References

1. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387:1109–22.
2. Birdi G, Cooke R, Knibb RC. Impact of atopic dermatitis on quality of life in adults: A systematic review and meta-analysis. International Journal of Dermatology. 2020;59:e75–91.
3. Tarhini A, Kudchadkar RR. Predictive and on-treatment monitoring biomarkers in advanced melanoma: Moving toward personalized medicine. Cancer Treatment Reviews [Internet]. 2018;71:8–18. Available from: http://dx.doi.org/10.1016/j.ctrv.2018.09.005
4. Dummer R, Brase JC, Garrett J, Campbell CD, Gasal E, Squires M, et al. Adjuvant dabrafenib plus trametinib versus placebo in patients with resected, BRAFV600-mutant, stage III melanoma (COMBI-AD): exploratory biomarker analyses from a randomised, phase 3 trial. The Lancet Oncology [Internet]. 2020;21:358–72. Available from: http://dx.doi.org/10.1016/S1470-2045(20)30062-0
5. Tampa M, Sarbu MI, Mitran MI, Mitran CI, Matei C, Georgescu SR. The Pathophysiological Mechanisms and the Quest for Biomarkers in Psoriasis, a Stress-Related Skin Disease. Disease Markers [Internet]. 2018;2018:1–14. Available from: http://dx.doi.org/10.1155/2018/5823684
6. Chovatiya R, Silverberg JI. The heterogeneity of atopic dermatitis. Journal of Drugs in Dermatology [Internet]. 2022;21:172–6. Available from: http://dx.doi.org/10.36849/JDD.6408
7. Thijs JL, Strickland I, Bruijnzeel-Koomen CAFM, Nierkens S, Giovannone B, Csomor E, et al. Moving toward endotypes in atopic dermatitis: Identification of patient clusters based on serum biomarker analysis. Journal of Allergy and Clinical Immunology [Internet]. 2017;140:730–7. Available from: http://dx.doi.org/10.1016/j.jaci.2017.03.023
8. Francuzik W, Alexiou A, Worm M. Safety of dupilumab in patients with atopic dermatitis: expert opinion. Expert Opinion on Drug Safety [Internet]. 2021;20:997–1004. Available from: http://dx.doi.org/10.1080/14740338.2021.1939673
9. Thaçi D, L. Simpson E, Deleuran M, Kataoka Y, Chen Z, Gadkari A, et al. Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: a pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 and LIBERTY AD SOLO 2). Journal of Dermatological Science [Internet]. 2019;94:266–75. Available from: http://dx.doi.org/10.1016/j.jdermsci.2019.02.002
10. Renert-Yuval Y, Thyssen JP, Bissonnette R, Bieber T, Kabashima K, Hijnen D, et al. Biomarkers in atopic dermatitisa review on behalf of the International Eczema Council. Journal of Allergy and Clinical Immunology [Internet]. 2021;147:1174–1190.e1. Available from: http://dx.doi.org/10.1016/j.jaci.2021.01.013
11. Reiger M, Traidl-Hoffmann C, Neumann AU. The skin microbiome as a clinical biomarker in atopic eczema: Promises, navigation, and pitfalls. Journal of Allergy and Clinical Immunology [Internet]. 2020;145:93–6. Available from: http://dx.doi.org/10.1016/j.jaci.2019.11.004
12. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research [Internet]. 2012;22:850–9. Available from: http://dx.doi.org/10.1101/gr.131029.111
13. Francuzik W, Franke K, Schumann R, Heine G, Worm M. Propionibacterium acnes Abundance Correlates Inversely with Staphylococcus aureus: Data from Atopic Dermatitis Skin Microbiome. Acta Dermato Venereologica [Internet]. 2018;98:490–5. Available from: http://dx.doi.org/10.2340/00015555-2896
14. Francuzik W, Pažur K, Dalke M, Dölle-Bierke S, Babina M, Worm M. Serological profiling reveals hsa-miR-451a as a possible biomarker of anaphylaxis. JCI insight. 2022;7:e156669.
15. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods [Internet]. 2012;9:671–5. Available from: http://dx.doi.org/10.1038/nmeth.2089
16. Kuhn M. Caret: Classification and regression training [Internet]. 2020. Available from: https://CRAN.R-project.org/package=caret
17. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15:550.
18. Nousbeck J, McAleer Ma, Hurault G, Kenny E, Harte K, Kezic S, et al. MicroRNA analysis of childhood atopic dermatitis reveals a role for miR-451a*. British Journal of Dermatology [Internet]. 2021;184:514–23. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/bjd.19254
19. Iwamoto K, Moriwaki M, Miyake R, Hide M. Staphylococcus aureus in atopic dermatitis: Strain-specific cell wall proteins and skin immunity. Allergology International [Internet]. 2019;68:309–15. Available from: http://dx.doi.org/10.1016/j.alit.2019.02.006
20. Hamilton JD, Harel S, Swanson BN, Brian W, Chen Z, Rice MS, et al. Dupilumab suppresses type 2 inflammatory biomarkers across multiple atopic, allergic diseases. Clinical & Experimental Allergy [Internet]. 2021;51:915–31. Available from: http://dx.doi.org/10.1111/cea.13954
21. Raap U, Goltz C, Deneka N, Bruder M, Renz H, Kapp A, et al. Brain-derived neurotrophic factor is increased in atopic dermatitis and modulates eosinophil functions compared with that seen in nonatopic subjects. The Journal of Allergy and Clinical Immunology. 2005;115:1268–75.
22. Fölster-Holst R, Papakonstantinou E, Rüdrich U, Buchner M, Pite H, Gehring M, et al. Childhood atopic dermatitisBrain-derived neurotrophic factor correlates with serum eosinophil cationic protein and disease severity. Allergy [Internet]. 2016;71:1062–5. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/all.12916
23. Wechsler ME, Klion AD, Paggiaro P, Nair P, Staumont-Salle D, Radwan A, et al. Effect of Dupilumab on Blood Eosinophil Counts in Patients With Asthma, Chronic Rhinosinusitis With Nasal Polyps, Atopic Dermatitis, or Eosinophilic Esophagitis. The Journal of Allergy and Clinical Immunology: In Practice [Internet]. 2022;10:2695–709. Available from: http://dx.doi.org/10.1016/j.jaip.2022.05.019
24. Morita H, Kitano Y, Kawasaki N. Elevation of serum-soluble E-selectin in atopic dermatitis. Journal of Dermatological Science. 1995;10:145–50.
25. Chong BF, Murphy JE, Kupper TS, Fuhlbrigge RC. E-selectin, thymus- and activation-regulated chemokine/CCL17, and intercellular adhesion molecule-1 are constitutively coexpressed in dermal microvessels: a foundation for a cutaneous immunosurveillance system. Journal of Immunology (Baltimore, Md: 1950). 2004;172:1575–81.
26. Khattri S, Shemer A, Rozenblit M, Dhingra N, Czarnowicki T, Finney R, et al. Cyclosporine in patients with atopic dermatitis modulates activated inflammatory pathways and reverses epidermal pathology. The Journal of Allergy and Clinical Immunology. 2014;133:1626–34.
27. Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C, Ranade K, et al. Treatment of atopic dermatitis with tralokinumab, an antiIL-13 mAb. Journal of Allergy and Clinical Immunology [Internet]. 2019;143:135–41. Available from: https://www.sciencedirect.com/science/article/pii/S0091674918308509
28. Brunner PM, Pavel AB, Khattri S, Leonard A, Malik K, Rose S, et al. Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab. Journal of Allergy and Clinical Immunology [Internet]. 2019;143:142–54. Available from: https://www.jacionline.org/article/S0091-6749(18)31141-2/fulltext
29. Kakinuma T, Nakamura K, Wakugawa M, Mitsui H, Tada Y, Saeki H, et al. Thymus and activation-regulated chemokine in atopic dermatitis: Serum thymus and activation-regulated chemokine level is closely related with disease activity. The Journal of Allergy and Clinical Immunology. 2001;107:535–41.
30. Nakazato J, Kishida M, Kuroiwa R, Fujiwara J, Shimoda M, Shinomiya N. Serum levels of Th2 chemokines, CCL17, CCL22, and CCL27, were the important markers of severity in infantile atopic dermatitis. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology. 2008;19:605–13.
31. Koizumi M, Kuzume K, Ishida Y, Midoro-Horiuti T. Serum thymus and activation-regulated chemokine (TARC) levels correlate with atopic dermatitis disease severity in patients < 6 months. Allergy and Asthma Proceedings [Internet]. 2022;43:461–7. Available from: http://dx.doi.org/10.2500/aap.2022.43.220034
32. Silverberg JI, Margolis DJ, Boguniewicz M, Fonacier L, Grayson MH, Ong PY, et al. Validation of five patient-reported outcomes for atopic dermatitis severity in adults. British Journal of Dermatology [Internet]. 2019; Available from: http://dx.doi.org/10.1111/bjd.18002
33. Beck LA, Thaçi D, Hamilton JD, Graham NM, Bieber T, Rocklin R, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. The New England Journal of Medicine. 2014;371:130–9.
34. Hamilton JD, Suárez-Fariñas M, Dhingra N, Cardinale I, Li X, Kostic A, et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. The Journal of Allergy and Clinical Immunology. 2014;134:1293–300.
35. Simpson E, Eckert L, Gadkari A, Mallya UG, Yang M, Nelson L, et al. Validation of the Atopic Dermatitis Control Tool (ADCT©) using a longitudinal survey of biologic-treated patients with atopic dermatitis. BMC Dermatology [Internet]. 2019;19. Available from: http://dx.doi.org/10.1186/s12895-019-0095-3
36. Chopra R, Silverberg JI. Assessing the severity of atopic dermatitis in clinical trials and practice. Clinics in Dermatology [Internet]. 2018;36:606–15. Available from: http://dx.doi.org/10.1016/j.clindermatol.2018.05.012
37. Ungar B, Garcet S, Gonzalez J, Dhingra N, Correa da Rosa J, Shemer A, et al. An Integrated Model of Atopic Dermatitis Biomarkers Highlights the Systemic Nature of the Disease. The Journal of Investigative Dermatology. 2017;137:603–13.
38. Nakahara T, Izuhara K, Onozuka D, Saeki H, Nunomura S, Takenaka M, et al. Exploring biomarkers to predict clinical improvement of atopic dermatitis in patients treated with dupilumab ( B-PAD study). Clinical & Experimental Allergy [Internet]. 2022; Available from: http://dx.doi.org/10.1111/cea.14267
39. miRNA expression profiles of the perilesional skin of atopic dermatitis and psoriasis patients are highly similar | scientific reports [Internet]. Available from: https://www.nature.com/articles/s41598-022-27235-2
40. Callewaert C, Nakatsuji T, Knight R, Kosciolek T, Vrbanac A, Kotol P, et al. IL-4Rα Blockade by Dupilumab Decreases Staphylococcus aureus Colonization and Increases Microbial Diversity in Atopic Dermatitis. Journal of Investigative Dermatology [Internet]. 2020;140:191–202.e7. Available from: http://dx.doi.org/10.1016/j.jid.2019.05.024
41. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J [Internet]. 2011;17:10. Available from: https://doi.org/10.14806/ej.17.1.200
42. Griffiths-Jones S, Saini HK, Dongen S van, Enright AJ. miRBase: Tools for microRNA genomics. Nucleic Acids Research [Internet]. 2007;36:D154–8. Available from: https://doi.org/10.1093/nar/gkm952
43. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research [Internet]. 2011;40:37–52. Available from: https://doi.org/10.1093/nar/gkr688
44. Andrews S. FastQC: A quality control tool for high throughput sequence data. Babraham bioinformatics, Babraham Institute, Cambridge, United Kingdom. 2010;
45. Sayols S, Scherzinger D, Klein H. dupRadar: A bioconductor package for the assessment of PCR artifacts in RNA-seq data. BMC Bioinformatics. 2016;17.
46. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/
47. Stephens M. False discovery rates: A new deal. Biostatistics [Internet]. 2016;275–94. Available from: https://doi.org/10.1093/biostatistics/kxw041
48. Ignatiadis N, Klaus B, Zaugg JB, Huber W. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods [Internet]. 2016;13:577–80. Available from: https://doi.org/10.1038/nmeth.3885
49. Galili, Tal, O’Callaghan, Alan, Sidi, Jonathan, et al. Heatmaply: An r package for creating interactive cluster heatmaps for online publishing. Bioinformatics. 2017;34:1600–2.