and BVP), and both coincide with particular distorted Lebesgue measure �m (i.e., m(&) = & for all & 2 [0; 1]). Working

with these equations is more restrictive than working with ordinary di�erential equations because we keep the non-negative and

non-decreasing conditions on the unknown function throughout the investigation. Importantly, in order to apply a well-known

�xed point theorem on cones in the semi-order Banach space, we have constructed suitable corresponding operators for the

problems, respectively in this paper. Further, for the existence and uniqueness of �rst-order di�erential equation, we use Picard's

method. In addition, we also applied the Krasnoselskii �xed point theorem for the IVP and BVP. We have also demonstrated

the expression of the solutions of corresponding equations by giving various variety examples with graphical representations to

help readers understand.
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