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Abstract15

Anthropogenic CO2 emissions lead to ocean warming, deoxygenation and acidification.16

Superimposed on the long-term trends are episodic extremes of temperature, oxygen, and17

acidity. Here we present an innovative method for assessing single and multiple stres-18

sor extremes using a high-resolution regional model of the Northeastern Pacific Ocean.19

We use an unsupervised clustering approach to identify regions with similar habitat char-20

acteristics near the seafloor, define extreme thresholds seasonally using a fixed baseline21

(1996-2020) within each cluster, and quantify the fraction of ocean waters that exceed22

these thresholds for both single and compound stressors. Compound extremes (most com-23

monly of O2 and acidification) are rare but show an increasing trend in some clusters.24

Potential predictability of occurrence of extremes is demonstrated by correlation with25

basin-scale climate variability.26

Plain Language Summary27

The ocean is becoming warmer, losing oxygen and acidifying as a result of CO2 emis-28

sions. Superimposed on the mean changes are episodic extremes that can have detrimen-29

tal impacts on ecosystems. To better understand the nature of extreme conditions on30

the continental margin, we use a statistical approach to characterize these extremes in31

the recent past (1996-2019).32

We introduce a method for characterizing extremes that uses machine learning to33

divide the data into regions with relatively consistent environmental conditions (tem-34

perature, oxygen, acidity), and define the extremes based on the historical statistics of35

variability of each of these fields. For the Northeast Pacific continental margin, a sub-36

stantial number of single stressor extremes occur annually. However, coincident extremes37

of more than one stressor are rare. Local extremes are related to large scale climate vari-38

ability such as the North Pacific Gyre Oscillation. Long term trends are weak but de-39

tectable in some cases.40

1 Introduction41

Global warming, ocean deoxygenation, and acidification are inextricably linked. The42

ocean has taken up about 30% of anthropogenic carbon emissions and about 90% of the43

excess heat (Pörtner et al., 2019) which warms and acidifies the ocean and leads to de-44

oxygenation through changes in solubility, stratification, ventilation, and respiration (Keeling45

et al., 2010; Breitburg et al., 2018). Ocean climate is changing rapidly and episodic ex-46

tremes can drive changes in ecosystems decades before the mean state reaches that ex-47

treme.48

Extremes of temperature, oxygen and acidity are projected to increase in the fu-49

ture (Kwiatkowski et al., 2020; Gruber et al., 2021). When these three stressors occur50

concurrently or consecutively they can have synergistic effects (Gruber, 2011) that im-51

pact organisms in ways that exceed the effects of a single stressor in isolation Pörtner52

et al. (2005). For example, increasing temperature can make species more sensitive to53

ocean acidification (Pörtner & Farrell, 2008), and oxygen and acidification can impact54

the thermal tolerances for some species (Pörtner, 2010). Some species will shift their dis-55

tributions in response to these stressors (Thompson et al., 2023), while others will be un-56

able to.57

Episodic occurrences of anomalously warm ocean temperatures, known as marine58

heatwaves (MHW) have been associated with oxygen and acidification anomalies as sol-59

ubility declines and stratification increases (Mogen et al., 2022). An analysis of satel-60

lite derived sea surface temperatures from the recent past (1982-2016) indicates that ma-61

rine heatwaves (MHW) are increasing in duration and intensity. Earth system models62
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project increasing frequency, breadth, intensity and duration of MHWs (Frölicher et al.,63

2018). A doubling of impacts on species is anticipated by the 2050s (Cheung & Frölicher,64

2020).65

Marine heatwaves threaten marine life in the North Pacific and are associated with66

increasing occurrences of harmful algal blooms (Cavole et al., 2016), declines in the nu-67

tritional value of key forage fish (von Biela et al., 2019), reduction in stocks of commer-68

cially important fish (Cheung & Frölicher, 2020), mass mortality events, and loss of ecosys-69

tem services (Smale et al., 2019). The eastern North Pacific is one of the most produc-70

tive regions in the world ocean (Cushing, 1971) and may be particularly vulnerable to71

biogeochemical extremes due to upwelling of waters that are low in oxygen and highly72

corrosive (primarily due to the age of the water). Corrosive (ΩA < 1) and hypoxic (O2 <73

60mmolm−3) water is projected to encroach on the Northeast Pacific continental mar-74

gin by 2046-2065 (Holdsworth et al., 2021).75

Previous studies have divided the shelf by defining bioregions using physical ocean76

variables and expert knowledge of the prevailing circulation (Zacharias et al., 1998). Rubidge77

et al. (2016) used machine learning to assimilate biological and environmental data to78

define ecoregions. They showed that the resulting ecological units represent more dis-79

tinct species assemblages than the classifications based on expert knowledge. Cluster-80

ing with machine learning reduces the need for personal interpretation or judgment by81

defining ecoregions using the data themselves.82

This paper introduces a novel method for characterizing individual and compound83

extremes of temperature, oxygen, and acidification. The approach uses a clustering tech-84

nique to establish subregions with similar environmental conditions and defines ‘extreme’85

thresholds for upwelling and downwelling seasons using a fixed baseline. Assuming that86

extremes in these unique environmental spaces are influenced by similar processes helps87

disentangle the mechanistic drivers for this vast and complex region of the shelf. We use88

the method to analyze output from a high-resolution ocean biogeochemistry model of89

the Northeast Pacific from 1996 to 2019, restricting our analysis to the benthic layer of90

the Canadian coastal region, which contains unique ecosystems like glass sponge reefs91

and economically important shellfish and rockfish habitats. We then examine the occur-92

rence of extreme conditions for both single and compound stressors.93

Section 2 describes the regional model and the clustering technique; Section 3 dis-94

cusses the spatial distribution of extreme thresholds and their evolution over time; Sec-95

tion 4 discusses these results in the broader context of extremes on continental margins96

and the utility of these findings to ecosystem management; lastly, Section 5 provides an97

overall summary of the paper and key results.98

2 Methodology99

2.1 Northeastern Pacific Ocean Model100

The Northeastern Pacific (NEP) model domain spans the Canadian Pacific Ocean101

east of 140◦W and north of 45◦N (Figure 1 ab, Figure S1). The horizontal resolution is102

nominally 1/36◦ latitude and longitude which gives a variable grid spacing between 1.5103

and 2.25 km. The model includes the ocean biogeochemistry module known as the Cana-104

dian Ocean Ecosystem model (CanOE) (Christian et al., 2022).105

The regional ocean model, NEP36-CanOE, is an updated version of the one used106

in Holdsworth et al. (2021). We added a module for benthic remineralization and phy-107

toplankton and zooplankton parameters (Figure S2) were adjusted to make the commu-108

nity more representative of the Northeastern Pacific continental margin. More details109

of the model configuration and development can be found in Text S1.110
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Figure 1. Maps of the (a) Shallows and (c) Canyons clusters with (e) density as a function

of depth. Spatially averaged time-series of the daily averaged (b) dissolved oxygen, (d) aragonite

saturation state, and f) potential temperature for each cluster. Geographic locations are labelled

on Figure S1.
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The model was forced with hourly atmospheric forcing from the ERA5 reanalysis111

(Hersbach et al., 2018); the metpy package was used to convert dew point and pressure112

to specific humidity (May et al., 2021). At the open boundaries we used the Coperni-113

cus Global 1/12◦ Oceanic and Sea Ice (GLORYS12) Reanalysis (Lellouche et al., 2021)114

for the physical variables, we used the Global Ocean Data Analysis Project version 2 (GLO-115

DAP) (Key et al., 2015; Lauvset et al., 2016) for dissolved inorganic carbon (DIC) and116

Total Alkalinity (TAlk), and World Ocean Atlas 2018 for nitrate plus nitrite (NO3) and117

dissolved oxygen (O2) (Garcia et al., 2019a, 2019b).118

The model’s grid spacing is insufficient to resolve locations very near to the shore119

as well as the narrow straits and channels along the coast. Therefore, we apply a mask120

to remove the 2 grid cells next to the coast and any channels less than 25 km wide which121

effectively removes the Salish Sea from our analysis (Figure S1).122

The hindcast simulation was extensively evaluated using all of the available ship-123

sampled data (Department of Fisheries and Oceans Canada (DFO), 2022) (Figure S3),124

Monthly Isopycnal / Mixed-layer Ocean Climatology (MIMOC) (Schmidtko et al., 2013)125

(Figure S4), and tide gauge observations from 65 stations (Figure S5). More details of126

the evaluation can be found in supplementary Text S1. The model distributions are sim-127

ilar to those of the ship-sampled observations (Figure S3). We computed several met-128

rics including the Kling-Gupta Efficiency (KGE) and its components (the Pearson cor-129

relation r, the variability ratio α, and the bias ratio β) (Kling et al., 2012; Jackson et130

al., 2019) as well as the signed root mean squared error (RMSE). All of the variables rel-131

evant to our analysis were strongly correlated with the observations and perform well132

compared to the mean observed benchmark (KGE < 0.75) (Table S2). To assess the ca-133

pability of the simulation to represent extreme conditions, we computed the 10th and134

the 90th percentile from these distributions. Extreme values for T, S, DIC, TAlk and hy-135

poxia have a relatively low bias (Table S2). Therefore, the simulation is expected to re-136

alistically represent extreme marine conditions for each of the three stressors.137

2.2 Clustering methodology138

The benthic Northeast Pacific is a heterogenous environment; spatial distribution139

of physical and biogeochemical properties is affected by topography and the large-scale140

circulation. Thus, a single definition for an extreme is not necessarily appropriate; what141

is a ‘typical’ value for one sub-region might be considered ‘extreme’ for another. Addi-142

tionally, defining specific biomes using expert knowledge is challenging due to the com-143

plex circulation and the size of the study region. Instead, we use a clustering approach144

that provides a data driven estimate of regions where the three stressors respond sim-145

ilarly to changes in upwelling/downwelling, biogeochemistry, and circulation.146

Clustering is a method used in machine learning to group similar data points to-147

gether based on certain selected features or input variables. Since we are interested in148

characterizing T, [O2], and acidification extremes, the selected features are calculated149

climatologies of T, apparent oxygen utilization (AOU), and aragonite saturation state,150

ΩA for all bottom depths less than 1000m in the model. AOU is used instead of [O2]151

to eliminate the effect of solubility on oxygen concentration (which potentially overem-152

phasizes T in defining a cluster). While ocean acidification can be considered a ‘multi-153

ple driver’ because multiple inorganic carbon parameters are changing (Hurd et al., 2019),154

we include only ΩA as a variable with important biotic impacts. Each of these is scaled155

to have zero mean and unit standard deviation. A K-means clustering algorithm (Pedregosa156

et al., 2011) is then applied to these data to find six distinct clusters whose members have157

similar relationships among the three variables (Table S3 and Figure S6). Two choices158

that were made for this study are the number of clusters and the temporal resolution159

of the data. More details on how these choices were made are given in Text S2.160
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Visual examination of the clusters (Figure S6) shows that two (d, a) of the six are161

well-defined regions representing shallow shoals and submarine canyons, respectively (Fig-162

ure 1 a, c) and referred to as Shallows and Canyons hereafter. We selected these two clus-163

ters for detailed analysis, based on their contrasting characteristics, and their ecologi-164

cal relevance; the Canyons and Shallows clusters both contain bioregions with high bio-165

diversity (c.f. the Troughs and Dogfish Bank units in Rubidge et al. (2016) Figure 3).166

However, other clusters may also be of ecological interest, for example, cluster ‘e’ high-167

lights regions of high species richness for groundfish (c.f. Figure 8 of Thompson et al.168

(2022)).169

From the climatologies, we computed the center for each of the clusters (Table S3).170

The Shallows cluster has relatively warm temperatures, low AOU (high oxygen), and arag-171

onite supersaturation, while the Canyons cluster has low T, high AOU, and undersat-172

uration (Table S3).173

Due to the changes in circulation and life stages of the biota, we examine daily out-174

put split into two seasons: an upwelling season (April to September) and a downwelling175

season (October to March). The boundary between these seasons is the average date of176

the spring and fall transitions (March 31st and October 12th) observed between 1991177

and 2020 (Boldt et al., 2020).178

2.3 Defining thresholds for extremes179

To define a threshold for what is considered extreme, we rely on the statistics of180

daily average T, [O2], and ΩA. Here we use [O2] instead of AOU, because biotic impacts181

are related to oxygen concentration.182

We implement a relative threshold approach and define a fixed baseline for each183

regime using the full 24 year time series from January 1996 to December 2019 (Gruber184

et al., 2021). Because the distributions are asymmetric (complicating the definition of185

thresholds based on variance), we choose a percentile-based approach to identify thresh-186

olds. The thresholds are calculated from the cumulative density function (distributions187

shown in Figure S7) for each cluster using the 10th percentile for ΩA and [O2], and the188

90th percentile for T (Hobday et al., 2016; Gruber et al., 2021).189

3 Results190

3.1 Characterization of the clusters191

The Shallows cluster (Figure 1 a) includes the open waters east of Haida Gwaii and192

some of the shallow banks in Queen Charlotte Sound. The Canyons cluster (Figure 1 b)193

includes the deep channels of Dixon Entrance north of Haida Gwaii, the troughs of Queen194

Charlotte Sound and connected waters along the edge of the continental shelf.195

The Shallows and Canyons have contrasting environmental conditions. Each clus-196

ter displays a strong seasonal cycle (Figure 1 b-d-f); related to seasonal upwelling and197

downwelling. Compared to the Canyons (263m average depth), the Shallows (30m av-198

erage depth) exhibits a higher seasonal amplitude, particularly for temperature. While199

this can be partly attributed to their average depth, some depths and isopycnals in the200

Shallows overlap with the Canyons, which spans a wider range (Figure 1 e).201

The thresholds that define extreme conditions during each season, calculated us-202

ing the criteria for each variable described in section 2.3, are show in Table 1. For the203

Canyons, an extreme value for O2 is close to the widely used criterion for hypoxia that204

may signify fisheries collapse (< 60mmolm−3) (Vaquer-Sunyer & Duarte, 2008), and205

is associated with aragonite undersaturation; for the Shallows, the oxygen threshold is206

well above the ‘conservation limit’ of ≃ 140mmolm−3 and occurs in aragonite saturated207
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and relatively warm waters. In the Shallows, extreme temperatures occur during the sum-208

mer months when atmospheric temperature is greatest; in the Canyons, warm extreme209

temperatures occur during downwelling (Table 1). Upwelling during summer brings rel-210

atively cool, salty, low oxygen and nutrient rich water to the deep benthic regions of the211

continental shelf; during winter, downwelling and mixing can propagate surface signals212

downward.213

Table 1. The thresholds relative to 1996-2019 (section 2.3) and maximum duration (days)

averaged over all of the grid cells within the cluster for extreme events of temperature (◦C),

dissolved oxygen (mmolm−3) and aragonite saturation state for the Shallows (Figure 1a) and

Canyons (Figure 1c) clusters.

Cluster
Upwelling
Threshold

Downwelling
Threshold

Upwelling
max duration

Downwelling
max duration

T O2 ΩA T O2 ΩA T O2 ΩA T O2 ΩA

Shallows 14.1 241 1.5 10.7 260 1.3 3.4 4.2 6.3 2.5 4.2 6.2

Canyons 6.4 59 0.6 7.1 69 0.6 6.7 6.3 5.4 7.7 7.0 5.6

3.2 Occurrence of extremes over time214

In the Canyons, two time periods (1999-2003 and 2008-2013) have a large fraction215

of waters (> 40%) with extreme values of [O2] and ΩA (Figure 2 a, b). These time pe-216

riods correspond to the positive phase of the North Pacific Gyre Oscillation (NPGO).217

For temperature, the largest fraction of extreme waters (> 50%) occurs during down-218

welling in 1998, and during upwelling in 2010, 2016 and 2019.219

In the shallows, up to 80% of waters experience extreme conditions for [O2] in 1998220

during a very strong El Niño and in 2014 during the MHW. The most extreme condi-221

tions for ΩA occurred during the upwelling season of 2009 (Figure3).222

For [O2] and T, the most extreme conditions tend to occur at the beginning of the223

downwelling season when atmospheric temperatures are warmest. While this is partly224

an artifact of having seasonally defined thresholds, it reflects the interannual variabil-225

ity in the time series.226

With the exception of an increase in ΩA extremes in the Shallows (0.004 y−1) , nei-227

ther cluster exhibits a linear trend in the percentage of extremes (Figures 2, 3, and Text228

S3). For the Canyons, this may be because the upwelled waters are old and do not con-229

tain a signature of recent anthropogenic climate change. In the shallows there may be230

a trend associated with increasing surface air temperature, but this is damped somewhat231

by mixing with subsurface waters. In any case, the timescale of the simulation conducted232

is relatively short compared to the time scales of natural variability, so the anthropogenic233

trend is not expected to be readily detectable (cf. Christian (2014); Cummins and Mas-234

son (2014)).235

Biota are sensitive to the length of time over which extreme conditions occur in ad-236

dition to the spatial extent and magnitude. We computed the average duration and the237

maximum duration of an extreme event over all of the grid cells in each cluster and then238

average over all of the clusters (Table 1). The average length of an event is around 1.5 days.239

While T and [O2] events have longer maximum duration in the Canyons, ΩA events have240

longer maximum duration in the Shallows.241
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Figure 2. The fraction of waters in the Canyons that exceed the relative threshold (Table

1) for (a) dissolved oxygen, (b) aragonite saturation state, (c) potential temperature, and (d)

compound stressors. The North Pacific Gyre Oscillation (NPGO) is shown on the secondary

axis of (a) and (b) and is colored in red when North-Eastern Pacific waters are warm and blue

when they are cold. Discontinuities at the spring and fall transition correspond to the different

thresholds for each season. The compound stressors shown in panel (d) are shown individually in

Figure S9.
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Figure 3. The fraction of waters in the Shallows that exceed the relative threshold (Table

1) for (a) dissolved oxygen, (b) aragonite saturation state, (c) potential temperature, and d)

compound stressors. Discontinuities at the spring and fall transition correspond to the different

thresholds for each season. The compound stressors shown in panel (d) are shown individually in

Figure S10.
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Compound extremes (i.e., the occurrence of extreme conditions in two or more stres-242

sors at once) can have synergistic effects on marine organisms (Pörtner et al., 2005). The243

Shallows frequently exhibited compound T and [O2] extremes during the downwelling244

season (Figure 3d and Figure S10b). Yet, the only years for which all three stressors ex-245

ceeded the thresholds in the Shallows for > 5% of waters were MHW years: 2014, the246

year of the anomalous warming pattern referred to as The Blob, and 2019, referred to247

as The Blob-2.0 (Amaya et al., 2020)(Figure 3d, Figure S10d). For the Canyons, com-248

pound extremes are relatively rare (Figure 2d and Figure S9) with the exception of [O2]249

and ΩA which exhibit the same pattern of variability as the single stressor extremes. No-250

tably, the two periods during which we have a substantial fraction of single and compound251

extremes for O2 and ΩA in the Canyons (Figure 2 and Figure S9a) are periods during252

which the NPGO is positive and is associated with enhanced upwelling in the Califor-253

nia Current system (Di Lorenzo et al., 2008).254

The other four clusters show similar patterns of variability with very few triple ex-255

tremes and, for most clusters, less than 5% of waters are extreme before 2014 (Figure256

S11). Three of the clusters (‘b’, ‘d’, ‘e’) exhibit a statistically significant (p< 0.05) trend257

in triple extremes (Text S3). This result is consistent with Hauri et al. (2024) who char-258

acterized extremes for the benthic regions of the shelf in the Gulf of Alaska; they found259

a greater fraction of waters experiencing compound (ΩA / O2) extremes, but the method-260

ologies are not directly comparable. They attributed the increase in extremes at the end261

of the time series to the secular trends of anthropogenic warming and ocean acidifica-262

tion. The secular trend likely explains the increase in triple extremes for these shallower263

clusters where the maximum mixed layer depth (MLD) is near the ocean bottom (Text264

S3).265

4 Discussion266

We introduced a method for characterizing extreme conditions in a regional ocean267

model. For NEP36-CanOE, daily temporal resolution was sufficient to resolve the ex-268

tremes (Text S2). While the model was highly correlated with available observations for269

the relevant variables (section 2.1 and Text S1), it was limited by the fact that we used270

climatologies for the rivers and did not include the effects of fluvial nutrients. We restricted271

the environmental conditions used in the unsupervised clustering approach to indices of272

warming, deoxygenation, and acidification. The two clusters selected for discussion are273

of ecological importance because of their high biodiversity (Rubidge et al., 2016) and con-274

trasting environmental conditions (Table 1). These contrasting characteristics allow us275

to distinguish between different mechanistic drivers for marine extremes in the entire do-276

main.277

Thresholds defining extremes for each potential stressor were established separately278

for the upwelling and downwelling seasons because they represent different oceanographic279

regimes, and coincide with changes in the mean direction of flow of coastal currents (Thomson280

& Krassovski, 2010). These seasons are relevant to benthic organisms that are adapted281

to local conditions. Marine organisms may be in different life stages during these sea-282

sons, with different tolerance levels depending on life stage (Stachura et al., 2014; Hob-283

day et al., 2016). For example, consider two economically important species from the Shal-284

lows and Canyons: Dungeness crab, which experience seasonal vulnerability as a result285

of their complex life cycle (Berger et al., 2021), and rockfish, whose juvenile abundance286

is linked to nearshore temperatures in February and March (Ainley et al., 1993; Laidig287

et al., 2007) and for which coastal downwelling has been shown to influence recruitment288

(Markel & Shurin, 2020).289

The extreme thresholds (Table 1) in the Canyons cluster are closer to established290

ecological thresholds (Vaquer-Sunyer & Duarte, 2008) which makes this cluster partic-291

ularly vulnerable. However, ecosystem reorganizations may develop progressively rather292
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than abruptly because different species have different tolerance levels (Pörtner et al., 2005).293

Even if the statistical thresholds are not life threatening to a particular organism, they294

can still have detrimental effects on growth and reproductive success if species are well295

adapted to their environmental conditions.296

Although compound extremes are rare, they are increasing for some clusters. The297

Canadian northeastern Pacific region shares many ecosystem attributes and physical drivers298

with other eastern boundary current upwelling systems with similar future projections299

of warming, deoxygenation and increasing acidification (Bograd et al., 2023). Therefore,300

recent and potential future increases in compound extremes have global relevance be-301

cause they present a threat to the ecosystem services that these systems provide.302

Compound extremes can be particularly detrimental to organisms because of their303

synergistic effects (Pörtner, 2010) and further investigation into how these extremes could304

affect organisms is warranted. Our definition of extremes occurring at the same time and305

in the same grid cell is potentially too restrictive for mobile organisms. An approach which306

considers the entire water column (Wong et al., 2024) may be more appropriate for or-307

ganisms that can move vertically, or laterally to different depths on the seafloor.308

The upwelling and downwelling seasons impact the Shallows and Canyons differ-309

ently, which can be partly attributed to their relative depths (Figure 1). The Canyons310

are strongly influenced by upwelling waters that are relatively cold and low in oxygen311

with a low ΩA, and only weakly influenced by surface T changes. The Shallows expe-312

rience much more temperature variability in response to the seasonally changing atmo-313

sphere and are only weakly influenced by upwelled waters. Consequently, the Canyons314

experience more frequent compound extremes in ΩA and [O2], while the shallows expe-315

rience more frequent compound extremes in [O2] and T (Figs. S9 and S10).316

We hypothesize that much of the interannual variability in the percentage of wa-317

ters that exceed the thresholds (Figs. 2 and 3) can be explained by the strength and length318

of seasonal upwelling/downwelling in the Canyons, and direct forcing by the atmosphere319

in the Shallows. There are many factors that contribute to the relative influence of each320

of these processes on extreme conditions for the cluster and season including the tim-321

ing of the spring and fall transitions, mixing and stratification of the water column, changes322

in the California Undercurrent, and coastally trapped waves (Thomson & Krassovski,323

2010; Engida et al., 2016; Mogen et al., 2022; Franco et al., 2023; Amaya et al., 2023).324

Because the clusters are stratified by depth, the relative contribution of upwelling from325

below and atmospheric forcing from above is influenced by the average depth of the clus-326

ter relative to the MLD (Text S3, Table S3).327

Correlations between the single stressor extremes and the NPGO, Multivariate ENSO328

Index (MEI), Pacific Decadal Oscillation (PDO) and Bakun upwelling index provide ev-329

idence that changes in upwelling and downwelling and large scale atmospheric forcing330

drive the variability in extremes (Figure S13 and Text S4). While the only local indi-331

cator that we examined was the Bakun index, the correlations (Figure S13) support the332

conclusion that large scale indicators (NPGO, PDO and MEI) are more predictive of ecosys-333

tem change along the continental margin than local indicators (Hallett et al., 2004; Li334

et al., 2013; Mackas et al., 2013).335

5 Conclusions336

Characterizing the occurrence of extremes in the recent past when they occur in337

isolation, or in combination is a step towards understanding the risks that they pose to338

local ecosystems and fisheries. This study presented a simple approach for statistically339

characterizing extreme marine conditions of high temperature, low oxygen, and high acid-340

ification. We applied it to a numerical model of the Northeastern Pacific continental mar-341

gin, but it can be adapted to other regions and time periods. We used unsupervised clus-342
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tering to isolate regions with similar environmental conditions and defined the extremes343

using a relative threshold with a fixed baseline (1996-2020) (Hobday et al., 2016; Gru-344

ber et al., 2021).345

The analysis of extremes in the Northeastern Pacific demonstrated that the strength346

of seasonal upwelling/downwelling and direct forcing by the atmosphere strongly influ-347

ence extreme conditions. Large scale processes (like the NPGO) may be more predic-348

tive of extreme conditions of [O2] and ΩA than local indicators like the Bakun index and349

further investigation of these relationships is needed. While a substantial number of sin-350

gle stressor extremes occur annually, compound extremes are rare. Most of the multi-351

ple stressor extremes involve coincident O2 and ΩA extremes, with a greater number in352

the Canyons than the Shallows. Multiple stressor extremes are increasing for clusters where353

the mixed layer extends to near the ocean bottom. Under future climate change, com-354

pound extremes may become more common, with detrimental effects on ecologically and355

commercially important species.356

6 Open Research357

The open source code that the ocean model is based on here https://www.nemo358

-ocean.eu/ The observational data used to evaluate the model is available online in-359

cluding the ship-sampled data (Department of Fisheries and Oceans Canada (DFO), 2022),360

tide gauge data (NRCan, 2022) and mixed layer depths (NOAA Pacific Marine Environ-361

mental Laboratory, 2021). The model data needed for the analysis can be found here https://362

doi.org/10.5281/zenodo.13138494 (Holdsworth et al., 2024a). The python notebooks363

used for the analysis of the data is found on Github here https://github.com/ashao/364

NEP36 cluster analysis (Holdsworth et al., 2024b) and will be added to a zenodo repos-365

itory for permanent storage if this manuscript is published.366
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Lellouche, J.-M., Greiner, E., Bourdallé-Badie, R., Garric, G., Melet, A., Drévillon,516

M., . . . Le Traon, P.-Y. (2021). The Copernicus Global 1/12° Oceanic517

and Sea Ice GLORYS12 Reanalysis. Frontiers in Earth Science, 9 . doi:518

10.3389/feart.2021.698876519

Li, L., Mackas, D., Hunt, B., Schweigert, J., Pakhomov, E., Perry, R. I., . . . Pitcher,520

T. J. (2013). Zooplankton communities in the Strait of Georgia, British521

Columbia, track large-scale climate forcing over the Pacific Ocean. Progress in522

Oceanography , 115 , 90–102. doi: 10.1016/j.pocean.2013.05.025523

Mackas, D., Galbraith, M., Faust, D., Masson, D., Young, K., Shaw, W., . . . Sas-524

tri, A. (2013). Zooplankton time series from the Strait of Georgia: Results525

from year-round sampling at deep water locations, 1990–2010. Progress in526

Oceanography , 115 , 129–159. doi: 10.1016/j.pocean.2013.05.019527

Markel, R. W., & Shurin, J. B. (2020). Contrasting effects of coastal upwelling on528

growth and recruitment of nearshore Pacific rockfishes (genus Sebastes). Cana-529

dian Journal of Fisheries and Aquatic Sciences, 77 (6), 950–962. doi: 10.1139/530

cjfas-2019-0179531

May, R. M., Arms, S. C., Marsh, P., Bruning, E., Leeman, J. R., Goebbert, K.,532

. . . Bruick, Z. S. (2021). Metpy: A Python package for meteorologi-533

cal data. Retrieved from https://github.com/Unidata/MetPy doi:534

10.5065/D6WW7G29535

Mogen, S. C., Lovenduski, N. S., Dallmann, A. R., Gregor, L., Sutton, A. J., &536

Bograd, S. J. (2022). Ocean biogeochemical signatures of the North Pa-537

cific Blob. Geophysical Research Letters, 49 (9), e2021GL096938. doi:538

10.1029/2021GL096938539

NOAA Pacific Fisheries Environmental Laboratory. (2022). Traditional 3 degree540

Bakun index [Data set]. National Oceanic and Atmospheric Administration.541

(Data obtained on 03/10/2022 from oceanwatch.pfeg.noaa.gov/products/542

PFELData/upwell/monthly/upindex.mon)543

NOAA Pacific Marine Environmental Laboratory. (2021). Monthly Isopycnal544

& Mixed-layer Ocean Climatology (MIMOC) [Data set]. National Oceanic545

and Atmospheric Administration. (Data obtained on 09/15/2021 from546

https://www.pmel.noaa.gov/mimoc/)547

NOAA Physical Sciences Laboratory. (2022). The Pacific Decadel Oscillation (PDO)548

[Data set]. National Oceanic and Atmospheric Administration. (Data obtained549

on 12/16/2022 from https://psl.noaa.gov/pdo/)550

NOAA Physical Sciences Laboratory. (2024). Multivariate ENSO Index Version 2551

(MEI.v2) [Data set]. National Oceanic and Atmospheric Administration. (Data552

obtained on 01/11/2024 from https://www.psl.noaa.gov/enso/mei)553

NRCan. (2022). Geodetic reference systems [Data set]. Natural Resources554

Canada. (https://www.nrcan.gc.ca/maps-tools-and-publications/tools/555

–15–



manuscript submitted to Geophysical Research Letters

geodetic-reference-systems/canadian-spatial-reference-system-csrs/556

9052#cgvd28)557

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .558

Duchesnay, E. (2011). Scikit-learn: Machine learning in Python [Software].559

Journal of Machine Learning Research, 12 , 2825–2830.560
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Introduction

The supporting information consists of additional details about model and methods

used, and additional evidence for results presented in the main text. Text S1 provides

additional details of regional model development and evaluation with observations (Fig-

ures S1-S5, Tables S1 and S2). Text S2 provides additional information on the cluster
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analysis and computed thresholds (Figures S6-S8, Table S3). Text S3 provides supporting

information on the compound extremes (Figures S9-S11) and event durations. Finally,

Text S4 provides details of the climate indices and correlation analysis (Figures S12 and

S13).

Text S1: North-Eastern Pacific Canadian Ocean Ecosystem Model

This section will detail recent improvements to the model including the addition of a

new module for benthic remineralization, tuning of the community structure in CanOE

and evaluation of the model.

The regional ocean model, NEP36-CanOE, is an updated version of the one used in

Holdsworth, Zhai, Lu, and Christian (2021),with 75 vertical levels instead of 50, a time

step of 180 s instead of 60 s (except in the vertical), improved model bathymetry, tidal

loading and attraction from Lyard, Allain, Cancet, Carrère, and Picot (2021), and the

TKE scheme for vertical mixing. The biogeochemical model uses 19 tracers and each

phytoplankton group has four state variables: nitrogen, carbon, iron, and chlorophyll.

We have turned off iron limitation.

The model has a large computational domain with 714× 1020× 75 = 54 621 000 points.

To reduce the amount of data stored on disk, we output monthly averages for the entire

model and daily averages for the continental shelf (Figure S1). Only the daily averages

are used for this study, and the domain is reduced to exclude open ocean regions more

than 55 grid cells (> 100 km) seaward of the 500m isobath (in the x-direction). Regions

where the model is not expected to perform well due to limited resolution are excluded

from our analysis of extremes (Fig. S1).
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We ran a perpetual cycle of the year 1996 until the model reached equilibrium (nearly

repeating annual cycle). This process took 6 years for the physics and an additional 4

years with biogeochemistry turned on.

Benthic remineralization parameterization

Organic matter produced in the euphotic zone sinks through the water column. Some

of it is remineralized as it sinks, and some of it is deposited on the seafloor where it is

respired or buried in the sediments. Larger organisms such as clams and worms in the

sediment carry out aerobic respiration, while bacteria are capable of remineralization even

in the absence of oxygen (Sarmiento & Gruber, 2006). The timing, amount and freshness

of the organic deposition have important consequences for the structure of benthic com-

munities (Soetaert et al., 2000; Heip et al., 2001) and affect the timing and magnitude of

sedimentary nutrient efflux and oxygen demand.

This section details the integrated sediment model that we implemented in the Canadian

Ocean Ecosystem model (CanOE). The simple parameterization for the sediments that

was already implemented in CanOE is known as a reflective boundary. All particulate

materials deposited on the sea-floor are instantaneously transformed into nutrients and

inorganic carbon in the deepest ocean layer (Soetaert et al., 2000). While the existing

parameterization conserves mass and is computationally efficient, it is not particularly

realistic. Bianucci, Denman, and Ianson (2011) considered these models as well as a

resuspension experiment in which the organic matter reaching the seafloor remains in

the lower grid cell of the water column as detritus. They found that for West Coast

Vancouver Island the “resuspension” parameterization may be most appropriate because
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it is a highly energetic environment (Bianucci et al., 2011). However, this region is only

a small fraction of the NEP36 domain, and other regions have much less near-bottom

shear and turbulence. A full diagenetic model would be computationally expensive and

there is evidence that the model derived denitrification rates are significantly smaller than

the true rates measured in situ (Devol, 1991). Therefore, we implemented an idealized

vertically integrated model with a single sediment layer and a specified, constant fraction

of remineralization as denitrification.

There are no direct measurements of sediment fluxes for the Canadian Pacific Ocean.

Along the Washington State continental margin Devol (1991) and Devol and Christensen

(1993) measured the benthic fluxes of O2, NH4, NO3, N2, Si(OH)4 and PO4. These are

the only direct measurements of denitrification (N2 flux) globally and relatively few shelf

and slope areas have been studied (Seitzinger & Giblin, 1996).

The idealized model is conceptualized as an infinitesimally thin (essentially 2D) active

layer. Organic matter deposited on the seafloor is remineralized, exchanging [O2] and DIC

with the water column. All of the organic nitrogen arriving at the seafloor is transformed

to NH4 within the sediments by microorganisms in a process known as ammonification,

and we assume that all of the NH4 is consumed during nitrification which demands an

additional flux of [O2] from the water column to produce NO3. Denitrification within

the sediment layer consumes all of the NO3 generated via nitrification, and the remaining

demand for nitrate is supplied from the ocean model grid cell at the ocean bottom. The

denitrification fraction of remineralization is fixed at 28% Devol (1991).
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CanOE includes two different pools for particulate organic carbon (nitrogen): POC

(PON) for the smaller class (1 − 100µm) with a sinking rate ωP = 2md−1 and GOC

(GON) for the larger class (100 − 5000µm) with a sinking rate ωG = 30md−1 and the

deposition of organic carbon to the seafloor is defined by depositionC = ωPPOC|z=h +

ωGGOC|z=h. Organic matter in the sediment is oxidized at a rate rsedC (d−1) which gives

reminC = FDIC = rsedCCsed. Here we are assuming that remineralization (aerobic) and

denitrification (anaerobic) produce the same amount of DIC (Fennel et al., 2006; Bianucci

et al., 2011). The model has a single sediment pool for carbon Csed from which nitrogen

and iron are implicitly derived according to specified stoichiometric relationships. The

change in the carbon sediment mass Csed (mmolm−3) is represented by

dCsed

dt
= (depositionC − reminC). (1)

CanOE does not assume fixed elemental ratios for phytoplankton, but it does for zoo-

plankton and detritus; as only detritus is deposited to the sea floor, we assume Redfield

stoichiometry (Redfield, 1963) for remineralization. We are assuming that remineraliza-

tion is divided between aerobic and denitrification; other electron acceptors like Mn or

SO2−
4 are assumed to be of negligible importance on the time scales considered. Although

the supply of oxygen is unlikely to be limiting, this case is dealt with in the model by

turning off remineralization (FDIC = 0) when there is an insufficient supply of oxygen.

For simplicity, we do not allow for denitrification to occur in the absence of aerobic min-

eralization. We use a reflective boundary for iron, as iron is assumed to not be limiting

in this environment.
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We assume that the fraction of the remineralization due to denitrification is γ = 28%

based on Devol (1991). In the water column, CanOE assumes that a fraction of denitrifica-

tion occurs via anaerobic ammonium oxidation (anammox) (Christian et al., 2022), but we

do not consider anammox in the sediments. Using a balanced equation for denitrification,

we define the fluxes of nitrogen and oxygen due to remineralization as

FNO3 = −FDIC(Φγ −RN :C) (2)

FO2 = −FDIC(1− γ)− 2RN :CFDIC (3)

where RC:O = 1 and RN :C = 16/106 are the Redfield ratios

There are also sources and sinks of alkalinity (TAlk) associated with remineralization

and nitrification, a gain (1 mol TAlk / mol N) from remineralization and a loss (-2 mol

TAlk / mol N) from nitrification, for a net of -1 assuming complete oxidation of all organic

nitrogen to NO3 (Wolf-Gladrow et al., 2007).

FTAlk = −RN :CFDIC + γΦFDIC . (4)

For this domain, the parameterization did not make an appreciable difference in the

representation of O2 or NO3 and only marginally improved the representation of DIC and

TAlk.

Tuning of biology parameters for the Northeastern Pacific continental margin

The biogeochemistry model, CanOE, was originally tuned for the global ocean. The

model is computationally expensive to run so a series of 6 month sensitivity tests were

used to adjust the model towards the observed total chlorophyll (Department of Fisheries

and Oceans Canada (DFO), 2022). We used the following criterion based on empirical
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evidence in the literature: 1. Based on a wet weight of 250 (c.f. Figure 4 of Denman and

Pena (2002)), peak values of mesozooplankton are expected to be around 1.4 mmolCm−3,

and 2. the amount of chlorophyll in diatoms should be at least 4 times greater than in

nanophytoplankton for high concentrations of phytoplankton (c.f. Chisholm (1992) Figure

9).

Using 1939 ship-sampled observations of the total chlorophyll, we evaluated the model’s

ability to simulate productivity before (Figure S2a) and after (Fig. S2b and c) the tuning

exercise. While the model and observations are only weakly correlated (Table S2), the

model is now able to represent much larger values of TChl which is more appropriate for

this highly productive region.

Model evaluation

The model was evaluated against available ship-sampled observations including 263 605

T and S data, 39 067 [O2], 5 894 [NO3], 177 [TAlk] and 237 [DIC] (Department of Fisheries

and Oceans Canada (DFO), 2022). Several evaluation metrics were computed using the

HydroErr toolbox (Roberts et al., 2018); the coefficient of determination (unitless), the

root mean squared error signed by the bias (data units), and the Kling-Gupta decomposi-

tion (dimensionless) (Kling et al., 2012). The decomposition consists of the Pearson score

r which measures the correlation, the flow variability which is a ratio of the standard

deviations α = σmod/σobs, the bias ratio which is a ratio of the means α = µmod/µobs

(Table S2). Values near 1 are optimal for these terms and they can be summarized using

a single number known as the Kling-Gupta Efficiency (KGE). Values of KGE > −0.41

mean that the model is outperforming the mean flow benchmark (Knoben et al., 2019).
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The model performs better than the mean flow benchmark for all data fields and, with

the exception of the total chlorophyll, all KGE efficiencies are near 1 (Table S2).

The probability density functions show that the distributions of these variables are well

represented by the model (Figure S3). To evaluate how well the model represents extreme

conditions, we estimated the 90th and 10th percentiles using the distributions shown in

Figure S3 and (Fig. S2c). The highest concentrations of O2 and TChl are not reproduced

by the model. However, the focus of this study is on the lowest values, and this shows

that the extremes found in the observations are well represented by the model (Table S2).

The Monthly Isopycnal / Mixed-layer Ocean Climatology (MIMOC) (Schmidtko et al.,

2013) was used to evaluate the mixed layer depth (MLD) and, for consistency, the Holte

and Talley (2009) algorithm was used to calculate the MLD. A series of locations along

the 500m isobath of the continental shelf were used for comparison with the monthly

climatologies. We found a RMSE of 10.4m, a KGE of 0.76, and R2 = 0.92. The largest

discrepancies occur during winter months when MLDs are deepest (Figure S4).

Tide gauge observations from 65 different stations were transformed from the Canadian

Hydrographic Service (CHS) chart datum to CGDV28 (NRCan, 2022) using station spe-

cific offsets provided by CHS using their 2015 dynamic topography model. The analysis

was conducted for each year, then averaged to obtain a measure for each individual sta-

tion. Note that data is missing for some stations for some of the years. The average Root

Mean Squared Error (RMSE) over all of the stations is 0.33± 0.17m ranging from 0.79m

to 0.11m with R2 = 0.95 (Fig. S5). The performance of the tides varies spatially with
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higher RMSE within the Salish Sea where the resolution may not be adequate to resolve

bathymetric features.

The tidal amplitude and phase were computed for several of the tidal constituents to

evaluate the model performance. The mean of the bias (model-obs) was found for each of

the stations, then the average magnitude and standard deviation were computed resulting

in a single value reported in Table S1. We also compute the tidal error; the RMS difference

over a tidal cycle between the model and observations (Cummins and Oey (1997), eq. 3).

Ocean acidification

We derive the aragonite saturation state, ΩA using the pyco2sys python package

(Humphreys et al., 2022), and use it as a measure of the ocean acidification as it is a

biologically relevant quantity. The saturation state of seawater with respect to CaCO3 is

ΩA =

[
Ca+

][
CO2−

3

]
ksp

where ksp is the apparent solubility product for aragonite, a distinct

crystalline form of CaCO3. When ΩA < 1 the water is undersaturated which is conducive

to shell dissolution. Model T and S are used to calculate ksp and [Ca3+] and [CO2−
3 ] are

calculated from modeled T, S, DIC and TAlk using pyco2sys.

Text S2: Clusters and thresholds

The prevailing surface circulation west of British Columbia’s continental shelf naturally

divides the region into Northern and Southern regions as the Subarctic current diverges

into two distinct branches; the Alaska Current flows northeast into the Gulf of Alaska and

the California Current curves to the Southeast (Thomson, 1981). The bifurcation of the

current occurs between 45◦ and 50◦N, but varies seasonally so that the division is largely

confined to the southeast part of the region in winter, but is highly variable in summer
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when the wind patterns are more sporadic. The region west of Vancouver Island lies at

the northern end of the California Current upwelling favorable zone which transitions to a

downwelling favorable zone to the north. The variability in the location of the transition

was part of the reason we chose to define our study regions by implementing a K-means

clustering approach.

Clustering allows for a data driven estimate of regions with similar environmental con-

ditions. By using K-means clustering using climatologies of potential temperature, AOU

and aragonite saturation state (described in section 2.2 of the manuscript) instead of solely

relying on expert knowledge, we reduce dependence on specialized expertise and enhance

the scalability and adaptability of this methodology for broader application.

We explored using a different number of clusters and found that 6 clusters gave a

reasonable set of coherent regions without an excessive amount of spatially disconnected

points in the clusters. Justifying this via a traditional silhouette analysis (Murphy, 2022)

(measuring the compactness of the cluster relative to the distance to the neighboring

cluster) was not possible due to the strong gradients in the predictors that arise from

the topography of continental slope. Essentially, increasing the number of clusters tends

to pick out finer contours of the continental slope. The silhouette score thus tends to

decrease monotonically as the number of points in each cluster becomes more and more

varied. Visually, the Shallows and Canyons clusters do not significantly change when

varying the number of clusters from 5 to 9 (not shown).

To measure the impact of the choice of the number of clusters on our analysis, we

calculated the thresholds, as described in section 2.3 of the main text, for these different
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cluster sizes. We found that the variance of the thresholds is ≤ 10% when using 5 to 9

clusters and ≤ 5% when using 5 to 7 clusters. The number of grid cells and climatological

centres for each of the six clusters used here (Figure S6) are shown in Table S3.

For each cluster, a statistical extreme is defined using the distribution of values of

dissolved oxygen, temperature and aragonite saturation state (Figure S7). The temporal

division into upwelling and downwelling regimes may be unique to eastern boundary

upwelling systems, but other features such as the timing of the spring freshet or melting

of sea ice may be relevant if generalizing this method to other systems. The difference

in the distributions for upwelling and downwelling seasons is more pronounced for the

Shallows (Fig. S7).

Since all of the clusters depend on bottom depth, it’s not surprising that the resulting

clusters are associated with specific depth ranges (Fig. S6). Even though the clusters

have some overlapping depths, they occupy unique positions in the 3D environmental

space (Table S3). The two clusters selected for presentation in the paper are the Shallows

(Fig. S6 d) and the Canyons (Fig. S6 a) as described in Section 2.2 and 3.1 of the main

text.

Given the strong dependence of these clusters on the bottom depth, we also consider

using a simpler method of grouping the benthic regions by depth. To demonstrate that

clustering does a better job of identifying regions with similar environmental characteris-

tics we found the deepest depth in the Shallows (≃ 69m) and extracted all of the grid cells

with bottom depths shallower than that depth. Comparing the locations in 3D parameter

space demonstrates that the depth delineation results in a much wider range of values
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(yellow diamonds in Fig. S8 (b)) for each of the three potential stressors. Many, but not

all, of the points in the depth defined region are located on West Coast Vancouver Island.

We plotted orange crosses to indicate the parameter space of the points (depths < 69m)

north of 51◦N which shows that temperature, AOU and ΩA can vary significantly at the

same depth (Fig. S8 (b)). A data driven approach using machine learning to cluster the

data takes the guesswork out of defining regions with similar characteristics.

Given that the goal of this paper is to study extremes, we investigated the role that tem-

poral resolution of the data could have on the calculated thresholds. Benthic temperature

was saved at 3-hour resolution. Thresholds for the Shallows and Canyons regions were

calculated with 3-hour, 6-hour, 12-hour, daily, and five day averaging windows. For both

the Shallows and the Canyons, during upwelling and downwelling, all resulting thresholds

were within 0.01◦C of each other. The only exception was the Shallows cluster during

downwelling season where the threshold dropped by 0.1◦C between the daily and five day

averages. Therefore, we chose to limit our analysis to daily averages.

Text S3: Occurrence of extremes over time

The occurrence of extremes over time is discussed in detail in section 3.2 of the

manuscript. This section provides supporting information for the compound extremes,

analysis of trends, and event duration for the Shallows and Canyons and provides a brief

overview of our analysis for the remaining clusters.

A compound extreme is defined here as the concomitant occurrence of two or more

stressors in the same grid cell. We show all of the compound extremes for the Canyons

(Figure S9) and the Shallows (Figure S10) clusters, but only the triple extremes for the
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remaining clusters (Figure S11). The most common compound extreme were coincident

extremes in [O2] and ΩA.

Some of the clusters (b, d, e, f) exhibit an increasing number of triple extremes near

the end of the time series (Fig. S11), while the clusters with the deepest average depths

do not (Table S3). For these deeper clusters the maximum depth of the mixed layer

is typically much shallower than the ocean bottom. With less ventilation, these deeper

clusters will not experience the increase in anthropogenic CO2 emissions as immediately

as the shallower clusters, nor will they immediately feel the effects of near-surface marine

heatwaves. However, the deeper clusters shown in Fig. S6 (c, a, and e (from deepest

to shallowest)) have waters with ΩA at or below saturation (ΩA < 1) and relatively low

oxygen as a baseline (Table S3), so organisms in these regions may be particularly vulner-

able to extremes in ΩA and [O2]. In particular, cluster ‘e’, where groundfish biodiversity

is high (Thompson et al., 2023), has baseline conditions near ecological thresholds and

the deepest annual mixed layer depths are comparable with the ocean bottom depth.

Triple stressor extremes are more frequent in this cluster because it is influenced by both

upwelling and surface ocean extremes, especially at the end of the time series.

We analyzed the trends in single and compound extremes using linear regression and

accounting for autocorrelation in the time series by calculating the effective sample size

Neff = N
1− r1
1 + r1

where r1 is the lag-one autocorrelation (Bretherton et al., 1999). The only statistically

significant trend (p> 0.05) in the single stressor extremes was for ΩA extremes in the

Shallows with the fraction of extreme waters increasing by about 0.004 y−1. Clusters ‘b’,

September 16, 2024, 8:39pm



X - 14 :

‘d’ and ‘e’ all exhibited significant trends for triple extremes, which increased at rates

of 2 × 10−4 y−1, 3 × 10−5 y−1, and 3 × 10−4 y−1, respectively. All three also exhibited

significant trends for O2/T extremes with similar rates, and clusters ‘b’ and ‘d’ exhibited

increasing trends for ΩA/T extremes.

The duration of an extreme event was calculated for each grid cell, and the maximum

values averaged for each cluster (Table 1 of the main text). The average duration is

longer for temperature than for O2 and ΩA in the Canyons, while the opposite is true in

the Shallows. Differences between the upwelling and downwelling seasons are generally

small, but the longest duration events are in the Canyons during the downwelling season.

Text S4: The influence of basin scale climate variability

Climate Indices

Extreme conditions of hypoxia and acidification in the Canadian North Pacific are

strongly influenced by changes in upwelling along the continental shelf and the ocean’s

stratification and temperature. Hence, we examine the relationship between the fraction of

extremes and four climate indices which are associated with variability in these conditions:

the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation (PDO), The North

Pacific Gyre Oscillation (NPGO) and the Bakun upwelling index (Figure S12). It is

important to recognize that these indices are influenced by many processes. They are

briefly described in this section.

The El Niño–Southern Oscillation (ENSO) is a recurring pattern of climate variability

originating in the tropical Pacific and propagating into the exratropics by a variety of

mechanisms. Different indices are used to characterize the phases of ENSO (e.g., NINO3,
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NINO4, SOI). For the present study ENSO is represented using the Multivariate ENSO

Index version 2 (MEI) which uses five variables from the JRA-55 reanalysis (Kobayashi

et al., 2015) over the tropical Pacific basin (30◦S − 30◦N and 100◦E − 70◦W): sea level

pressure, sea surface temperature, surface zonal and meridional wind, and outgoing long-

wave radiation (NOAA Physical Sciences Laboratory, 2024). This index captures all of

the ENSO events of the other indices and has the advantages that it does not rely on a

single station or variable.

The Pacific Decadal Oscillation (PDO) is a pattern of North Pacific (20◦-70◦N) Sea

Surface Temperature (SST) variability. It is the leading principal component of North

Pacific SST anomalies (Mantua & Hare, 2002). The warm phase is characterized by

warm ocean waters along the west coast of North America coincident with anomalously

cool SSTs in the central North Pacific. The opposite pattern is observed in the cool

phase. These patterns are influenced by a combination of processes (e.g., Aleutian Low)

operating on different time-scales (Newman et al., 2016). The index used for this study

was based on ERSSTv5, but similar results are obtained for this period using other SST

datasets (Newman et al., 2016; Huang et al., 2017; NOAA Physical Sciences Laboratory,

2022).

The North Pacific Gyre Oscillation (NPGO) is defined as the second principal com-

ponent of the sea surface height anomaly (SSHa) over 180◦W–110◦W; 25◦N–62◦N

(Di Lorenzo et al., 2008; Di Lorenzo, 2022). The SSHa and SSTa fields are highly corre-

lated, hence, as the first and second principal components the PDO and NPGO explain

the highest and second highest fraction of the variance in these fields. The NPGO is
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associated with upwelling in the CCS because strengthening of the North Pacific Gyre

drives more onshore flow as it flow west to east and increases Ekman transport as it flows

southward in the California Current resulting in increased upwelling of low oxygen, low

pH, and relatively cold water.

We used the Bakun index calculated using Sea Level Pressure on a 3◦ grid at 48◦N,

125◦W, and 51◦N, 131◦W (Bakun, 1973; NOAA Pacific Fisheries Environmental Lab-

oratory, 2022). Although newer upwelling indices have been introduced, they are not

appreciably different from the Bakun index at these latitudes (Jacox et al., 2018).

These indices are related to each other by the underlying processes that influence them.

ENSO has been dynamically linked to the PDO (Alexander et al., 2002) through a mech-

anism known as an atmospheric bridge; ENSO excites atmospheric teleconnections in the

extra-tropics influencing the variability of the Aleutian Low which, in turn, influences the

PDO. Similarly, the Central Pacific Warming El Niño pattern drives atmospheric tele-

connections in the central North Pacific which results in the NPGO pattern through the

North Pacific Oscillation (NPO) (Di Lorenzo et al., 2023).

Correlations with the climate indices

There is reason to believe that these climate indices may have predictive power for

local ecosystem changes along the continental margin of British Columbia. For example,

large shifts in zooplankton taxa around Vancouver Island Mackas, Peterson, and Zamon

(2004) and in the California Current system (Mackas et al., 2006) were associated with

ENSO and Pacific regime shifts, Mackas et al. (2013) found that zooplankton variability

in the Strait of Georgia was significantly correlated with the NPGO, Li et al. (2013) found
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that the best indicator of zooplankton community change in the Strait of Georgia was the

Southern Oscillation Index, Perry and Masson (2013) found that the NPGO was a leading

indicator for regime shifts, Perry et al. (2021) found that the PDO was significantly related

to zooplankton trends from 1996 to 2018, and Suchy, Young, Galbraith, Perry, and Costa

(2022) found a significant relationship between the NPGO and the spring phytoplankton

bloom.

We generated monthly averages (bi-monthly for MEI) of the time series of the fraction of

extremes by combining the two different seasons. Then, we removed the seasonal cycle and

normalized the datasets by subtracting the mean before calculating the cross-correlations.

The cross-correlations were computed for a series of lags to better understand the temporal

relationships between the variables. We computed the Pearson Correlation Coefficients

(Figure S13) and, because these data may not be independent in time, we adjusted the

values of p and computed the confidence intervals by considering the equivalent sample

size (Von Storch & Zwiers, 2002). Assuming both signals Xi of length N are red-noise

(Markov) processes the equivalent sample size is given by

Neff = N
1− r1r2
1 + r1r2

where ri is the lag-one autocorrelation for each signal (Bartlett, 1935; Bretherton et al.,

1999).

The positive phase of the PDO and ENSO, and the negative phase of the NPGO, are

associated with warm near-surface temperatures in the California Current System (CCS)

(Di Lorenzo et al., 2008; Chhak et al., 2009) which explains why we found significant

positive (negative) correlations between T extremes in the Shallows and MEI and PDO
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(NPGO) (Figure S13 a, and Fig. S12 (a, b, c) ). Moreover, Amaya et al. (2023) demon-

strated that ENSO influences ocean temperature extremes for the Canadian west coast

via coastally trapped waves. Similar correlations were found for low oxygen extremes,

indicating the strong influence of solubility on oxygen extremes for this cluster (Fig. S13

a). Extremes in ΩA are negatively correlated with the PDO. The warm phase of the

PDO is associated with greater stratification and a deeper thermocline, resulting in less

penetration of old, corrosive and oxygen-poor waters onto the continental margin.

In the Canyons, [O2] and ΩA extremes both exhibit a negative correlation with the PDO

and a positive correlation with the NPGO (Figure S13); both indices are associated with

upwelling. The only significant correlation with the Bakun index was for temperature

in the Canyons, but the correlation was weaker than those for the climate indices. The

Bakun index represents the strength of upwelling/downwelling due to changes in the local

winds (inferred from SLP), but other processes can contribute to upwelling in the Northern

CCS (Engida et al., 2016). For example, coastally trapped waves (CTW) are excited by

wind stress far to the south and propagate along the coast. They depress the thermocline,

modify upwelling and influence all three stressors (Engida et al., 2016). Overall the effects

of large-scale climate variability are more readily detectable in our data set than those of

locally forced upwelling.
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Figure S1. Domain and bathymetery for the analyzed model outputs. Regions excluded

from analysis because the of the model’s limited resolution are shown in green.
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Figure S2. Illustration of the representation of the total chlorophyll in NEP36-CanOE

with the (a) evaluation with the parameters originally developed for the global model,

(b) the evaluation with the revised parameters for the Northeastern Pacific continental

margin, and (c) the probability density function for the observations and revised model.

The apparent third color is simply the overlapping of the other two.
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Figure S3. The probability density functions for the ship-sampled observations and

modelled (a) potential temperature, (b) salinity, (c) oxygen, (d) nitrate, (e) total alkalinity

(f) dissolved inorganic carbon. The apparent third color is simply the overlapping of the

other two.
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Figure S4. Mixed layer depths from the model plotted against the MIMOC climatology.

The colormap shows the months of the year.

Figure S5. The RMSE of the total water level in the model compared with tide gauge

observations.
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Table S1. The average bias (model-observations) in the magnitude of the tidal

amplitude and phase along with the tidal error associated with significant constituents.

constituent Amplitude (m) Phase (◦) Tide (m)

M2 0.10± 0.12 19.00± 67.72 0.11± 0.06

S2 0.03± 0.03 6.93± 8.52 0.04± 0.02

N2 0.02± 0.03 80.32± 139.90 0.03± 0.02

K1 0.11± 0.13 12.05± 13.79 0.13± 0.14

O1 0.05± 0.06 12.95± 14.37 0.07± 0.08

P1 0.04± 0.05 12.80± 14.00 0.04± 0.05

K2 0.005± 0.006 6.06± 9.29 0.008± 0.006
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Table S2. Evaluation of model outputs against the observations for several metrics: the

signed root mean squared error (RMSE), the Pearson correlation r, the variability ratio

α, the bias ratio β and the Kling-Gupta efficiency (KGE), the bias in the 90th percentile

of values and the bias in the 10th percentile of values. RMSE and biases (but not bias

ratio) have the same units as their respective data fields.

variable RMSE r α β KGE bias
10th

bias
90th

T -0.80 0.96 0.97 0.98 0.95 .22 -0.23

S -0.4 0.94 1.08 1.00 0.90 -0.18 0.004

O2 32.2 0.94 0.96 1.00 0.93 -1.78 -4.90

NO3 7 0.89 1.10 1.01 0.85 -1.82 2.24

DIC 51 0.95 0.96 1.01 0.93 32.6 10.0

TAlk -29 0.95 0.88 1.00 0.87 6.7 -23.3

TChl 3.3 0.46 0.78 1.03 0.42 -0.13 1.70
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Figure S6. Clusters resulting from applying the K-means algorithm to climatologies

of ΩA, AOU, and T for all bottom depths in the model less than 1000m. The inset plot

shows the distribution of benthic depths for the corresponding cluster. A more detailed

description of the methodology is provided in section 2.2 of the manuscript and Text S2.
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Figure S7. Probability density distributions for the Canyons (left) and Shallows (right)

clusters (Fig. S6 a and d, respectively). Dissolved oxygen (a and d), aragonite saturation

state (b and e) and temperature (c and f) are shown for each cluster with different colors

for upwelling and downwelling seasons. The apparent third color is simply the overlap of

the translucent distributions.
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Table S3. For the clusters shown in Figure S6, the mean values (climatological centers),

average bottom depth and average mixed layer depth (from the daily average data) are

shown. The units are ◦C for T, mmolm−3 for AOU and m for depths.

Clusters grid cells O2 AOU ΩA T bottom depth MLDmax

a 9308 91 211 0.73 6.15 262 165

b 4005 219 71 1.3 8.3 63 74

c 3330 26 288 0.52 4.3 717 135

d 4124 282 5.3 1.63 9.1 29 36

e 7978 122 174 0.84 7.0 151 125

f 5006 168 125 1.04 7.6 101 105
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Figure S8. Locations of grid cells in (a) the Shallows cluster (purple) and sub-regions

of grid cells with depths less than 69m (the deepest depth in the Shallows), and (b) their

relative positions in 3D parameter space.
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Figure S9. Time series of the fraction of waters in the Canyons cluster (Fig. S6

a) that experience compound extremes in (a) dissolved oxygen and aragonite saturation

state, (b) dissolved oxygen and potential temperature, (c) aragonite saturation state and

temperature, and (d) temperature, dissolved oxygen and aragonite saturation state.
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Figure S10. Time series of the fraction of waters in the Shallows cluster (Fig. S6 d)

that experience compound extremes in (a) dissolved oxygen and aragonite saturation

state, (b) dissolved oxygen and potential temperature, (c) aragonite saturation state and

temperature, and (d) temperature, dissolved oxygen and aragonite saturation state.
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Figure S11. Time series of the fraction of waters that experience extremes in all three

stressors (temperature, dissolved oxygen and aragonite saturation state) for all of the

clusters in Fig. S6.
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Figure S12. Time series of (a) Multivariate ENSO Index (MEI), (b) the Pacific Decadal

Oscillation (PDO), (c) The North Pacific Gyre Oscillation (NPGO) and (d) the Bakun

upwelling index. The indices are colored red when associated with warm water in the

California Current System.
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Figure S13. Heatmaps of the correlation between climate indices and the fraction

of extreme waters in (a) Shallows and (b) Canyons clusters. The Pearson correlation

coefficient is shown along with the 90% confidence interval in parentheses for cases where

p< 0.01 and the confidence interval does not intersect zero.
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