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1 Introduction

Fetal growth restriction (FGR), traditionally defined as estimated fetal weight <10th percentile, is a leading
risk factor for stillbirth and a major focus of antenatal ultrasound use.(1) Current diagnostic strategies for
FGR perform poorly to predict perinatal morbidity and mortality, such that most fetuses diagnosed with FGR
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do not experience any perinatal morbidity.(2) Efforts have been made to customize fetal growth assessments
using maternal and fetal factors that are associated with variation in fetal growth, including maternal race.(3)
However, race is a socially defined construct that is fluid over time and subject to considerable admixture
and therefore is a problematic proxy for genetic growth potential.(4) Furthermore, its use has the potential to
exacerbate disparities by conflating the effect of imposed deprivations with genetics, potentially reclassifying
abnormal growth as normal and causing necessary surveillance and interventions to be withheld.(5, 6)

Instead, the integration of genetic data may be a more valid and effective approach to personalize fetal growth
assessments and thereby improve recognition of abnormal growth. Recent studies identified genetic markers
associated with fetal growth that could be used for such purposes.(7-9) However, it is increasingly recognized
that genetic findings in predominantly European cohorts do not generalize to more diverse populations.(10-
12) Therefore, the objective of this study was to assess a genetic risk score (GRS) for birth weight (GRSBW),
recently developed from a European cohort, for generalizability within groups defined by self-identified race
and genetically predicted ancestry.

Because the rationale to use a GRSBW to customize fetal growth assessment is to obviate the impulse to cus-
tomize using race/ethnicity, our secondary objective was to determine whether self-identified race/ethnicity
remains associated with birth weight (BW) after accounting for the GRSBW.

2 Methods

2. Study Setting and Population

Our study was a secondary analysis of the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-
to-Be (nuMoM2b), a large prospective observational cohort study designed to assess contributors to adverse
pregnancy outcomes. Detailed nuMoM2b protocols were previously published and are briefly summarized
here.(13) Participants in the parent study were recruited at 8 geographically diverse U.S. sites from 2010-2013
and were included if they had a singleton pregnancy between 6 weeks 0 days and 13 weeks days’ gestation
and no prior pregnancies lasting 20 weeks or more. Potential participants were excluded for age <13 years, 3
or more prior miscarriages, suspected fetal malformation at the time of enrollment, known fetal aneuploidy,
conception using a donor oocyte, multifetal reduction, plan for pregnancy termination, or participation in an
intervention study to influence pregnancy outcomes. Participants had 4 study visits: during approximately
the first, second, and early third trimesters of pregnancy, as well as one after delivery. For this secondary
analysis, we included all participants with a live birth at [?]24 weeks with available maternal single nucleotide
polymorphism (SNP) array data, derived from unselected maternal blood collection that was part of the
protocol for all parent study participants. Participants were excluded if they did not complete any of the 3
research ultrasounds or were missing key variables including fetal sex and BW.

2.2 Outcomes

The primary outcome of this study was association of one’s genetic risk score for infant BW with race. Race
was divided into self-identified race and genetic ancestry. The secondary outcome of this study was to assess
the relationship and overlap between self-identified race and genetic ancestry.

Race designations were self-identified from among the following: White, Black/African American, Asian,
Native Hawaiian/Other Pacific Islander, American Indian/Alaskan Native, Multiracial, and Unknown/not
reported. Genetic ancestry was ascertained using Peddy, a software package that uses an individual’s DNA
to predict the predominant continental ancestry(14) with the following categorical outputs: AFR, African;
AMR, American (Indigenous); EAS, East Asian; EUR, European; SAS, South Asian; UNK, unknown. We
assessed the distribution of predicted genetic ancestry within self-identified racial groups.

Maternal DNA was isolated from blood collected at visit 1. Genotyping was performed using a commercially
available kit (Infinium Multi-Ethnic Global D2 Bead Chip; Illumina), from which SNP arrays were conducted
based on the Genome Reference Consortium human build 38 (CRCh38).(15) 86 BW-associated SNPs that
were identified using GRCh37(7) were mapped to GRCH38 for compatibility, yielding 73 SNPs. Maternal
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SNP arrays were used to compute the GRSBW for each maternal participant using the weighted sum of BW-
associated variants present in each person, such that the score represents the cumulative effect size without
traditional units, expressed as ΓΡΣ = (῞1*β1) + (῞2*β1) + . . . (῞73*β73) , whereV1 is variant 1 and β1 is the
effect size for variant 1.

2.3 Statistical Analysis

A log-linear model was used to test the association between maternal GRSBW with infant BW, controlling
for fetal sex and gestational age at birth. To assess generalizability of the GRSBW across self-identified racial
groups, the association between GRSBW and BW was assessed for each self-identified racial subgroup using
stratified log-linear models. This same approach was repeated across groups defined by genetic continental
ancestry. Finally, self-identified race and genetic ancestry were included as predictor variables in separate
log-linear models to test whether they remained independently associated with BW after controlling for
GRSBW, infant sex, and gestational age.

3 Results

There were 8,147 participants that met inclusion criteria(Fig. 1 ). Participants’ demographic and obstetric
characteristics are shown in Table 1 . Maternal GRSBW values ranged from -0.214 to 0.713 and were
positively associated with infant BW (p 0.06, meaning that a change in GRSBW of 1.0 (essentially the entire
range of possible GRSBW values) is associated with a 6% increase in BW. The measures of association for
terms in the initial model are shown in Table 2 .

Among the included nuMoM2b participants, the largest self-identified racial group was White, (n=5394,
64.1%), followed by Black/African American (n= 1139, 14.0%), unknown (n=699, 8.6%), multiracial (n=508,
6.2%), and Asian (n=358, 4.4%). Genetically predicted continental ancestry groups, in order of decreasing
size, were EUR (n=5,099, 62.6%), AFR (n=1,383, 17.0%), AMR (n=1028, 12.6%), EAS (n=274, 3.4%), UNK
(n=264, 3.2%), and SAS (n=99, 1.2%). Within each self-identified racial group, the most common genetic
ancestry was as follows: White: EUR (91.6%); Black/African American: AFR (98.8%); Unknown/not
reported: AMR (69.4%); multiracial: AFR (30.1%); Asian: EAS (66.5%); Native Hawaiian/Pacific Islander:
EAS (68.8%); American Indian/Alaska Native: AMR (76.5%). Overlap between race and predicted ancestry
is reported in Table 3 .

Figure 2 shows the results of our primary analysis our assessing the generalizability of the association
between GRSBW and infant BW by self-identified race. The association between GRSBW and infant BW
was only significant among participants who self-identified as White (=0.036, 95% CI 0.01-0.062) or more
than one race (=0.096, 95% CI 0.008-0.184).

Across racial groups, the magnitude of the association between GRSBW and infant weight varied widely; the
magnitudes of the association in Asian and multi-racial groups (0.09 and 0.1, respectively) were more than
double that of White and Black groups (0.04 for both). The variation in the magnitude of the association
and statistical association across racial groups is shown in Figure 2.

Figure 3 demonstrates the results for analyses assessing the association between GRSBW and infant weight
within genetically predicted ancestry groups rather than self-identified race. GRSBW was associated with
BW in the EUR (=0.044, 95% CI 0.017-0.07, p=0.007) and AMR (=0.073, 95% CI 0.012-0.135, p=0.007)
ancestry groups but not AFR, EAS, SAS, or unknown groups (Figure 3 ).

Two final log-linear models each assessed the association between self-identified race or genetically predicted
ancestry and BW after controlling for GRSBW in the entire included cohort, using the largest groups in
each category (White race, EUR predicted ancestry) as the referent groups. For all groups except American
Indian/Alaska Native, self-identified race was independently associated with lower BW after controlling for
GRSBW, gestational age, and infant sex (Table 4 ). All genetically predicted ancestry groups except for
UNK remained independently associated with lower BW (Table 4 ). Coefficients and confidence intervals
for all included terms in each of the models in Table 4 are shown inSupplementary Tables 1 and 2 .
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4 Discussion

4.1 Main Findings

In a cohort of well-characterized nulliparous pregnant people, a GRSBW, derived from a set of previously
was modestly associated with infant BW. However, its association with BW was not statistically significant
among participants who self-identified as Black, Asian, or had an unknown race, or among those with AFR,
EAS, SAS, or UNK genetically predicted ancestry. Our findings suggest that the GRSBW does not fully
generalize to racially or genetically diverse groups.

4.2 Interpretation

Our findings are concordant with other studies assessing the relationship between race and fetal growth.
Across a variety of contexts, studies have found that race is associated with differences in fetal growth
among both unselected and low risk groups.(16-18) In our study, both self-identified race and genetically
predicted ancestry were associated with gestational age-adjusted BW, even after controlling for sex and
GRSBW. Our finding that the GRSBW was not consistently associated with BW across non-European an-
cestry groups is also consistent with existing studies of other conditions. Polygenic risk scores derived in
primarily European cohorts perform significantly less well in participants of non-European descent for mul-
tiple conditions, including venous thromboembolism, coronary artery disease, heart disease, hypertension,
chronic kidney disease, and cancer.(19-25) The non-generalizability of genetic findings to diverse populations
is a critical gap with the potential to exacerbate existing disparities.(26, 27) Our findings add to this impor-
tant body of work by extending it to fetal growth, which holds considerable clinical relevance in perinatal
medicine.

Our findings have several implications for future efforts in this area. First, our results demonstrating that
GRSBW is not associated with BW in many ancestry groups, and that genetically predicted ancestry remains
independently associated with BW after controlling for GRSBW, suggests that additional work is needed to
achieve equity in the performance of genetic risk scores for BW prediction. Methods to support multi-
ancestry polygenic risk score derivation are now available and are promising in their ability to equitably
leverage genotypes for trait prediction. However, but such methods still depend on the availability of
discovery cohorts that themselves are diverse, if not globally representative.(28-32) As precision medicine
advances its ability to improve recognition of diseases such as fetal growth restriction and thereby allow for
earlier surveillance or treatment, genetic risk scores that perform better in some populations than others
have the potential to exacerbate inequities in adverse pregnancy outcomes. Second, two results suggest that
there are additional unaccounted-for factors linking race to fetal growth: the lack of association between
GRSBW and BW in multiple self-identified racial groups, and that self-identified race remains associated
with BW after controlling for GRSBW. As noted, the GRSBW is likely insufficiently capturing the genetic
components of this association. However, as race is a social construct, the persistent association between race
and BW can also be linked to systematic differences in environmental and social exposures that are known
to contribute to racial health disparities. It is also plausible that there are epigenetic influences reflecting
the transgenerational impact of racism and other forms of deprivation, oppression, and hardship imposed
on minoritized populations. These factors and their complex relationships to the genetics of fetal growth
remain to be clarified and warrant further investigation.

4.3 Strengths and Limitations

Strengths of our study included the use of a large, multicenter U.S. obstetric cohort with geographical
and racial diversity. The nuMoM2b protocol provides both standardized specimen collection and validated
outcomes ascertainment, and we used externally derived BW-associated SNPs for GRSBW assessment, adding
to the rigor and validity of our analysis. Additionally, our assessment of GRSBW using two distinct approaches
(both self-identified race and genetically predicted continental ancestry groups) demonstrates that the lack
of generalizability is a robust finding.

Our study also had limitations. The need to map SNPs derived from reference build GRCh37 to GRCh38,

4



P
os

te
d

on
27

F
eb

20
25

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
74

06
66

79
.9

64
03

16
1/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

ultimately leading to the use of 73 rather than 86 SNPs may have reduced the strength of the overall
association between the GRSBW and BW. Also, it is possible that the lack of association between the
GRSBWand BW is due to the sample sizes of each group, especially for the smallest groups, such as Native
Hawaiian/Pacific Islander or American Indian/Alaska Native. However, sample size limitations are unlikely
to fully explain the lack of association, as the GRSBW was associated with BW in the multiracial group
(n=508) and was very nearly significant among those of SAS predicted ancestry (n=274), both of which had
smaller sample sizes than the largest groups in which GRSBW was not associated with BW.
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Table 1. Demographic and obstetric characteristics of nuMoM2b participants meeting secondary analysis
inclusion criteria.

Birth weight (g), mean +-SD & 3239.5 (559.1) BW <10th percentile, n (%) 773 (9.5) BW >90th percentile,
n (%) 351 (4.3) Newborn sex male, n (%) 4190 (51.4)Table 2 . Association between infant birth weight and
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maternal GRSBW, infant sex, and gestational age at delivery, nuMoM2b cohort, 2010-2013

Parameter Estimate (95% CI) t value p

Intercept -1.164 (-1.561, -0.767) -5.74 <.0001
Maternal GRSBW 0.063 (0.041, 0.085) 5.69 <.0001
Female sex (vs male) -0.042 (-0.047, -0.036) -14.34 <.0001
Gestational age 0.419 (0.397, 0.441) 37.49 <.0001
Gestational age2 -0.005 (-0.005, -0.004) -30.14 <.0001

CI= Confidence Interval

GRSBW = Growth restriction score for birth weight

Table 3 . Alignment between self-identified race and genetically predicted ancestry in a nulliparous cohort
of pregnant people

White Black/African American Unknown Multi-racial Asian Native Hawaiian/Other Pacific Islander American Indian/ Alaska Native

All participants N (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)
(n=8147) 5394 (66.2) 1139 (14.0) 699 (8.6) 508 (6.2) 358 (4.4) 32 (0.4) 17 (0.2)
Genetic Ancestry (N%)
EUR 5099 (62.6) 4949 (91.8) 6 (0.5) 30 (4.3) 111 (21.9) 1 (0.3) 1 (3.1) 1 (5.9)
AFR 1383 (17.0) 8 (0.2) 1125 (98.8) 90 (12.9) 153 (30.1) 2 (0.6) 2 (6.3) 3 (17.7)
AMR 1028 (12.6) 388 (7.2) 4 (0.4) 485 (69.4) 118 (23.2) 16 (4.5) 4 (12.5) 13 (76.5)
EAS 274 (3.4) 1 (0) 0 (0) 4 (0.6) 9 (1.8) 238 (66.5) 22 (68.8) 0 (0)
UNK 264 (3.2) 48 (0.9) 3 (0.3) 86 (12.3) 114 (22.4) 10 (2.8) 3 (9.4) 0 (0)
SAS 99 (1.2) 0 (0) 1 (0.1) 4 (0.6) 3 (0.6) 91 (25.4) 0 (0) 0 (0)

Percentages for genetic ancestry within each self-identified race use the total n from the self-identified race as
the denominator.Peddy predicts the predominant continental genetic ancestry in single categories. Percent-
ages for total genetic ancestry (far left column) use the overall N (8147) as the denominator. Abbreviations:
EUR, European; AFR, African; AMR, American; EAS, East Asian; UNK, Unknown; SAS, South Asian.

Table 4 . Associations between self-identified race or genetically predicted ancestry with BW after control-
ling for GRSBW.

Self-Identified Race (ref: White) Estimate (95% CI) P

American Indian/ Alaskan Native -0.01 (-0.071, 0.052) 0.76
Asian -0.037 (-0.051, -0.023) <0.0001
Black/African American -0.042 (-0.051, -0.034) <0.0001
More than one race -0.015 (-0.027, -0.003) 0.011
Native Hawaiian/Pacific Islander -0.052 (-0.097, -0.007) 0.023
Unknown -0.023 (-0.033, -0.013) <0.0001
Genetically predicted continental ancestry (ref: EUR)
AFR -0.042 (-0.049, -0.034) <0.0001
AMR -0.018 (-0.027, -0.010) <0.0001
EAS -0.020 (-0.036-|-0.004) 0.012
SAS -0.093 (-0.119, -0.067) <0.0001
UNK -0.009 (-0.025, 0.007) 0.255
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Caption: Estimates reflect the beta coefficients for each term in the log linear model in comparison to the
reference group. AFR, African; AMR, American; EAS, East Asian; SAS, South Asian; UNK, unknown.

Figure 1 . Inclusion flow diagram.

Figure 2: Association of GRSBW with BW in self-identified racial groups.

Caption: The forest plot shows the range of the magnitudes of association, with error bars reflecting the 95%
confidence intervals for the association. The magnitude of association means that in the model, an increase
in GRSBW of 1.0 is associated with an increase in BW of 3.6% the White race participants, for example.
BW, birth weight; EST, estimate; LCL, lower bound of the confidence interval; UCL, upper bound of the
confidence interval, P= P value.
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Figure 3 . Association of GRSBW with BW in genetically predicted continental ancestry groups.

Caption: The forest plot shows the range of magnitudes of association, with error bars reflecting the 95%
confidence intervals. The magnitude of association means that in the model, an increase in GRSBW of 1.0
is associated with an increase in BW of 4.4% in the EUR group, for example. The estimate, lower bound of
the confidence interval and upper bound of the confidence interval is shown in the table to the right.
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