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Abstract

Effective conservation of biodiversity depends on the successful management of wildlife populations and their habitats. Successful
management, in turn, depends on our ability to understand and accurately forecast how populations and communities respond to
human-induced changes in their environments. However, quantifying how these stressors impact population dynamics remains
challenging. Another significant hurdle at this interface is determining which quantitative approach(es) are most appropriate
given data constraints and the intended purpose. Here, we provide a cross-taxa overview of key methodological approaches (e.g.,
matrix population models) and model elements (e.g., energetics) that are currently used to model the effects of anthropogenic
disturbance on wildlife populations. Specifically, we discuss how these modelling approaches differ in their key assumptions,
aspects of their structure and complexity, the questions they are best poised to address, and their data requirements. Our
hope is to help overcome some of the methodological biases that might persist across taxonomic specialisations, identify new
opportunities to address existing modelling challenges, and improve our understanding of the direct and indirect impacts
of anthropogenic disturbance. We guide users through the identification of appropriate model configurations for different
management purposes, while also suggesting key priorities for model development and integration.

Understanding and predicting population response to anthropogenic disturbance: Current approaches and
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Abstract

Effective conservation of biodiversity depends on the successful management of wildlife populations and their
habitats. Successful management, in turn, depends on our ability to understand and accurately forecast how
populations and communities respond to human-induced changes in their environments. However, quantify-
ing how these stressors impact population dynamics remains challenging. Another significant hurdle at this
interface is determining which quantitative approach(es) are most appropriate given data types, constraints,
and the intended purpose. Here, we provide a cross-taxa overview of key methodological approaches (e.g.
, matrix population models) and model elements (e.g. , energetics) that are currently used to model the
effects of anthropogenic disturbance on wildlife populations. Specifically, we discuss how these modelling
approaches differ in their key assumptions, aspects of their structure and complexity, the questions they
are best poised to address, and their data requirements. Our intention is to help overcome some of the
methodological biases that might persist across taxonomic specialisations, identify new opportunities to
address existing modelling challenges, and improve our understanding of the direct and indirect impacts of
anthropogenic disturbance. We guide users through the identification of appropriate model configurations for
different management purposes, while also suggesting key priorities for model development and integration.

1 Introduction

As the extent and magnitude of human activity continues to expand (IPBES 2019), the urgency to un-
derstand how wildlife populations respond to anthropogenic change is accelerating (Larson et al. 2016;
Venteret al. 2016). This information is crucial for effective management and conservation policies (Pimm
et al. 2014). Ecologists have long tried to understand and predict the impacts of human disturbance on
wildlife populations and communities through the use of quantitative modelling approaches (Beissinger &
Westphal 1998; Getz & Haight 1989). However, stressors rarely occur in isolation, with animal populations
often exposed to multiple direct (e.g., harvesting; Kays et al. 2017) and indirect stressors (e.g., habitat
fragmentation, Smith et al. 2019). Although it is relatively straightforward to determine how individual
stressors impact populations, the complex ways that multiple stressors interact make it challenging to pre-
dict their combined effect on a population (Paniwet al. 2021). As a result, there has been an increasing
focus on understanding the population-level effects, such as changes in population dynamics, geographical
distribution, and/or population persistence, that can result not only from individual indirect (non-lethal)
stressors but from exposure to multiple stressors (e.g., Gosselin et al. 2015; Daversa et al. 2025; Pirottaet
al. 2019; Galic et al. 2018). Oftentimes, disturbances have indirect effects on populations, such as through
changes in food intake, which may lead to changes in energy balance and/or body condition (e.g., Parker et
al. 2009), or through exposure to pathogens or pollutants, which may result in changes in immune status
(Charbonnel et al. 2008). These indirect effects can compound, leading to impacts on vital rates (e.g.,
survival, reproduction) that then shape population dynamics (Fig. 1, Box 1). Explicit consideration of these
indirect effects has been formalised for marine mammal risk assessments (NAS 2017). Other efforts have
advocated for the inclusion of indirect effects within a standardised mechanistic framework (Johnston et
al. 2019). However, these are conceptual frameworks and, as such, lack information on specific approaches
used to model population-level impacts of disturbance. These frameworks also fall short when considering
community dynamics or management actions (but see Urban et al. 2022), which can play key roles in pre-
dicting population persistence (Fig. 1, Box 1). Interactions among stressors and discrepancies in spatial
and temporal scales of impact mean that correlative approaches are often too limited to inform policy or
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management. Quantitative modelling approaches thus play an important role in understanding and man-
aging ecosystems by clarifying the key mechanisms that might explain the behaviour of ecological systems
(Schmolke et al. 2010). The main advantage of quantitative approaches to management decision making
is their ability to predict the magnitude of effect of alternative scenarios based on underlying processes,
which is rarely possible through empirical studies alone (Skogen et al. 2024). Many quantitative approaches
are available for modelling the impacts of human activity on animal populations, each of which have their
own assumptions, caveats, and advantages. The approaches differ in which processes are represented (and
how), their spatio-temporal scales, data requirements, and in which questions they are best poised to an-
swer. Inappropriate choices in modelling approach or structure could compromise our ability to make reliable
predictions (Gerber 2006), creating greater uncertainty when deciding on management strategies. Despite
the vast array of modelling approaches available, several key challenges remain when trying to predict the
population-level impacts of human activity on wildlife: 1) how to get the most out of disparate data streams
collected at different spatio-temporal scales; 2) how to provide scientifically informed management advice
for populations when limited empirical data are available, as is typically the case; 3) how to manage uncer-
tainty when uncertainty is ubiquitous; and 4) knowing which approach(es) to use given the available data
and the question at hand. Further challenges arise when considering community dynamics, which is often
necessary to accurately predict the implications of human disturbance and potential management strategies
on ecological communities (Buckley and Han 2014; Zavaleta et al. 2001). While challenges 1-3 have received
considerable attention (e.g., Nichols 2021; Simmonds et al. 2024; Zipkin et al. 2019; Fletcher Jr.et al. 2019),
guidance on modelling choices for assessing and predicting population-level impacts of human disturbance
has received less attention (but see Accolla et al. 2021; Hunter-Ayad et al. 2020; Thompson et al. 2021;
Briscoe et al. 2019). Here, we provide an overview of key approaches available to model human impacts on
animal populations. In doing so, we aim to provide resources for new studies to identify suitable methods
and help overcome taxonomic or domain biases in model development. As part of this effort, we highlight
important considerations when deciding on a modelling approach and model structure to model the direct
and indirect impacts of human disturbance on animal populations. We also use two case-studies on red fox
(Vulpes vulpes ) and European mink (Mustela lutreola ) to illustrate some of the considerations made during
model development and the strategies used to overcome the limitations of different modelling approaches,
including model integration and energetic modelling. Further, we extend existing conceptual frameworks for
understanding the impacts of human disturbance by incorporating community-level responses to multiple
stressors as well as the pathways by which management actions can influence a population (Fig. 1, Box
1). The information presented here can be used to identify appropriate model configurations for different
research and management purposes, while also suggesting key priorities for future model development and
integration.

2 Approaches to modelling the effects of disturbance on wildlife pop-
ulations

We provide an overview of the key approaches for understanding and predicting the impacts of disturbance
on individuals, populations, and communities. We use a broad definition of human disturbance, wherein
we include natural processes (e.g., climate variation, disease, wildfire) that can be exacerbated by human
activity. We have categorised the quantitative approaches into four sections based on the general level at
which disturbance is usually modelled for each of the modelling approaches. These have been broadly broken
down into responses at the individual, population, community, or geographical range scales. We recognise
from the outset that some modelling traditions include or link components from multiple scales and that
some approaches represent broad categories of model families while others are specific to a single model or
method. We also discuss some of the benefits, challenges, and data requirements for specific approaches
using case studies. We provide reference to more in-depth reviews in the Supplementary Material.
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2.1 Individually-focused dynamics

Below, we describe the most widely used approaches to model the effects of human-related stressors at the
individual or group level. These approaches typically allow individuals (or groups of individuals) to vary
within a population in terms of a variety of traits related to behaviour, genetics, or energetics. Accounting
for such variation may be more representative of real populations than those that assume all individuals are
identical (Denny 2017), which can improve predictions of population dynamics (Gerber 2006).

2.1.1 Individual-based models

Individual-based models (IBMs or agent-based models) are a broad class of simulation models that depict
relevant processes at the individual or group level (the agent). Population-level properties (e.g., population
growth rate) emerge from the behaviour of, and interactions among, discrete agents through time. This
key property makes IBMs particularly useful when intraspecific trait variation, local interactions, adaptive
behaviour or heterogeneous environments are assumed to influence population level responses to disturbance
(Chevy et al. 2025; DeAngelis & Grimm 2014), as well as for small populations (Caughley 1994). Disturbance
is typically implemented by comparing different simulation scenarios with varying disturbance levels. IBMs
are frequently used to assess the population impacts of disturbance, either as a stand-alone method or in
conjunction with other approaches described throughout this section. Such applications include investigating
the effects of climate change and habitat connectivity (Andersen et al. 2022) and toxicant exposure (Hall et
al. 2018) on population dynamics.

2.1.2 Cell-lattice models

While not technically individually-focused, cell-lattice models analyse spatially-explicit demographic pro-
cesses through an array of discrete grid cells, that enable fine-scale dynamics to be modelled. Discrete cells
can be characterized by variation in important landscape attributes, such as habitat type, food availability,
or predation risk, that influence demographic rates. Dispersal between adjacent cells is used to depict simple
patterns of redistribution by a fraction of the subpopulations arising from neighbouring cells. Cell-lattice
models are a computationally simple way to evaluate the influence of habitat arrangement, mobility, and
behavioural decision-making on rates of resource gain and mortality risk among subpopulations occurring in
different cells at a given point in time (Tonini et al. 2014). Similar to IBMs, disturbance effects are typically
inferred based on comparisons of model outputs among simulation scenarios. Because of their inherent spa-
tial nature, cell-lattice models are particularly relevant for applications involving movement barriers (e.g.,
road infrastructure; Holdo et al. 2011), the effects of invasive species (Tonini et al. 2014), and disease spread
(Jeltschet al. 1997).

2.1.3 Stochastic dynamic programming

Stochastic dynamic programming is an optimization method frequently used to identify optimal decisions and
behaviours of individual animals (Houston et al. 1988; Mangel & Clark 1988). As a way to implement state-
dependent life-history theory, it is based on the underlying assumption that individuals act to maximize some
future expected reward (e.g., Darwinian fitness), which varies depending upon one or more state variables.
Energy reserves are often used as physiological state variables, hence there is typically an energetic component
when addressing disturbance impacts. Discrete locations characterized by environmental features (e.g.,
resource availability) can also be included, allowing for spatiotemporally-explicit models. Once identified,
optimal decisions for each combination of state variables across the time horizon (e.g., the lifespan of an
individual) can be used in an IBM framework to characterize emergent population properties in the presence
(and absence) of disturbance scenarios. In the context of disturbance, stochastic dynamic programming
has primarily been used to identify optimal movement, habitat, and reproductive decisions to quantify the
potential effects of variation in prey resources (e.g., due to climate change; Reimer et al. 2019) and acoustic
disturbance (McHuron et al. 2021; Pirotta et al. 2019).

5



P
os

te
d

on
4

M
ar

20
25

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

74
11

00
76

.6
85

14
46

8/
v1

|T
hi

s
is

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
-r

ev
ie

w
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

2.1.4 Dynamic energy budget models

Dynamic energy budget (DEB) theory (Kooijman 2010) provides a mechanistic basis to model the acquisition
and allocation of energy by organisms across their lifespan. DEB thus allows for the study of density-
dependent feedback effects between a population and its environment, and resulting patterns of life-history
evolution (de Roos & Persson 2013). This approach is based on the concept that rates of basic physiological
processes are proportional to surface area or body volume, which differs from other energetic approaches like
the Metabolic Theory of Ecology (van der Meer 2006). The generalised nature of the framework allows for
easy adaptation to a range of disturbance types and taxonomic groups. Because DEB models are specified
at the individual level, we need other tools to extrapolate to the population level. As such, DEB theory has
been integrated into IBMs (DEB-IBMs), matrix models (Klanjscek et al. 2006), integral projection models
(Smallegangeet al. 2017; Thunell et al. 2023), and physiologically structured population models (Metz
& Diekmann 1986; de Roos 1997). In particular, DEB-IBMs allow for explicit consideration of individual
variation, local interactions and/or adaptation (Martin et al. 2012). DEB-IBMs have been applied to
investigate the impact of toxicant exposure and disease (Silva et al. 2020), acoustic disturbance (Soudijn
et al. 2020) and habitat loss due to climate change (Johnson et al. 2024) through explicit changes in an
individual’s physiology resulting from these disturbances.

2.2 Population dynamics

Modelling human impacts at the population level has a long history (Boyce 1992; Lande 1993). These
approaches directly link human disturbances to population viability by quantifying how shifts in key de-
mographic processes (Morris & Doak 2002), such as survival and reproduction, influence population growth
and structure (Caswell 2000). As a result, these approaches have been widely applied to project long-term
population viability under various disturbance scenarios (Engelen et al. 2025; Morris & Doak 2002) and to
assess the evolutionary consequences of human activities (Palstra and Ruzzante 2008; Hendry et al. 2008).
More recently, frameworks have been developed to integrate biological mechanisms underpinning responses
to anthropogenic threats, highlighting the role of mechanisms in conservation planning (Urban et al. 2016).

2.2.1 Matrix population models

Matrix population models are structured population models that describe the dynamics of a given population
in discrete time and stages (e.g., developmental stage) (Caswell 2001). By providing a direct link between
age and/or stage-structured vital rates and population dynamics in a relatively simplistic framework, ma-
trix population models are an accessible tool to project population trends under alternate environmental
conditions (Fieberg & Ellner 2001). Matrix population models have been applied extensively to explore
population response, for example under land-use change (Tucker et al. 2021), climate change (Penman et al.
2015) and hunting (Simon & Fortin 2019), with the effects of disturbance typically included via changes in
vital rates. Matrix models are also often integrated with other modelling approaches, such as DEB models
(Billoir et al. 2007), to examine population-level consequences of vital rate changes on population dynamics.

2.2.2 Integral projection models

Similar to matrix population models, integral population models track population dynamics in discrete time,
but along a continuous stage classification (e.g., size) to describe how an individual’s state influences its vi-
tal rates. Integral population models are constructed from regression models that predict vital rates from
state variables, and can incorporate factors such as density dependence (Metcalf et al. 2008), environmental
drivers (Merow et al. 2014), and stochastic dynamics (Ellner & Rees 2006). By integrating vital rates
with environmental covariates, integral population models provide semi-mechanistic insight into ecological
patterns including population dynamics, species distributions or life-history strategies (Merowet al. 2014).
Integral population models have been applied directly to explore the eco-evolutionary dynamics of popu-
lations under a range of human pressures, including size-selective hunting (Wallaceet al. 2013). Integral
population models have also been integrated with DEB theory to provide additional mechanistic insights

6
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into ecological patterns under disturbance (Smallegange et al. 2017; Thunell et al. 2023). This approach
allows for the investigation of ecological and evolutionary patterns from an energy budget perspective, such
as sensitivity to shifts in environmental variability (Smallegange et al. 2020; Rademaker et al. 2024) or the
eco-evolutionary consequences of climate change for populations (Thunell et al. 2023).

2.2.3 Physiologically structured population models

Physiologically structured population models can describe a population’s demography using DEB theory,
but differ by treating time as continuous rather than discrete (Metz & Diekmann 1986; de Roos 1997).
This approach has been applied to investigate the population-level impacts of food limitation (e.g., Hin et
al. 2019) and environmental stress (Silva et al. 2020). Finally, a computational approach (de Roos 2021)
exists that merges discrete and continuous DEB population modelling approaches that can be used for life
histories with continuous development through time (de Roos et al. 2008). For example, this approach has
been applied to show how habitat deterioration impacts life history evolution in metamorphosing species
(ten Brink et al. 2020).

2.2.4 State-space models

State-space modelling is a highly flexible hierarchical framework used to estimate parameters while explicitly
separating the underlying ecological process (the true, unobserved state) from the observation process (mea-
surements). This distinction allows for the independent estimation of uncertainties arising from biological
stochasticity and sampling-related measurement errors, therefore reducing bias in parameter estimates com-
pared to models that account for only a single source of uncertainty (Auger-Methe et al. 2021). Ecological
applications of state-space models include estimating demographic rates, assessing population abundance,
and projecting population growth and viability (Buckland et al. 2004), using a range of datatypes (e.g.,
capture-recapture, abundance data). State-space models are highly adaptable, allowing structuring by age
(Bret et al. 2017), life stage (McCaffery et al. 2012), or spatial location (Rogerset al. 2017). State-space
models can also capture temporal trends and density-dependence effects (Lebreton & Gimenez 2013). In
addition to studying the effects of a variety of disturbances, such as climate change and habitat destruction
(e.g., Westcott et al. 2018; McCaffery et al. 2012), they can also model host-parasite dynamics (Karban &
De Valpine 2010) and be combined with population models such as integrated population models (White et
al. 2016).

2.2.5 Integrated population models

Integrated population models (IPMs) combine population count data and demographic data within a single
statistical model to infer population dynamics. These models are frequently implemented using Bayesian
methods with a state-space model formulation to deal with uncertainties in parameter estimates. Typically,
the core of an IPM is a matrix model (or integral projection model; Plard et al. 2019) that is formulated
in discrete time to describe changes in age- or stage-structured population sizes. IPMs can help reduce
uncertainty in parameter estimates, estimate confounded or hidden parameters, and disentangle sources of
uncertainty when forecasting population trajectories (Schaub & Abadi 2011). Disturbance applications of
IPMs include climate change (Gamelon et al. 2023), land use changes (Zhao et al. 2019), invasive species
(Oppel et al. 2022), and electrocution on power poles or collision with wind turbines (Millsap et al. 2022).
Some work has also focused on extending these models to multiple species, incorporating interactions such
as competition (Peron & Koons 2012) and predation (Queroue et al. 2021).

2.2.6 Machine learning models

Machine learning algorithms are computational approaches that learn patterns from large and complex
datasets capturing non-linearities and complex interactions between variables to generate accurate predictive
models without explicit programming (Pichler & Hartig 2023). In the context of disturbance, machine
learning models are most commonly used in correlative SDMs, but they have also been used to predict
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population dynamics under various pressures (e.g., climate change; Amstrup et al. 2008), and to understand
the impact of disturbance on animal behaviour (Berger et al. 2020; Fardell et al. 2021; Tedonzong et al.
2020).

2.2.7 Partial differential equations

Partial differential equations are a class of mathematical equations used to describe systems where variables
change continuously over both time and space. A partial differential equation expresses relationships between
the rates of change of these variables with respect to time, spatial dimensions, or both. A typical partial
differential equation in ecology might describe how the rate of change in animal population density at a
specific location depends on factors like the movement of individuals (diffusion), behavioural interactions,
and local birth and death rates (Moorcroft & Lewis 2006; Otto & Day 2011). There have been several
applications of partial differential equations to study the consequences of human disturbance on populations,
including climate change (Chhaytle et al. 2023; Goel et al. 2020), invasive species (Laplanche et al. 2018)
and pest control (Banks et al. 2020).

2.3 Range dynamics

This section reviews some of the methods used to understand and predict the effects of human disturbance
on the range dynamics of wildlife populations. From a disturbance ecology perspective, range dynamics can
tell us where populations may be at greater risk of exposure to stressors, highlight potential areas of refuge,
and identify key habitat requirements for a population to persist. This information can be used to prioritise,
for example, areas for protection or management.

2.3.1 Species distribution models

Correlative species distribution models (a.k.a. ecological niche models or habitat suitability models; here-
after, SDMs) identify statistical relationships between species occurrence or abundance to spatio-temporal
patterns of environmental variation to explain or predict species distributions (Elith & Leathwick 2009).
Habitat suitability is typically predicted from static physical features (e.g., land use type, topography)
and/or dynamic environmental variables (e.g., temperature, precipitation). Data can be fitted using a range
of approaches, including generalized linear and additive models, boosted regression trees, and machine learn-
ing algorithms (Guisan et al. 2017). Disturbance can be incorporated as an additional predictor variable
(e.g., urbanization; Russo et al. 2023) or effects can be inferred based on spatial or temporal shifts in habitat
suitability (e.g., climate change; Russo et al. 2023). They are also frequently integrated as a spatial layer for
other modelling approaches, such as connectivity models (e.g., Rezaei et al. 2022) and IBMs (e.g., Andersen
et al. 2022; Jordt et al. 2016), providing boundaries for movement or dispersal.

2.3.2 Process-explicit range models

Process-explicit range models extend correlative SDMs to explicitly model the underlying processes that
drive population dynamics, such as physiology, dispersal, demography, and evolution (Briscoe et al. 2019).
There are a broad range of modelling approaches that can be categorised as process-explicit range models,
including occupancy or abundance dynamics models, coupled SDM-population models, demographic distri-
bution models, eco-physiological models, and IBMs (Briscoeet al. 2019). Applications of process-explicit
range models are limited but they have increased in recent years (Kelleher et al. 2024; Uribe-Rivera et al.
2023), particularly as they are often assumed to provide more accurate range prediction when extrapolating
to novel conditions (Evans et al. 2015, but see Uribe-Rivera et al. 2023). For example, demographic-
based process-explicit range models have been used to assess the effect of wind farms (Bastos et al. 2016),
movement barriers (Pratzeret al. 2023), and climate change (Mathewson et al. 2017; Santika et al. 2014).

8



P
os

te
d

on
4

M
ar

20
25

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

74
11

00
76

.6
85

14
46

8/
v1

|T
hi

s
is

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
-r

ev
ie

w
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

2.4 Community and ecosystem dynamics

While ecological models often focus on a single species, unintended management outcomes can result when
species are viewed in isolation (Buckley and Han 2014). Models that explicitly consider the interactions
and feedback among species can help better inform population-level responses to disturbance and manage-
ment. Community and ecosystem models vary substantially in their complexity, from simple food webs
(e.g., Varriale and Gomes 1998) to complex end-to-end ecosystem models (e.g., Fulton 2010). Here, we focus
on metacommunity and food web models as these approaches are more frequently applied to disturbance
studies, though their application is still relatively rare.

2.4.1 Metacommunity models

Metacommunity models represent the multiscale dynamics of species inhabiting discrete habitat patches,
where populations face measurable extinction risk, can recolonize after local extinction, and experience
asynchronous local population dynamics. Patterns in local extinctions versus regional survival are central to
these models and are driven by processes such as environmental filtering, biotic interactions, dispersal, and
drift (Chase et al. 2020; Lerch et al. 2023). As these models are united by underlying theory rather than
a standard method, there exists a wide variety of modelling approaches that may represent time and space
differently (Ovaskainen and Hanski 2001; Bond et al. 2023; Souto-Veiga et al . 2024). Dynamics may be
represented using IBMs (e.g., Radchuk et al. 2013) and matrix population models (e.g., Takashina 2016),
among others (e.g., Brandell et al. 2021; Zhang et al. 2021). Metacommunity models are still rarely used to
study disturbances (but see Duggeret al. 2011); however, the theory is analogous to metapopulation models
that have been used to address how changes in landscape structure influence colonization and extinction
dynamics (Bond et al. 2023) and the impacts of broader environmental changes (e.g., extreme weather)
across metapopulations (Radchuk et al. 2013).

2.4.2 Food web models

Food web models aim to represent the demographic impact and rates of transfer of material or energy between
different elements of the community matrix as a result of trophic interactions such as predation, parasitism, or
mutualism (e.g., Baudrot et al. 2020). These models encompass a wide variety of computational approaches,
ranging from partial differential equations (e.g., Lusardi et al. 2024) to individual-based or cell-lattice models
(e.g., Fryxell et al. 2020). Community structure, behavioural details (e.g., decision-making, mobility, and
cognition), sources of heterogeneity affecting interaction rates, and landscape configuration are often key
components influencing model outcomes. The response to disturbance in food web models, such as that
caused by invasive species or habitat loss (e.g., Roemer et al. 2002), is often determined through impacts on
community structure or changes in the functional relationships between community components.

2.4.3 Structural equation models

Structural equation models aim to capture the complex interactions that are inherent in communities and
ecosystems. By integrating multiple processes, structural equation models can help disentangle the relative
influences of many processes on community or ecosystem dynamics. As in food web models, structural equa-
tion models allow researchers to assess both direct and indirect effects of disturbance on trophic interactions,
such as the cascading impacts of habitat loss or invasive species (e.g., Curveira-Santos et al. 2024; Schwensow
et al. 2022). Their ability to account for multiple causal pathways makes them a valuable tool for predicting
community-level responses to disturbance (Schweigeret al. 2016). However, relationships are assumed linear
which may not always be appropriate in real world systems.
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3 Case-studies

To illustrate how quantitative approaches can be selected for a given application, we highlight two case-
studies: 1) the ever-abundant red fox and 2) the critically endangered European mink. The red fox is a
well-studied species that has been modelled extensively to address a range of management purposes. The
European mink, on the other hand, is a data limited species of high conservation concern, with only one
modelling application. Through this endeavour, we hope to illustrate some of the decisions that are made in
the model development process, how others have overcome the limitations of different approaches, and how
mechanistic pathways can be used to help address data scarcity challenges.

3.1 Case-study 1: Red fox

Disturbances of wildlife populations are often unintentional, occurring as a by-product of other human activ-
ities. In some cases, however, they may result from targeted management actions that may occur in isolation
or conjunction with other disturbances. One example species is the red fox, a small carnivore that has a
wide distribution across the northern hemisphere (Box 2). Foxes are often perceived as a nuisance species,
are potential vectors of zoonotic disease, but also play important ecological roles (e.g., prey regulation). As a
relatively well-studied species of high management interest, a range of modelling approaches have been used
to address disturbances in red fox populations. Here, we provide a brief overview of some of these models,
focusing on two disturbances where multiple methods have been used to address similar questions, namely
rabies and harvesting/culling.

3.1.1 Rabies/Disease

Rabies, a zoonotic disease, is often viewed as a natural feature in the environment. However, its dynamics,
along with those of other diseases, can be shaped by human influences, including spill-over from domestic
species, shifts in wildlife densities driven by urbanization, and changes in behaviour or ranges associated
with climate or land use change. Rabies has been extensively studied in red foxes, which serve as critical
hosts and vectors for specific strains of the disease. Although now eradicated in many regions, rabies remains
a valuable case study due to the diverse modelling efforts it has inspired, offering opportunities to compare
alternative approaches that may be applied to other diseases of interest. Here, we compare two methods
for modelling rabies dynamics: 1) an IBM with a cell-lattice framework (Tischendorf et al. 1998) and 2) a
combined Bayesian state-space and metapopulation model (Baker et al. 2020). Tischendorf et al . (1998)
employed spatially-explicit grid cells to simulate localised interactions, transmission heterogeneity, and clus-
tering effects in highly immunized fox populations, offering insights into fine-scale processes and enabling
targeted interventions. In contrast, Baker et al. (2020) used three decades of rabies case data to assess
regional spatial coupling, density-dependent dynamics, and localized transmission to capture broader trends
and demographic influences of rabies on fox populations. These methods provide complementary insights
into rabies dynamics by focusing on different scales and mechanisms of disease spread. Both models incorpo-
rated seasonality and dispersal, essential for capturing temporal variations in long-distance transmission and
changes in the number of susceptible individuals. However, their use of empirical data differed. Tischendorf
et al . (1998) relied on literature-derived movement patterns, while Baker et al . (2020) used Bayesian
approaches to estimate dispersal rates from observed rabies cases. Tischendorf et al. (1998) also used
theoretical landscapes, while Baker et al. (2020) represented regions as five German states between which
dispersal could occur. Notably, only Bakeret al. (2020) explicitly integrated density dependence (represented
as declines in survival and reproduction as metapopulations approach carrying capacity) and demographic
processes, critical for realistic modelling of contact rates, with parameters informed by studies on urban foxes.
In Tischendorf et al. (1998), these processes were somewhat implicitly represented through the number of
occupied cells, mortality rates due to infection, and dispersal rates of subadult foxes. The use of inte-
grated models in both cases demonstrates the benefits of integration for addressing disease dynamics, while
managing the trade-offs inherent with modelling complex systems. For example, both approaches captured
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spatial elements of rabies dynamics and tracked disease progression over time, demonstrating that different
approaches can achieve similar goals. Both approaches also emphasised the importance of spatio-temporal
processes in understanding rabies dynamics. Both studies found that incorporating dispersal-mediated trans-
mission across habitat regions was important to reproduce key empirical patterns. Despite these strengths,
both models faced challenges with missing data, such as population size and fine scale distribution of foxes
and vaccination campaigns. Ultimately, each approach underscored the necessity of accounting for local
interactions and spatial heterogeneity to model the complex fox-rabies system, strengthening the conclusions
despite data limitations.

3.1.2 Culling

Foxes are subject to lethal predator control through harvesting, fertility control, and poisoning due to their
perceived negative impacts on wildlife, livestock, and human health, with the aim to limit depredation
impacts and/or reduce disease spread (Hoffmann & Sillero-Zubiri 2021). However, the impact of culling on
fox population dynamics remains unclear due to a lack of evidence of potential compensatory mechanisms
(Lieury et al. 2015). Beyond foxes, understanding the effectiveness of predator control remains a key issue
in conservation management. Here we discuss two approaches used to evaluate the impact of culling on
fox population dynamics: 1) a spatially-explicit IBM (Hradsky et al. 2019) and 2) a Bayesian state-space
IPM (Nater et al. 2024). These two approaches had different management purposes and thus required
different data and considered different processes. Hradsky et al. (2019) focused on the impact of poisoning
to evaluate population responses to diverse baiting designs at scales relevant to management, while Nater
et al . (2024) assessed the impact of harvesting on vital rates, population structure, and rate of population
change in an expanding fox population. To evaluate and plan effective fox baiting programs, Hradsky et
al. (2019) used customisable habitat-cells to specify habitat patches and indicate the location and type of
bait stations. The model used a relatively fine temporal scale that allowed for fox sociality and territoriality
to be incorporated. At each time step, foxes could disperse and, depending on their sex and social status,
join a fox-family and reproduce. In contrast, Nater et al. (2024) used a non-spatial, female only model to
understand the drivers of fox population dynamics. The model was built on an annual time step, during
which the population changes in response to natural mortality, harvesting, immigration, and reproduction.
The impact of seasonal and inter-annual changes in food availability on local demography and immigration
rates were also investigated. To investigate the effects of culling in their respective contexts, the authors
utilised different data and evaluated their models in different ways. Hradsky et al. (2019) parameterised
their IBM using site-specific data from the literature, including population density and dispersal distances.
Their model was applied to four case-studies and model outputs were validated against individual- and
population-level empirical estimates. Nater et al. (2024), on the other hand, used a range of disparate
data streams to estimate age-specific demographic rates (number, age, and reproductive status of harvested
foxes), reproductive rates (placental scar data and opportunistic pup counts from hunters and camera traps),
immigration rates (genetic data). Data on food availability (rodent abundances and reindeer carcasses) at
different spatial and temporal scales were also used to infer natural mortality and immigration. The IPM was
then evaluated by comparing model predictions with genetic data on emigration. Overall, both approaches
provided complementary insights on the impact of culling on fox populations. Hradsky et al. (2019) showed
that fox density is more sensitive to the frequency of baiting than the spatial density of baits, due to the
recruitment of individuals from neighbouring patches. In contrast, Nater et al. (2024) identified the key
drivers of year-to-year population change, highlighting the interactive role of food availability, showing that
harvesting is more efficient when it coincides with low rodent abundance. Both studies highlighted the
importance of better understanding density-dependent and compensatory fecundity and immigration, which
appear to be key drivers of fox population dynamics. Potential immigration-mediated compensation for
intentional mortality has rarely been investigated due to the lack of data on dispersal. In this regard, the
IPM developed by Nateret al. (2024) shows a very promising use of genetic data for estimating migration
rates.
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3.2 Case-study 2: European mink

Many species are subject to data limitation challenges, making it difficult to assess conservation status and
to identify the associated drivers of population decline. Regardless, management decisions are needed, often
at timescales that are much shorter (years) than it takes to amass the data to conduct robust analyses on
population dynamics (decades). Rare species present a particular challenge because their scarcity makes
data inherently difficult to collect, while also being at high risk of extinction (Davidson et al. 2009). The
European mink, a mustelid that has been extirpated across much of its historic range, is one example of
this dilemma. Remaining local populations are critically endangered and active intervention to prevent
extinction and promote recovery is ongoing (Box 3). For understanding disturbance impacts and informing
management decisions for European mink, correlative SDMs are an obvious first choice as presence data exist
and remote sensing and climate modelling make it possible to include dynamic and disturbance-relevant
predictor variables. SDMs have been developed to predict habitat suitability for European mink (and
American mink, Neovison vison , an invasive competitor) in Spain under historical conditions and various
socioeconomic and emissions pathways (Goicolea et al. 2023). Spatial maps produced from SDMs can help
identify areas for protection, restoration, and captive release, and illustrate changes in habitat suitability and
interspecific overlap under climate change. The latter relies on assumptions that correlative relationships
remain unchanged in time, accurately represent species requirements, and hold when extrapolated outside
the range of input data. However, in many instances, these assumptions are likely to be violated. Many of
the potential causes of the decline in the European mink could have strong impacts on energy balance (Fig.
3, Box 3). Energetic modelling approaches are well suited to data limited species because many energetic
processes scale allometrically or are evolutionarily conserved (McGrosky and Pontzer 2023; Kooijman and
Augustine 2022), allowing models to be parameterized in the absence of species-specific data. In addition,
while energetic measurements from data-limited populations may be difficult to obtain, data collected from
proxy species or animals managed in human care may be more readily available. For example, metabolism and
reproductive energetics have been measured in American mink and other terrestrial mustelids (e.g., Iversen
1972; Wamberg and Tauson 1998; Chappell et al. 2013), while data relevant to energetic models have been
collected from European mink in captive breeding programs (Kiik et al. 2017). These data can thus inform
the energetic requirements and challenges of the European mink. There are a range of energetic modelling
frameworks that can be used including traditional bioenergetics models and DEB models. One key advantage
of DEB framework is that it is grounded in the first principles of fundamental biological and physical laws.
It assumes that all organisms (regardless of their taxonomy) follow the same basic principles of energy
acquisition, allocation, and expenditure. DEB therefore allows for the transfer of information across species
by leveraging standardized allometric relationships and shared biological principles, allowing for predictions
even in species for data are lacking (Lika et al. 2011). This assumption also facilitates the application
of existing models to new species, as could be the case with American and European mink (Desforges et
al. 2017). By capturing the underlying processes of energy flow, DEB models can make useful predictions
about organism responses to environmental changes such as resource availability, temperature, and stress
(e.g., Molnar et al . 2010; Harwood et al. 2020), providing an explanatory framework linking physiology
and ecology. For the European mink, DEB models could be used to investigate the effects of habitat loss
and fragmentation including reduced prey availability, interspecific competition, altered activity budgets due
to habitat fragmentation, and antagonistic interactions with American mink (Fig. 2). Other disturbances
indirectly related to energetics could be incorporated, such as pollution or reduced mating opportunities,
to understand synergistic impacts. Such models could help identify thresholds at which resource scarcity
begins to negatively affect individual survival, assess the long-term impacts of disturbances, and quantify
the impacts of stressor removal (e.g., eradication of American mink). By combining DEB with individual-
based movement models and habitat suitability maps (from SDMs), spatially-explicit DEB models could
be used to evaluate the potential outcomes of management decisions. For example, this approach, coupled
with targeted surveys, would allow for the identification of suitable areas to release captive-bred individuals
based on resource availability. It could also inform habitat restoration efforts by highlighting areas where
interventions would likely have the greatest impact on the species’ recovery.
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3.3 Summary of case-studies

These case-studies have exemplified the diversity and complementarity of modelling approaches for predict-
ing the population consequences of human disturbance. Our fox case study demonstrated that IBMs are
particularly well suited for assessing human impacts on species with extensive ecological knowledge avail-
able thus enabling detailed simulations of individual behaviour and interactions. Our European mink study
highlighted the potential for energetics modelling to overcome data limitation issues that are common for
species of conservation concern. Although particularly suited to data limited species, energetics approaches
are also useful for other species exposed to indirect stressors (Johnson et al. 2024). Despite the breadth
of existing research, a notable gap exists in the red fox literature regarding the integration of energetics
with disturbance modelling. Given the growing body of empirical research on red fox energetics, there is an
exciting opportunity to link disturbances to population dynamics through changes in individual energetics
and vital rates. Doing so could quantify the energetic costs of disturbances (e.g., by measuring the energetic
demands imposed by habitat fragmentation or reduced prey availability) or predict long-term population
consequences by linking individual energy budgets to reproduction and survival rates.

4 Discussion

An impressive variety of quantitative modelling approaches are being used to understand and predict wildlife
responses to human disturbance – and even to address the same conservation or management problems, as ex-
emplified by our red fox case-study. Understandably, it may be daunting for someone who is not familiar with
modelling, or who is only familiar with a specific family of models, to decide on which modelling approach(es)
to use. We hope that this manuscript can provide guidance and broaden horizons for those wishing to model
the impacts of human disturbance on wildlife. Broadening our perspective of what constitutes disturbance
can open ecologists up to other research areas and approaches. For example, some ecologists may not consider
disease to be a human-mediated disturbance, since it is a part of the evolutionary history of most organisms,
but it is also affected by human-mediated environmental change. Approaches used to model disease impacts,
and their associated considerations, may thus provide insights into the modelling of other disturbances that
may act via similar mechanisms. A broader perspective can also expose ecologists to some of the ways that
modelling approaches can be integrated to overcome the limitations of the different singular approaches. It
is interesting how different processes are being pulled into models to address different disturbances. This was
illustrated well for red foxes, where dispersal and immigration were explicitly incorporated when assessing the
impacts of regulatory management, since these processes appear to drive the difficulties in regulating red fox
abundance. Similarly, spatial dynamics, movement, and dispersal were key processes included for predicting
disease transmission, because movement of infected individuals drives disease spread. Yet there remains an
opportunity to incorporate other processes that impact population responses to human disturbance, includ-
ing eco-evolutionary feedbacks and sociological processes. Since evolutionary changes following disturbance
may enable populations to adapt to disturbances, such as increasing temperatures, eco-evolutionary feed-
backs play a crucial role in the long-term responses of populations to disturbance (Loeuille 2019). Social
dynamics can also play a key role in population dynamics and although they are sometimes considered for
social wildlife (e.g., Brandell et al. 2021; Grente et al. 2024), the human element is often neglected. Not only
are human disturbances inherently driven by human behaviour, but so are the perceptions of management
actions (Bro-Jorgensen et al. 2019). Such interdisciplinary approaches are already well developed (e.g.,
Dobson et al. 2019) but greater uptake in disturbance ecology modelling could improve conservation and
regulatory management outcomes. We were pleased to see increasing use of energetic modelling applications
across a range of quantitative approaches. Since energetics act in a summative way and many non-lethal
disturbances have impacts on energy acquisition or use, energetic models can help us better understand the
impacts of multiple stressors on wildlife populations. Subsequently, the inclusion of energetic mechanisms
represents an important avenue to scale individual-level responses to population-level impacts. By integrat-
ing models, energetics can be incorporated into most of the quantitative approaches available for modelling
population responses to human disturbance. Perhaps most importantly, energetic models may offer the
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only viable way both scientists and decision-makers can anticipate the impact of demographic responses to
complex patterns of global climate change that will surely continue for the foreseeable future. If we do not
accommodate changes in behaviour, space use, and demography that will accompany the relentless change
in climatic drivers, even the best of models will only have value for understanding the past rather than
predicting the future. While DEB theory is not new (Kooijman 2000), it appears to be having a resurgence
to address the growing concerns of human-mediated threats to wildlife. Given the common challenge of data
availability, the DEB approach may be more attainable than traditional energetic approaches that require
detailed energetic data that may not be readily available. This is one of the reasons why we explored this
avenue in our European mink case-study. However, traditional energetics approaches can also utilise data
from proxy species and allometric relationships, and may be more intuitive to some ecologists. The intricate
tie between individual behaviour and energetics makes these a powerful combination for assessing population
responses to disturbance. Despite the developments and integrations of quantitative modelling approaches,
models can only ever be a simplified representation of natural systems. All quantitative approaches rely on
assumptions, imperfect data, and simplifications of the processes they aim to represent. Consequently, there
is a great deal of uncertainty associated with input parameters and data, model structure (Refsgaard et al.
2006), and resulting model predictions (Rounsevell et al. 2021). Several approaches have been developed
to minimise or quantify the level of data or model uncertainty. For example, sensitivity analysis aims to
determine the influence of uncertain parameters in model outputs, which can highlight priority areas for data
collection or model development (Cariboni et al. 2007). Alternatively, ensemble modelling aims to reduce
model uncertainty by combining predictions from multiple models. This approach has become more common
for species distribution modelling (Hao et al. 2020) but has received criticisms due to the ‘smoothing out’ of
model outputs. Challenging models with different assumptions against each other (i.e., robustness analysis
(Levins 1966) or model intercomparison) is another approach to quantifying uncertainty in model outputs, as
well as investigating the influence of different model structures. With this approach, there is no averaging of
model outputs, but the resulting model predictions may be vastly different. Quantifying uncertainty brings
about its own challenges. When providing predictions to managers, it is important to highlight the degree of
uncertainty in model predictions, yet uncertainty can make it more difficult for managers to make decisions.
This makes knowledge transfer crucial, as stakeholders are able to conceptualise uncertainty in model out-
puts and make informed decisions when clearly communicated (Mahevas & Sigrid 2024). Nonetheless, the
acceptance of modelling tools as a decision support tool depends on whether different stakeholders agree with
the representation of the system and their understanding of its components. For this purpose, participatory
modelling is a widely used approach (Voinov & Bousquet 2010) that aims to increase and share knowledge
of a system and its dynamics under different conditions and to anticipate the impact of management actions
to support decision-making. However, the involvement of stakeholders is no guarantee for the appropriation
of model results, especially if their participation is limited.

5 Conclusion

The diverse methodological toolkit available highlights the adaptability of modelling approaches to address
specific stressor types and questions for wildlife conservation and management. Here, we have provided an
overview of the key modelling options available for predicting population responses to human disturbance,
indicating how different models can be combined to leverage the strengths of alternative approaches. We
also highlighted the important role that energetics plays in predicting the impacts of indirect stressors on
population dynamics, and suggest other areas of development in modelling the complexities of indirect or
multiple stressors, such as eco-evolutionary and sociological mechanisms. We hope new studies will consider
alternative approaches or integrations and identify the processes that should be incorporated for assessing
the specific disturbances impacting a given study system. Throughout we have illustrated the value of in-
tegrating different modelling approaches to address population consequences of disturbance, demonstrating
that science is stronger with multi-disciplinary collaboration. In much the same way, collaboration be-
tween stakeholders, managers, decision-makers, and ecologists enables efficient uptake and implementation
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of management recommendations.
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vulnerability of migratory birds: Insights from integrated population modelling.Journal of Animal Ecology
, 88, 1625–1637. Zipkin, E.F., Inouye, B.D. & Beissinger, S.R. (2019). Innovations in data integration for
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Text boxes

Box 1: From individuals to communities - pathways for human impacts on wildlife

The impacts of human disturbance, and many other stressors, occur not only via directly altering the vital
rates (e.g., survival, fecundity) of a population but also indirectly via changes in the behaviour and/or physi-
ology of individuals (NAS 2017). When sustained, stressors can lead to chronic impacts that erode the health
and immune status of individuals. Stressors may also have an acute impact on vital rates, such as mortality
resulting from an injury. These individual level responses can then be scaled up to the population-level by
considering multiple individuals, and ideally their interactions, within a population. Representing multiple
interacting stressors requires the explicit consideration of multiple mechanistic pathways through which these
stressors are acting. For example, the European mink (see 3.2) is exposed to a range of stressors including the
direct effects of road mortality, which relates to individual movement patterns and habitat connectivity, and
indirect effects of wetland loss and competition with American mink, resulting in behavioural and energetic
impacts on the population.

Community and ecosystem dynamics are important when identifying appropriate conservation or manage-
ment strategies, since a lack of consideration can lead to adverse management outcomes (e.g., Buckley and
Han 2014; Zavaleta et al. 2001) . Despite this, these dynamics are rarely accounted for in disturbance
models, particularly mechanistic models, likely due to the increasing complexity when considering multi-
ple populations or species. Nonetheless, the increasing impact of human activities on ecological systems
and their continued degradation (IPBES 2022) emphasises the need for human disturbance modelling to
incorporate community dynamics. There are many approaches that can be used to account for community
dynamics (Geary et al. 2020), which can be integrated with other quantitative approaches to leverage off
the benefits of each approach. For example, individual-based models can be combined to create community
models (e.g. Radchuk et al. 2013) or can be integrated within matrix community models (Lytle & Tonkin
2023), depending on the specific data available. Community models also lend themselves well to energetics
approaches (Szangolies et al. 2024), permitting mechanistic evaluation of community dynamics.

The mechanistic pathways of impact are not only relevant for studying the impacts of stressors on wildlife,
they can also be used to measure the effectiveness and appropriateness of management actions. By con-
sidering how management actions are intended to impact the target population, such as through improved
resource availability, ecological models can help identify if management strategies will have their intended
outcome or if alternative strategies may be more worthwhile. This may be particularly beneficial when
considering community dynamics, where unintended consequences are more likely to occur.

Box 2: Ecology of the red fox

Distribution and conservation status: The red fox has the largest geographical range of all members
of the order Carnivora. It is widespread throughout the northern hemisphere, from the Arctic Circle to
southern North America, Europe, North Africa, the Asian steppes, India and Japan. Introduced populations
also persist in Australia where they have caused significant damage to native ecosystems. The species is
listed as Least Concern (LC) on the IUCN Red List (Hoffmann & Sillero-Zubiri 2021).

Ecology: Red foxes can be found in habitats as diverse as tundra, deserts, mountains (up to 4,500 m),
forests, and urban areas. Foxes are opportunistic omnivores and scavengers with highly plastic diets that
vary according to the availability of food resources. Their diet may consist of mammals (voles, rabbits, young
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hares, or lambs), ground-nesting birds, poultry, invertebrates, fruit, and food waste, to varying degrees.
Females become sexually mature around 10 months old and generally give birth to a litter of 4-6 young
per year. Red fox densities vary widely, from as low as 0.02 ind/km2 in rural areas (Meia 1994), up to 30
ind/km2 in urban areas where there is an oversupply of food (Harris & Rayner 1986). It can be solitary at
low densities but also forms social groups (Macdonald 1981).

Main threats and management actions: Threats to this species from humans include habitat degra-
dation, loss and fragmentation in certain areas, exploitation, and persecution (Hoffmann & Sillero-Zubiri
2021). Hunting and trapping are widespread in most areas, with large kill bags. Hunting is mostly seen as
sport, while trapping and regulatory shooting aim to reduce population size and depredation, but there is
increasing debate about whether fox control is achieving its goals. While no longer considered a concern,
red fox have historically been impacted by vulpine rabies epidemics.

Box 3: Ecology of the European mink

Distribution and conservation status: The European mink is the most endangered mammal in Europe
and was classified as Critically Endangered (CR) on the IUCN Red List in 2016 (Maran et al. 2016). Over
the last 150 years, the species has declined by more than 90% and has been extirpated or severely depleted
across most of its former range. The current range of the endemic wild population consists of a few isolated
fragments in northern Spain and western France, the Danube delta in Romania, Ukraine and Russia (Maran
et al. 2016).

Ecology: European mink are small semi-aquatic mustelid carnivores (males: 0.5-1.5 kg, females: 0.3-0.7
kg). They inhabit densely vegetated banks of rivers, streams, and lakes with stagnant or slow-flowing water
across a variety of landscapes (forests, agricultural, hedgerows, marshes, polders, etc.), using underground
burrows or dense vegetation for resting and reproduction. Diets primarily consist of amphibians, crustaceans
(crayfish), fish, small mammals (rats and voles), birds and, to a lesser extent, insects and eggs (Palazon et
al. 2004; Libois 2001). Predators include the red fox, dogs, and raptors (Maran et al. 2017; Podra 2021).
Females reach sexual maturity at 11 months and give birth to a litter of 2-7 young per year. Longevity in
the wild has been reported to be up to five years (Manas et al. 2016).

Main causes of decline and management actions: The main hypothesised threats contributing to the
current decline are (1) habitat loss and fragmentation of wetlands, (2) road mortality, (3) harvesting and
(4) the impact of the invasive American mink through interference competition. The species is protected
by law in Europe. In an effort to recover European mink populations, captive breeding and reintroduction
programs have been implemented in Spain (Gomez 2018; Maran et al. 2017; Podra 2021), Estonia (Maran
et al. 2017), and France (DREALet al. 2021).

Data availability: Across the three extant populations, available data include presence data, home range
size estimates, diet information in the presence and absence of invasive competitors, habitat requirements,
trait data, behavioural responses to humans, and post-release survival estimates for captive bred individuals.

23



P
os

te
d

on
4

M
ar

20
25

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

74
11

00
76

.6
85

14
46

8/
v1

|T
hi

s
is

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
-r

ev
ie

w
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

24



P
os

te
d

on
4

M
ar

20
25

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

74
11

00
76

.6
85

14
46

8/
v1

|T
hi

s
is

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
-r

ev
ie

w
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

25


