Supervised machine learning classifiers often encounter challenges related to performance, accuracy, and overfitting. This paper introduces the Artificial Liver Classifier (ALC), a novel supervised learning classifier inspired by the human liver's detoxification function. The ALC is characterized by its simplicity, speed, hyperparameters-free, ability to reduce overfitting, and effectiveness in addressing multi-classification problems through straightforward mathematical operations. To optimize the ALC's parameters, an improved FOX optimization algorithm (IFOX) is employed as the training method. The proposed ALC was evaluated on five benchmark machine learning datasets: Iris Flower, Breast Cancer Wisconsin, Wine, Voice Gender, and MNIST. The results demonstrated competitive performance, with the ALC achieving 100% accuracy on the Iris dataset, surpassing logistic regression, multilayer perceptron, and support vector machine. Similarly, on the Breast Cancer dataset, it achieved 99.12% accuracy, outperforming XGBoost and logistic regression. Across all datasets, the ALC consistently exhibited lower overfitting gaps and loss compared to conventional classifiers. These findings highlight the potential of leveraging biological process simulations to develop efficient machine learning models and open new avenues for innovation in the field.