The 5 April 2024 Mw 4.8 Tewksbury, New Jersey aftershock sequence resolved with machine-learning-enhanced detection methods

Eric Beaucé¹, Felix Waldhauser¹, David Schaff¹, Won-Young Kim¹, and Folarin Kolawole¹

¹Lamont-Doherty Earth Observatory, Columbia University

February 14, 2025

The Ramapo Seismic Zone (RSZ) in the Northeastern United States hosts frequent but poorly understood intraplate earthquakes, potentially posing a significant hazard to the nearby New York metropolitan area. The 5 April 2024, $M_w 4.8$, Tewksbury, New Jersey earthquake, provides a rare opportunity to study the RSZ seismicity. We applied machine-learning-enhanced backprojection, matched-filtering, correlation-timing and double-difference methods to continuous waveforms recorded at local and regional stations to detect and locate about 2,000 aftershocks ($M_w > 0.0$) within the 74 days following the mainshock. They reveal a single, 51° east-southeast dipping fault plane possibly abutting the Ramapo fault at depth to the north. Aftershock locations are consistent with a shallow (~ 4km) mainshock hypocenter with rupture propagating downward and terminating at a depth of about 6km. A relatively high Gutenberg-Richter *b*-value ($b \approx 1.19$) and a low aftershock spatial fall-off rate ($\gamma \approx 1.8$) suggest that the Tewksbury sequence activated a rough, immature fault.

1	The 5 April 2024 M_w 4.8 Tewksbury, New Jersey
2	aftershock sequence resolved with
3	machine-learning-enhanced detection methods
4	${f Eric}\ {f Beauce}^1,\ {f Felix}\ {f Waldhauser}^1,\ {f David}\ {f Schaff}^1,\ {f Won-Young}\ {f Kim}^1,\ {f Folarin}$
5	${f Kolawole}^1$
6	¹ Lamont-Doherty Earth Observatory, Columbia University
7	Key Points:
8	• We detected and located 2,027 aftershocks over 74 days using machine-learning-
9	enhanced techniques and double-difference methods.
10	- A 51.0 \pm 2.0° east-southeast dipping fault was activated by the seismic sequence,
11	next to the Ramapo fault and possibly interacting with it.
12	• The Gutenberg-Richter b -value, $b = 1.19$, and the aftershock spatial character-
13	istics suggest the immaturity and complexity of the fault.

 $Corresponding \ author: \ Eric \ Beauce, \verb"ebeauce@ldeo.columbia.edu"$

14 Abstract

The Ramapo Seismic Zone (RSZ) in the Northeastern United States hosts frequent but 15 poorly understood intraplate earthquakes, potentially posing a significant hazard to the 16 nearby New York metropolitan area. The 5 April 2024, $M_w4.8$, Tewksbury, New Jer-17 sey earthquake, provides a rare opportunity to study the RSZ seismicity. We applied machine-18 learning-enhanced backprojection, matched-filtering, correlation-timing and double-difference 19 methods to continuous waveforms recorded at local and regional stations to detect and 20 locate about 2,000 aftershocks ($M_w > 0.0$) within the 74 days following the mainshock. 21 They reveal a single, 51° east-southeast dipping fault plane possibly abutting the Ramapo 22 fault at depth to the north. Aftershock locations are consistent with a shallow ($\sim 4 \, \mathrm{km}$) 23 mainshock hypocenter with rupture propagating downward and terminating at a depth 24 of about 6 km. A relatively high Gutenberg-Richter b-value ($b \approx 1.19$) and a low after-25 shock spatial fall-off rate ($\gamma \approx 1.8$) suggest that the Tewksbury sequence activated a 26 rough, immature fault. 27

²⁸ Plain Language Summary

Northeastern America has been shaken by intermediate-size earthquakes (magni-29 tudes approximately 5) several times in the last century, and a repeat of the 1755 Cape 30 Ann, Massachusetts event (magnitude estimated to be about 6), or of the 2011 magni-31 tude 5.8 (M_w) Mineral, Virginia earthquake, has disastrous potential for typical urban 32 infrastructure in this region. On Friday, April 5, 2024, at 10:23am local time, a magni-33 tude 4.8 (M_w) , oblique thrust earthquake struck near Tewksbury, New Jersey. It was 34 the first earthquake that strong to occur within 65 km (40 miles) of New York City since 35 1884. In this study, we analyzed 74 days of seismic data recorded by a local network of 36 26 seismometers that were rapidly deployed by several institutions following the $M_w 4.8$ 37 earthquake. Our results show that the Tewksbury earthquake and most of the over 2,000 38 aftershocks occurred on a small, well-defined fault located in the Ramapo seismic zone, 39

- ⁴⁰ about 5 km away from the main surface strand of the Ramapo fault. The aftershock sta-
- ⁴¹ tistical properties suggest the sequence activated a young, immature fault.

42 **1** Introduction

The Ramapo seismic zone (RSZ) hosts frequent, weak intraplate seismicity (earth-43 quake magnitudes smaller than 3) in the Northeastern United States (US). Most of these 44 earthquakes are caused by thrust faulting indicating northeast-southwest compression 45 and occur near, rather than on, the Ramapo fault itself, which is misoriented for slip within 46 the contemporary stress field (Page et al., 1968; Sykes et al., 2008). Thus, these earth-47 quakes result from the failure of more favorably oriented faults within the RSZ, but the 48 forces driving them are still poorly understood. On 5 April 2024, at 10h23 local time (14h23 49 Coordinated Universal Time, UTC), a magnitude (M_w) 4.8 earthquake struck in the RSZ 50 near the town of Tewksbury in New Jersey, US, about 65 km (40 miles) from New York 51 City. The intermediate-size, oblique thrust event (Han et al., 2024, see Figure 1) marked 52 the beginning of a several-month-long period of elevated seismic activity. The largest 53 aftershock $(M_w 3.7)$ occurred 7.5 hours later and a single foreshock $(m_b 2.2)$ was reported 54 on 14 March 2024 by the US Geological Survey (USGS). The closest operational seis-55 mic station, LD.PAL, located on the Lamont-Doherty Earth Observatory (LDEO) cam-56 pus, was about 80 km away from the mainshock epicenter, making it difficult to mon-57 itor in detail the early development of the earthquake sequence. Several institutions – 58 LDEO, USGS, Texas Seismological Network (TexNet), and Yale and Rutgers Univer-59 sities (Boyd et al., 2024) – deployed a total of 26 temporary stations over the course of 60 a few days to weeks, recording the seismic sequence in increasingly greater detail. 61

The Ramapo seismic zone, like the rest of Eastern US, is located in a stable continental region (SCR), that is, a region away from active plate boundaries where geodetically observed strain rates are below noise levels (Craig & Calais, 2014), raising the question as to what drives seismicity (Armbruster & Seeber, 1987; Seeber et al., 2002; Calais

-3-

et al., 2016). Despite the absence of significant tectonic forcing, large earthquakes do oc-66 cur in SCRs, like the 2017 $M_w 6.5$ Botswana event (Gardonio et al., 2018) or the 1811-67 1812 New Madrid sequence of four $M_w 7.0$ to 7.5 earthquakes (Johnston & Schweig, 1996). 68 It has been shown that exceedingly small stress perturbations ($\sim 1 \text{ kPa}$) can affect the 69 rates of seismicity (Heki, 2003; Frank et al., 2016; Craig et al., 2017; Beaucé et al., 2023). 70 Thus, possible drivers of seismicity in SCRs include different types of environmental forc-71 ing such as seasonal hydrological (Bollinger et al., 2007; Craig et al., 2017; Johnson et 72 al., 2017) and snow (Heki, 2003) loading, the solid Earth tides (Delorey et al., 2017; Beaucé 73 et al., 2023) and, particularly in the Northeastern US, stresses caused by glacial isostatic 74 adjustment (Wu & Johnston, 2000). Moreover, anthropogenic activity like mining can 75 cause minor stress perturbations in the shallow crust and may contribute to causing seis-76 micity (Pomeroy et al., 1976; Seeber et al., 1998). 77

The scarcity of intermediate-size earthquakes and sparse station coverage typically 78 prevent the detailed study of these events and the unambiguous identification of the causative 79 faults (Kafka et al., 1985). The 2024 Tewksbury earthquake sequence, and the data it 80 generated, offer a unique opportunity to image active tectonic structures within the RSZ 81 with unprecedented resolution. We analyzed the continuous waveforms from both per-82 manent and temporary stations with machine-learning and waveform-correlation based 83 earthquake detection techniques (Beaucé et al., 2024) to build a catalog of 2,027 after-84 shocks over 10 weeks of local monitoring. The new catalog sheds light on seismogene-85 sis in the RSZ and on the possible interplay between young secondary faults and the an-86 cient main strand of the Ramapo fault, and the potential hazard these faults pose to the 87 nearby New York metropolitan region. 88

89 2 Data

We analyzed the seismic data recorded by 42 stations between 2024-04-05 and 2024-06-18. These stations include 16 instruments from the permanent, regional networks LD,

PE, N4 and NE and 26 instruments from temporary, local networks (LD, GS and 4N) 92 deployed by several institutions in the days that followed the mainshock (see Section 7). 93 Unfortunately, the permanent station closest to the mainshock and largest aftershock, 94 LD.BRNJ, was not operating on the day they occurred, but was repaired 4 days later, 95 together with other nearby stations (LD.PANJ, LD.ODNY). Figure 1 shows the loca-96 tions of the seismic stations as well as their data availability over time. The permanent 97 stations sample at 100 Hz while the temporary stations include broadband stations sam-98 pling at 100 Hz (GS and one 4N deployed by TexNet) and short-period stations sampling 99 at 250 Hz (4N deployed by TexNet) and 500 Hz (LD.RAMPX deployed by LDEO and 100 4N deployed by Rutgers and Yale universities). We bandpass filtered the data between 101 2 Hz and 20 Hz for earthquake detection and between 2 Hz and 48 Hz for phase picking 102 (see Text S1.1). The data were resampled at 100 Hz. 103

¹⁰⁴ 3 Methodology

We processed the continuous seismic data with the automated earthquake detec-105 tion and location workflow BackProjection and Matched-Filtering (BPMF, Beaucé et al., 106 2024). The workflow is organized in two stages where, first, an initial earthquake cat-107 alog is built using a machine-learning-(ML)-enhanced (PhaseNet, Zhu & Beroza, 2019) 108 backprojection technique and, then, using the initially detected earthquakes as templates 109 for a matched-filter search to detect mostly smaller events missed during the first stage. 110 Earthquake locations were determined using the first P- and S-wave arrivals picked by 111 PhaseNet and the location software NLLoc (Lomax et al., 2009). We optimized the equal 112 differential time likelihood function in NLLoc to mitigate the presence of outliers in the 113 automatic picks. P- and S-wave travel time tables were computed by solving the Eikonal 114 equation (White et al., 2020) in a 1D layered crustal model for the region (Yang & Ag-115 garwal, 1981). For more details on BPMF see also Beaucé et al. (2019, 2022, 2024). 116

-5-

Figure 1. (a) Map of the seismic stations used in this study and mainshock focal mechanism (from Han et al., 2024, strike: $13\pm0.9^{\circ}$, dip: $45\pm4.0^{\circ}$, rake: $172\pm1.3^{\circ}$). The regional, permanent networks LD, PE, N4 and NE were supplemented by the local, temporary networks LD.RAMPX, GS and 4N (see Section 7). (b) Total number of operational seismic channels over time. (c) Number of operational channels per seismic station over time. Data availability may have improved since the time of the study.

117	The catalog of earthquakes, with quarry blasts removed (see Text $S1.2$), is then re-
118	located using the double-difference method HypoDD (Waldhauser & Ellsworth, 2000; Wald
119	hauser, 2001) together with the PhaseNet picks and precise phase delay times between
120	nearby events (< 5 km) computed by cross-correlating seismograms at common stations
121	(Schaff et al., 2004). The time-domain cross-correlation measurements were performed
122	on filtered seismograms (1-15 Hz) with $0.45\mathrm{s}$ and $1.0\mathrm{s}$ long windows for P- and S-phases,
123	respectively (see also Waldhauser & Schaff, 2008). More details on HypoDD parameters
124	are given in Text S1.3.

Earthquake moment magnitudes M_w were estimated by fitting the Boatwright model 125 (Boatwright, 1978) to the S-wave displacement spectrum computed using the multi-band-126 pass filtering approach described in Al-Ismail et al. (2023). We corrected for the anelas-127 tic attenuation of seismic waves using the frequency-dependent quality factor $Q = 750 f^{0.24}$, 128 which is an average value for the attenuation of shear waves in the Northeastern US (J. Shi 129 et al., 1996, 1997). More details on displacement spectrum computation and modeling 130 are given in Text S2.1. Signal-to-noise ratio (SNR) limitations prevented us from fitting 131 the Boatwright model to the S-wave displacement spectrum for most of the smaller events. 132 For those, we computed an approximate moment magnitude, M_{w^*} , using the highest SNR 133 frequency bands of the spectrum (see Text S2.3). We validated our approximate moment 134 magnitudes against full moment magnitudes and the USGS magnitudes (see Figure S3). 135 We modeled the magnitude distribution with the Gutenberg-Richter law (Gutenberg & 136 Richter, 1941) and computed the maximum likelihood estimate of the b-value (Aki, 1965) 137 as well as its error following Y. Shi and Bolt (1982). To compute the b-value, we esti-138 mated the magnitude of completeness M_c using the maximum curvature technique (Wiemer 139 & Katsumata, 1999). We then added 0.2 to M_c to further prevent errors in M_c from prop-140 agating into the *b*-value estimate. 141

142 4 Results

Using BPMF (Beaucé et al., 2024), we detected and located 2,027 earthquakes over 143 the 74 days in the study area (Figure 2a). Of the 2,027 events, 838 were detected and 144 located in the initial ML-enhanced backprojection stage using the 6 seismic stations clos-145 est to each test source of the grid, with a median epicentral error of $0.46 \,\mathrm{km}$. Using these 146 events as templates in a matched-filter search over the 10 seismic stations that have the 147 highest SNR for each template, we found an additional 1,189 events. In comparison, the 148 USGS reported 195 earthquakes over the same time period (see Section 7). Event mag-149 nitudes range from $M_{w^*}0.0$ -4.8, with a magnitude of completeness $M_c = 0.72$ and a b-150 value of $b = 1.19 \pm 0.03$ (Figure 2b). At this stage, most events detected with matched-151

filtering were too small for phase picking and could not be located independently from their template (1,025 out of 2,027 events). For these events, the correlation delay times constrained their relative location during double-difference analysis of the entire cata-

Figure 2. (a) Map view of the 2,027 earthquakes detected and located with BPMF. (b) Distribution of earthquake magnitudes with cumulative count (left axis) and count (right axis).
(c) Cumulative number of detected earthquakes and earthquake magnitudes as a function of time.

156

157

158

159

160

In the days following the mainshock, the detection rate increased due to the deployment of local stations (Figure 1) that were able to record smaller events (Figure 2c). The highly temporally variable network makes it difficult to interpret the detection rate in terms of seismicity rate. Nonetheless, the seismic activity seems to decay more slowly compared to the canonical Omori-like aftershock rate decay, $n(t) \sim t^{-p}$, with $p \approx 1$ (\bar{O} mori, 1894; Utsu et al., 1995). Focusing on earthquakes with magnitudes well above the 74-day M_c using cut-off minimum magnitudes ranging from 1.25 to 2.00 yields estimates of p ranging from 0.25 to 0.80 (see Figure S4).

The average horizontal and vertical location 1-sigma uncertainties for the NLLoc 164 165 locations are 1.1 km and 0.49 km, respectively, and root-mean-square (RMS) travel-time residual of $0.08 \, \text{s.}$ These uncertainties are mostly due to errors in the phase picks and 166 the velocity model used for locating the events. Relocation of the initial catalog using 167 double-differences, which minimizes both sources of errors (Waldhauser & Ellsworth, 2000), 168 results in a high-resolution catalog of 1,738 events (see Figure 3) with median, bootstrap 169 derived, relative location uncertainties of 22 m in horizontal and 17 m in vertical direc-170 tions. A total of 4,464,441 P- and 4,067,925 S-wave cross-correlation delay times with 171 correlation coefficients 0.7 or higher were used in the inversion. We fitted a fault plane 172 to the $M_{w^*} > 1.75$ earthquake hypocenters near the mainshock and found a N6.4±4.4° 173 trending plane, dipping $51.0\pm2.0^{\circ}$ to the ESE. Aftershocks are distributed around the 174 fault but most occur on the fault plane itself (Figure 3b, c). 175

We analyzed the spatial distribution of the aftershocks by measuring the power-176 law fall-off rate of event density as a function of distance from the fault (Powers & Jor-177 dan, 2010; T. Goebel et al., 2014; Perrin et al., 2021). We divided the data into hang-178 ing wall and foot wall seismicity and estimated the fall-off rate using the maximum like-179 lihood estimate (Clauzet et al., 2009; T. Goebel et al., 2014, see Figure 3d and Text S4). 180 Estimates were made using data at distances larger than $0.2 \,\mathrm{km}$, which represents the 181 width of the deformation zone associated with the main fault (Powers & Jordan, 2010; 182 Perrin et al., 2021). This minimum cut-off distance was chosen based on the stability 183 of the estimates around it (see Figure S5). Because of the lack of events further than 10 km 184 from the fault, mainly due to the finite width of the seismogenic zone, the power-law be-185 havior cannot be observed beyond $10 \,\mathrm{km}$ and this upper truncation induces concavity 186

-9-

Figure 3. (a) Map of double-difference relocated earthquakes. Depth is color-coded and symbol size scales with magnitude. Beachballs show the mainshock and the M_w 3.7 aftershock focal mechanisms (Han et al., 2024). (b) Along-dip cross-section. The black dashed line shows the best fitting plane for $M_{w^*} > 1.75$ earthquake hypocenters near the mainshock. (c) Same as (b) but with event density. The red dashed lines show the depth continuation of the Ramapo fault using vertical and 74° (Kolawole et al., under review) dips. (d) Cumulative fraction of events located further than a given distance from the fault. The power-law fall-off rate, γ , is given by the maximum likelihood estimate for distances above 0.2 km. (e) Density of hypocenters orthogonally projected onto the fault plane, measured in 250 m×250 m cells using hypocenters less than 500 m away from the plane. Slip contours are from Han et al. (2024). The red star shows the mainshock hypocenter (rupture initiation) and the green star shows the M_w 3.7 aftershock hypocenter.

at the tip of the cumulative distribution (Burroughs & Tebbens, 2001, see Figure 3d).

Our estimates yield similar fall-off rates $\gamma = 1.80 \pm 0.05$ for the hanging and foot walls.

189 5 Discussion

190

5.1 Aftershock Distribution and Fault Structure

Aftershock locations image a previously unmapped east-southeast dipping fault ad-191 jacent to the Ramapo fault (Figure 3). Its up-dip continuation reaches the surface near 192 the town of Mountainville, New Jersey, and is hereafter named the Mountainville fault 193 (Kolawole et al., under review). The mainshock hypocenter was relocated at 4.0 km depth 194 (Figure 3), deeper than reported by the USGS (2.6 km). The hypocenter represents the 195 nucleation location as derived from the phase arrival onset. The aftershock distribution 196 (Figure 3e) suggests that the mainshock broke a relatively small fault area of $A_m \approx 2 \,\mathrm{km}^2$ 197 between 4 km and 6 km depth, supporting a downward propagating rupture consistent 198 with results from waveform modeling (Han et al., 2024). The largest aftershock, $M_w 3.7$, 199 was relocated at 5.5 km depth in an area of low aftershock productivity (Figure 3e). Main 200 slip area, depth range and fault orientation (N6.4 \pm 4.4° trending plane, dipping 51.0 \pm 2.0° 201 to the ESE) derived in this study from aftershock locations agree well with those inferred 202 from waveform modeling (Han et al., 2024, see Figure 1) and with the orientation of paleo-203 slip surfaces observed in outcrops near Mountainville (Kolawole et al., under review). 204

Han et al. (2024) approximated their rupture area as a r=1.1 km-radius circular 205 crack and estimated a static stress drop of $\Delta \sigma \approx 6.6 \text{ MPa} (\Delta \sigma = (7/16)M_0/r^3$, Es-206 helby, 1957). However, the aftershock data cannot rule out smaller slip areas, implying 207 that stress drop could be larger. For example, for $r_m = \sqrt{A_m/\pi} \approx 800 \,\mathrm{m}$, stress drop 208 is $\Delta \sigma \approx 17$ MPa. Moreover, assuming a corner frequency $0.50 \,\text{Hz} < f_c < 1.0 \,\text{Hz}$, based 209 upon the observations in Han et al. (2024, their Figure 2c), using their parameters (S-210 wave speed $V_s=3400 \,\mathrm{m/s}$ and rupture speed $V_r=1870 \,\mathrm{m/s}$, we calculate a wide range 211 of stress drops $\Delta \sigma = 13-104$ MPa using the Madariaga model $(r = kV_r/(2\pi f_c), k =$ 212

1.47, Madariaga, 1976) and $\Delta \sigma = 2.3-18$ MPa using the Brune model (k = 2.62, Brune, 1970). Thus, uncertainties in mainshock stress drop estimates are large and our observations do not reject the hypothesis of a high stress drop ($\Delta \sigma > 20$ MPa) as is typically observed in the Northeastern US (Viegas et al., 2010).

217 A particularly active area on the fault plane is down dip and at the northern end of the active fault, where the slip model shows that rupture arrested (Figure 3e). This 218 cluster persists throughout the observation period and locates near the possible inter-219 section with the Ramapo fault (see the red dashed lines in Figure 3c). We therefore in-220 terpret the clustered activity as the result of stress concentrations due to a structural 221 heterogeneity acting as a barrier to rupture propagation. We attribute this barrier to 222 a northeast trending strand of the Ramapo fault, which, within the resolution capabil-223 ity of the catalog, does not seem to host any earthquakes. 224

A b-value of $b = 1.19 \pm 0.03$ (Figure 2b) is significantly larger than 1.0, the global 225 b-value measured with moment magnitudes. Such a high b-value is at odds with the typ-226 ically large Northeastern US stress drops (Viegas et al., 2010) and the compressional stress 227 regime acting in the Ramapo seismic zone, compression being usually associated with 228 high differential stresses and low b-values (Scholz, 2015; Zaccagnino et al., 2022). Struc-229 tural properties such as high fault roughness or highly fractured medium could be the 230 cause for the high b-value (Mogi, 1962, 1967; T. H. Goebel et al., 2017). Moreover, the 231 earthquake spatial fall-off rate, $\gamma \approx 1.8$ (Figure 3d), relates to fault roughness and off-232 fault damage production (Dieterich & Smith, 2010; T. Goebel et al., 2014). Values lower 233 than 2 indicate high roughness (T. Goebel et al., 2014), which is characteristic of imma-234 ture faults (Perrin et al., 2021). Based on these observations, the Mountainville fault is 235 likely a young, rough and immature fault with low cumulative slip (Perrin et al., 2021), 236 which is also supported by independent observations of poorly coalesced internal struc-237 ture of slip surfaces in outcrops of the fault zone (Kolawole et al., under review). 238

-12-

239

5.2 Implications for Seismic Hazard and Local Tectonics

Despite the relatively small effect of the Tewksbury earthquake on society and nearby 240 infrastructure (Boyd et al., 2024), implications for seismic hazard are significant. Although 241 the mainshock broke a relatively small fault area $(A_m \approx 2 \,\mathrm{km}^2)$, the aftershock sequence 242 activated a significantly larger area (Figure 3d and Figure S4d). The aftershock foot-243 print shows that either a single surface or closely spaced surfaces covering $A_{\rm upper} \approx 50 \, {\rm km}^2$ 244 can be activated seismically. Because earthquakes can be complex, multi-fault ruptures 245 (Hamling et al., 2017; Pananont et al., 2017), we speculate that an earthquake of mag-246 nitude M_w 5.4 to 6.2 for an average stress drop between 1.0 MPa and 20 MPa (Kanamori 247 & Anderson, 1975) is possible, posing a serious risk to the greater New York City metropoli-248 tan region. Moreover, one concern is whether intermediate-size earthquakes occurring 249 so close to the misoriented Ramapo fault could trigger significant slip along it, either as 250 a separate event or as part of a complex, multi-fault sequence (Pananont et al., 2017). 251 Thus, if earthquakes within the RSZ mostly nucleate on relatively short, immature faults 252 that are favorably oriented in the contemporary stress field, it is unclear what long-term 253 effects such ruptures have on an old, mature Ramapo fault. Regardless, even a magni-254 tude 5 or 6 on a secondary fault will have significant impact on the greater New York 255 metro region. 256

Historical seismicity shows that earthquakes of size $M_w > 5$ occur about once ev-257 ery 100 years in Northeastern America (Sykes et al., 2008). The universality of the Gutenberg-258 Richter law suggests that $M_w > 6$ earthquakes may occur about once every 1000 years. 259 Examples from other stable continental regions – the 2017 $M_w 6.5$ Botswana earthquake 260 (Kolawole et al., 2017; Gardonio et al., 2018) and the 1811-1818 M_w 7.0-7.5 New Madrid 261 earthquake sequence (Johnston & Schweig, 1996) – also suggests that the Gutenberg-262 Richter law does not cut off at lower magnitudes in stable regions than near active con-263 tinental plate boundaries like in California. It is therefore critical to better understand 264

-13-

265

the processes that drive seismicity along the RSZ and in the rest of the Northeastern US in order to improve our long-term forecast of seismic hazard in this region.

In stable continental regions, where there seems to be no ongoing tectonic defor-267 mation above current geodetic measurement noise levels, transient external stress per-268 turbations may play a major role in driving seismicity (Calais et al., 2016). The shal-269 low depth of the mainshock hypocenter, 4.0 km (Figure 3), suggests that the triggering 270 forces were acting from the surface. Hydrological loading, either from direct stress changes 271 caused by variations in the mass of proximal water bodies or indirectly through infiltra-272 tion of rainwater and increased pore-fluid pressure (Bollinger et al., 2007; Craig et al., 273 2017; Tarantino et al., 2024), may be among the main drivers of SCR seismicity (Calais 274 et al., 2016; Craig et al., 2017; Daniels & Peng, 2023). A more assertive statement about 275 the triggering forces would require the statistical treatment of an ensemble of earthquakes 276 in the Northeastern US and the modeling of potential triggers (Bollinger et al., 2007). 277

²⁷⁸ 6 Concluding Remarks

Results from our analysis of the 2024 Tewksbury, NJ, earthquake and its aftershocks 279 emphasize the importance of properly assessing seismic hazard in stable continental re-280 gions, especially near metropolitan regions, and, therefore, the necessity to monitor seis-281 mic activity. With more than 183,000 entries in the USGS's "Did you feel it" survey, 282 the April 2024 Tewksbury earthquake is the most widely reported event in its history. 283 To improve our generic understanding of seismic hazard in low deformation rate regions 284 (e.g., the maximum earthquake size), it is now important to revisit SCR waveform archives 285 from around the world with modern techniques, such as those used here, in order to mit-286 igate the observational limitations associated with these intrinsically low levels of seis-287 micity. The future of seismicity monitoring in stable continental regions should not only 288 rely on technological developments but must also be accompanied by appropriate invest-289 ments in instrumentation. 290

²⁹¹ 7 Open Research Section

292	All the seismic data used in this study are available on IRIS at http://service
293	.iris.edu/fdsnws/dataselect/1/ (last accessed in November 2024). These data were
294	recorded by the seismic networks LD (Lamont Doherty Earth Observatory (LDEO), Columbia
295	University, 1970, DOI: https://doi.org/10.7914/sn/ld), GS (Albuquerque Seismo-
296	logical Laboratory (ASL)/USGS, 1980, DOI: https://doi.org/10.7914/sn/gs), 4N
297	(Alexandros Savvaidis, 2024, DOI: https://doi.org/10.7914/5ftj-a296), PE (Penn
298	State University, 2004, DOI: https://doi.org/10.7914/sn/pe) and NE (Albuquerque
299	Seismological Laboratory (ASL)/USGS, 1994, DOI: https://doi.org/10.7914/sn/ne).
300	The earthquake catalog was built with the detection and location software BPMF (Beaucé
301	et al., 2024; Beaucé, 2025, v2.0.0-beta2, last accessed in February 2025). The most re-
302	cent version of BPMF is available at https://github.com/ebeauce/Seismic_BPMF. The
303	relocated catalog was built with HypoDD (Waldhauser, 2001, v2.1-beta, last accessed
304	in July 2024). The most recent version of HypoDD is available at https://github.com/
305	fwaldhauser/HypoDD. The earthquake catalog is available from the Zenodo repository
306	(Beaucé, 2024, DOI: https://doi.org/10.5281/zenodo.14058325). The USGS cat-
307	alog can be browsed and downloaded at https://earthquake.usgs.gov/earthquakes/
308	map/ (last accessed November 2024).

309 Acknowledgments

This work was supported by NSF RAPID grant EAR-2431983. E.B. was funded by the Brinson Foundation. The authors thank Paul Richards for his insightful comments on the manuscript, and thank all who helped deploy stations, and all institutions whose stations made this work possible: USGS, TexNet, Rutgers and Yale universities.

314 References

Aki, K. (1965). Maximum likelihood estimate of b in the formula log N= a-bM and
 its confidence limits. Bull. Earthquake Res. Inst., Tokyo Univ., 43, 237–239.

-15-

317	Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research,
318	72(4), 1217 – 1231.
319	Albuquerque Seismological Laboratory (ASL)/USGS. (1980). US Geological Survey
320	Networks [Dataset]. International Federation of Digital Seismograph Networks.
321	doi: $10.7914/SN/GS$
322	Albuquerque Seismological Laboratory (ASL)/USGS. (1994). New England Seismic
323	Network [Dataset]. International Federation of Digital Seismograph Networks.
324	doi: $10.7914/SN/NE$
325	Alexandros Savvaidis. (2024). 4N - New Jersey 2024 Earthquake Sequence [Dataset].
326	International Federation of Digital Seismograph Networks. doi: $10.7914/5$ FTJ
327	-A296
328	Al-Ismail, F., Ellsworth, W. L., & Beroza, G. C. (2023). A Time-Domain Approach
329	for Accurate Spectral Source Estimation with Application to Ridgecrest, Cali-
330	fornia, Earthquakes. Bulletin of the Seismological Society of America, 113(3),
331	1091 - 1101.
332	Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for mod-
333	erate to large earthquakes. Journal of Geophysical Research: Solid Earth,
334	<i>114</i> (B1).
335	Armbruster, J. G., & Seeber, L. (1987). The 23 April 1984 Martic earthquake and
336	the Lancaster seismic zone in eastern Pennsylvania. Bulletin of the Seismologi-
337	cal Society of America, 77(3), 877–890.
338	Beaucé, E. (2024, November). ML-Enhanced catalog of the 5 April 2024 Tewksbury
339	aftershocks [Dataset]. Zenodo. Retrieved from https://doi.org/10.5281/
340	zenodo.14058325 doi: 10.5281/zenodo.14058325
341	Beaucé, E. (2025, February). ebeauce/Seismic BPMF: v2.0.0beta2 [Software]. Zen-
342	odo. Retrieved from https://doi.org/10.5281/zenodo.14838292 doi: 10
343	.5281/zenodo.14838292

Beaucé, E., Frank, W. B., Paul, A., Campillo, M., & van Der Hilst, R. D. (2019).344

345	Systematic detection of clustered seismicity beneath the Southwestern Alps.		
346	Journal of Geophysical Research: Solid Earth, 124(11), 11531–11548.		
347	Beaucé, E., Frank, W. B., Seydoux, L., Poli, P., Groebner, N., van der Hilst, R. D.,		
348	& Campillo, M. (2024). BPMF: A Backprojection and Matched-Filtering		
349	Workflow for Automated Earthquake Detection and Location. Seismological		
350	Research Letters, 95(2A), 1030–1042.		
351	Beaucé, E., Poli, P., Waldhauser, F., Holtzman, B., & Scholz, C. (2023). Enhanced		
352	tidal sensitivity of seismicity before the 2019 magnitude 7.1 Ridgecrest, Cali-		
353	fornia earthquake. Geophysical Research Letters, $50(14)$, e2023GL104375.		
354	Beaucé, E., van der Hilst, R. D., & Campillo, M. (2022). Microseismic constraints		
355	on the mechanical state of the North Anatolian fault zone 13 years after the		
356	1999 M7.4 Izmit earthquake. Journal of Geophysical Research: Solid Earth,		
357	127(9), e2022JB024416.		
358	Boatwright, J. (1978). Detailed spectral analysis of two small New York State earth-		
359	quakes. Bulletin of the Seismological Society of America, 68(4), 1117–1131.		
360	Bollinger, L., Perrier, F., Avouac, JP., Sapkota, S., Gautam, U., & Tiwari, D.		
361	(2007). Seasonal modulation of seismicity in the Himalaya of Nepal. Geophysi-		
362	cal Research Letters, 34(8).		
363	Boyd, O. S., Barnhart, W. D., Bourke, J., Chapman, M., Earle, P. S., Huang, G		
364	c. D., others $$ (2024). Preliminary Observations of the 5 April 2024 M w 4.8 $$		
365	New Jersey Earthquake. The Seismic Record, $4(4)$, 240–250.		
366	Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from		
367	earthquakes. Journal of geophysical research, 75(26), 4997–5009.		
368	Burroughs, S. M., & Tebbens, S. F. (2001). Upper-truncated power laws in natural		
369	systems. Pure and Applied Geophysics, 158, 741–757.		
370	Calais, E., Camelbeeck, T., Stein, S., Liu, M., & Craig, T. (2016). A new paradigm		
371	for large earthquakes in stable continental plate interiors. $Geophysical Research$		
372	Letters, $43(20)$, 10–621.		

-17-

373	Clauzet, A., Shalizi, A., & Newman, M. (2009). Power-law distributions in empirical
374	data. SIAM Rev, 51, 661–703.
375	Craig, T. J., & Calais, E. (2014). Strain accumulation in the New Madrid and
376	Wabash Valley seismic zones from 14 years of continuous GPS observation.
377	Journal of Geophysical Research: Solid Earth, 119(12), 9110–9129.
378	Craig, T. J., Chanard, K., & Calais, E. (2017). Hydrologically-driven crustal stresses
379	and seismicity in the New Madrid Seismic Zone. Nature communications, $8(1)$,
380	2143.
381	Daniels, C., & Peng, Z. (2023). A 15-year-long catalog of seismicity in the east-
382	ern tennessee seismic zone (etsz) using matched filter detection. Earthquake
383	Research Advances, $3(1)$, 100198.
384	Delorey, A. A., van der Elst, N. J., & Johnson, P. A. (2017). Tidal triggering of
385	earthquakes suggests poroelastic behavior on the San Andreas Fault. Earth
386	and Planetary Science Letters, 460, 164–170.
387	Dieterich, J. H., & Smith, D. E. (2010). Nonplanar faults: Mechanics of slip and off-
388	fault damage. Mechanics, structure and evolution of fault zones, 1799–1815.
389	Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclu-
390	sion, and related problems. Proceedings of the royal society of London. Series
391	A. Mathematical and physical sciences, 241(1226), 376–396.
392	Frank, W. B., Shapiro, N. M., Husker, A. L., Kostoglodov, V., & Campillo, M.
393	(2016). Repeating seismicity in the shallow crust modulated by transient stress
394	perturbations. Tectonophysics, 687, 105–110.
395	Gardonio, B., Jolivet, R., Calais, E., & Leclère, H. (2018). The April 2017 Mw6. 5
396	Botswana earthquake: an intraplate event triggered by deep fluids. Geophysical
397	Research Letters, 45(17), 8886–8896.
398	Goebel, T., Candela, T., Sammis, C., Becker, T., Dresen, G., & Schorlemmer, D.
399	(2014). Seismic event distributions and off-fault damage during frictional
400	sliding of saw-cut surfaces with pre-defined roughness. Geophysical Journal

401	International, $196(1)$, $612-625$.
402	Goebel, T. H., Kwiatek, G., Becker, T. W., Brodsky, E. E., & Dresen, G. (2017).
403	What allows seismic events to grow big?: Insights from b-value and fault
404	roughness analysis in laboratory stick-slip experiments. $Geology, 45(9), 815-$
405	818.
406	Gutenberg, B., & Richter, C. (1941). Seismicity of the Earth (Vol. 34). Geological
407	Society of America.
408	Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., oth-
409	ers $$ (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikōura
410	earthquake, New Zealand. Science, 356(6334), eaam7194.
411	Han, S., Kim, WY., Park, J. Y., Seo, MS., & Kim, Y. (2024). Rupture Model
412	of the 5 April 2024 Tewksbury, New Jersey, Earthquake Based on Regional
413	Lg-Wave Data. The Seismic Record, 4(3), 214–222.
414	Heki, K. (2003). Snow load and seasonal variation of earthquake occurrence in
415	Japan. Earth and Planetary Science Letters, 207(1-4), 159–164.
416	Johnson, C. W., Fu, Y., & Bürgmann, R. (2017). Seasonal water storage, stress
417	modulation, and California seismicity. Science, $356(6343)$, 1161–1164.
418	Johnston, A. C., & Schweig, E. S. (1996). The enigma of the New Madrid earth-
419	quakes of 1811–1812. Annual Review of Earth and Planetary Sciences, 24(1),
420	339–384.
421	Kafka, A. L., Schlesinger-Miller, E. A., & Barstow, N. L. (1985). Earthquake ac-
422	tivity in the greater New York City area: magnitudes, seismicity, and geologic
423	structures. Bulletin of the Seismological Society of America, 75(5), 1285–1300.
424	Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical re-
425	lations in seismology. Bulletin of the seismological society of America, $65(5)$,
426	1073 - 1095.
427	Kolawole, F., Atekwana, E. A., Malloy, S., Stamps, D. S., Grandin, R., Abdelsalam,
428	M. G., Shemang, E. M. (2017). Aeromagnetic, gravity, and Differential

-19-

429	Interferometric Synthetic Aperture Radar analyses reveal the causative fault		
430	of the 3 April 2017 Mw 6.5 Moiyabana, Botswana, earthquake. $Geophysical$		
431	Research Letters, 44(17), 8837–8846.		
432	Kolawole, F., Foster-Baril, Z., Seeber, L., Tielke, J., Prakash, A., Colet, M.,		
433	Waldhauser, F. (under review). The 2024 M4.8 New Jersey Earthquake:		
434	Preferential Seismic Reactivation of a Subtle Immature Rough Fault in		
435	Frictionally Unstable Basement Rocks. Geophysical Research Letters. doi:		
436	10.1029/2024GL113533		
437	Lamont Doherty Earth Observatory (LDEO), Columbia University. (1970). Lamont-		
438	Doherty Cooperative Seismographic Network [Dataset]. International Federa-		
439	tion of Digital Seismograph Networks. doi: $10.7914/\mathrm{SN/LD}$		
440	Lomax, A., Michelini, A., Curtis, A., Meyers, R., et al. (2009). Earthquake location,		
441	direct, global-search methods. Encyclopedia of complexity and systems science,		
442	5, 2449–2473.		
443	Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seis-		
444	mological Society of America, 66(3), 639–666.		
445	Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying		
446	fractures of various materials and some related problems in earthquakes. $Bull$.		
447	Earthq. Res. Inst., Univ. Tokyo, 40, 831–853.		
448	Mogi, K. (1967). Earthquakes and fractures. <i>Tectonophysics</i> , 5(1), 35–55.		
449	$\bar{\mathrm{O}}\mathrm{mori},\mathrm{F.}$ (1894). On the after-shocks of earthquakes (Vol. 7). The University.		
450	Page, R. A., Molnar, P. H., & Oliver, J. (1968). Seismicity in the vicinity of the		
451	Ramapo fault, New Jersey-New York. Bulletin of the Seismological Society of		
452	America, $58(2)$, $681-687$.		
453	Pananont, P., Herman, M., Pornsopin, P., Furlong, K., Habangkaem, S., Wald-		
454	hauser, F., \ldots others (2017). Seismotectonics of the 2014 Chiang Rai, Thailand,		
455	earthquake sequence. Journal of Geophysical Research: Solid Earth, 122(8),		
456	6367 - 6388.		

-20-

457	Penn State University. (2004). Pennsylvania State Seismic Network [Dataset]. Inter-
458	national Federation of Digital Seismograph Networks. doi: $10.7914/\mathrm{SN/PE}$
459	Perrin, C., Waldhauser, F., & Scholz, C. H. (2021). The shear deformation zone and
460	the smoothing of faults with displacement. Journal of Geophysical Research:
461	Solid Earth, 126(5), e2020JB020447.
462	Pomeroy, P. W., Simpson, D. W., & Sbar, M. L. (1976). Earthquakes triggered
463	by surface quarrying-the Wappingers Falls, New York sequence of June, 1974.
464	Bulletin of the Seismological Society of America, 66(3), 685–700.
465	Powers, P. M., & Jordan, T. H. (2010). Distribution of seismicity across strike-slip
466	faults in California. Journal of Geophysical Research: Solid Earth, 115(B5).
467	Schaff, D. P., Bokelmann, G. H., Ellsworth, W. L., Zanzerkia, E., Waldhauser, F.,
468	& Beroza, G. C. (2004). Optimizing correlation techniques for improved
469	earthquake location. Bulletin of the Seismological Society of America, $94(2)$,
470	705–721.
471	Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysi-
471 472	Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysi- cal Research Letters, 42(5), 1399–1402.
471 472 473	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. <i>Geophysical Research Letters</i>, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998).
471 472 473 474	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow
471472473474475	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid
471 472 473 474 475 476	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid Earth, 103(B10), 24505–24521.
471 472 473 474 475 476 477	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical cal Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid Earth, 103(B10), 24505–24521. Seeber, L., Kim, WY., Armbruster, J. G., Du, WX., Lerner-Lam, A., & Friberg,
 471 472 473 474 475 476 477 478 	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid Earth, 103(B10), 24505–24521. Seeber, L., Kim, WY., Armbruster, J. G., Du, WX., Lerner-Lam, A., & Friberg, P. (2002). The 20 April 2002 Mw 5.0 earthquake near Au Sable Forks, Adiron-
 471 472 473 474 475 476 477 478 479 	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid Earth, 103(B10), 24505–24521. Seeber, L., Kim, WY., Armbruster, J. G., Du, WX., Lerner-Lam, A., & Friberg, P. (2002). The 20 April 2002 Mw 5.0 earthquake near Au Sable Forks, Adiron-dacks, New York: a first glance at a new sequence. Seismological Research
 471 472 473 474 475 476 477 478 479 480 	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid Earth, 103(B10), 24505–24521. Seeber, L., Kim, WY., Armbruster, J. G., Du, WX., Lerner-Lam, A., & Friberg, P. (2002). The 20 April 2002 Mw 5.0 earthquake near Au Sable Forks, Adiron-dacks, New York: a first glance at a new sequence. Seismological Research Letters, 73(4), 480–489.
 471 472 473 474 475 476 477 478 479 480 481 	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid Earth, 103(B10), 24505–24521. Seeber, L., Kim, WY., Armbruster, J. G., Du, WX., Lerner-Lam, A., & Friberg, P. (2002). The 20 April 2002 Mw 5.0 earthquake near Au Sable Forks, Adiron-dacks, New York: a first glance at a new sequence. Seismological Research Letters, 73(4), 480–489. Shearer, P. M. (2019). Introduction to seismology. Cambridge university press.
471 472 473 474 475 476 477 478 479 480 481 482	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid Earth, 103(B10), 24505–24521. Seeber, L., Kim, WY., Armbruster, J. G., Du, WX., Lerner-Lam, A., & Friberg, P. (2002). The 20 April 2002 Mw 5.0 earthquake near Au Sable Forks, Adirondacks, New York: a first glance at a new sequence. Seismological Research Letters, 73(4), 480–489. Shearer, P. M. (2019). Introduction to seismology. Cambridge university press. Shi, J., Kim, WY., & Richards, P. G. (1996). Variability of crustal attenuation
 471 472 473 474 475 476 477 478 479 480 481 482 483 	 Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. Seeber, L., Armbruster, J. G., Kim, WY., Barstow, N., & Scharnberger, C. (1998). The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shallow rupture triggered by quarry unloading. Journal of Geophysical Research: Solid Earth, 103(B10), 24505–24521. Seeber, L., Kim, WY., Armbruster, J. G., Du, WX., Lerner-Lam, A., & Friberg, P. (2002). The 20 April 2002 Mw 5.0 earthquake near Au Sable Forks, Adiron-dacks, New York: a first glance at a new sequence. Seismological Research Letters, 73(4), 480–489. Shearer, P. M. (2019). Introduction to seismology. Cambridge university press. Shi, J., Kim, WY., & Richards, P. G. (1996). Variability of crustal attenuation in the northeastern United States from Lg waves. Journal of Geophysical Research

-21-

485	Shi, J., Kim, WY., & Richards, P. G. (1997). Correction to "Variability of crustal
486	attenuation in the northeastern United States from Lg waves" by Jinghua Shi,
487	Won-Young Kim, and Paul G. Richards. Journal of Geophysical Research:
488	Solid Earth, 102(B6), 11899–11900.
489	Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b
490	value. Bulletin of the Seismological Society of America, 72(5), 1677–1687.
491	Sykes, L. R., Armbruster, J. G., Kim, WY., & Seeber, L. (2008). Observations
492	and tectonic setting of historic and instrumentally located earthquakes in the
493	greater new york city–philadelphia area. Bulletin of the Seismological Society
494	of America, 98(4), 1696–1719.
495	Tarantino, S., Poli, P., D'Agostino, N., Vassallo, M., Festa, G., Ventafridda, G., &
496	Zollo, A. (2024). Non-linear elasticity, earthquake triggering and seasonal
497	hydrological forcing along the Irpinia fault, Southern Italy. Nature Communi-
498	$cations, \ 15(1), \ 9821.$
499	Utsu, T., Ogata, Y., et al. (1995). The centenary of the Omori formula for a decay
500	law of after shock activity. Journal of Physics of the Earth, $43(1)$, 1–33.
501	Viegas, G., Abercrombie, R. E., & Kim, WY. (2010). The 2002 M5 Au Sable
502	Forks, NY, earthquake sequence: Source scaling relationships and energy bud-
503	get. Journal of Geophysical Research: Solid Earth, 115(B7).
504	Waldhauser, F. (2001). HypoDD-A program to compute double-difference hypocenter
505	locations (Tech. Rep.).
506	Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location
507	algorithm: Method and application to the northern Hayward fault, California.
508	Bulletin of the seismological society of America, $90(6)$, 1353–1368.
509	Waldhauser, F., & Schaff, D. P. (2008). Large-scale relocation of two decades of
510	Northern California seismicity using cross-correlation and double-difference
511	methods. Journal of Geophysical Research: Solid Earth, 113(B8).
512	White, M. C., Fang, H., Nakata, N., & Ben-Zion, Y. (2020). PyKonal: a Python

-22-

513	package for solving the eikonal equation in spherical and Cartesian coordi-	
514	nates using the fast marching method.	Seismological Research Letters, 91(4),
515	2378–2389.	

- Wiemer, S., & Katsumata, K. (1999). Spatial variability of seismicity parameters
 in aftershock zones. Journal of Geophysical Research: Solid Earth, 104(B6),
 13135–13151.
- Wu, P., & Johnston, P. (2000). Can deglaciation trigger earthquakes in N. America?
 Geophysical Research Letters, 27(9), 1323–1326.
- Yang, J.-P., & Aggarwal, Y. P. (1981). Seismotectonics of northeastern United
 States and adjacent Canada. Journal of Geophysical Research: Solid Earth,
 86(B6), 4981–4998.
- Zaccagnino, D., Telesca, L., & Doglioni, C. (2022). Scaling properties of seismicity
 and faulting. *Earth and Planetary Science Letters*, 584, 117511.
- Zhu, W., & Beroza, G. C. (2019). PhaseNet: a deep-neural-network-based seismic
 arrival-time picking method. *Geophysical Journal International*, 216(1), 261–
 273.