Assessment of Drought Impacts on Crop Yields (Corn and
Soybeans) Across lowa During 2000 — 2022

Samiul Islam S M!, Jerry Mount!, and Ibrahim Demir?

!The University of Iowa IIHR Hydroscience and Engineering
2Tulane University Center for Computational Science

February 07, 2025

Abstract

Agricultural drought occurs when inadequate soil moisture, caused by prolonged precipitation deficiency, significantly reduces
crop yields. Corn and soybeans, vital to the U.S. agricultural sector and making up 90% of Iowa’s crop production, are highly
vulnerable to drought. This study quantified widely used drought indicators and their relationship with corn and soybean
yields from 2000 to 2022 to identify the most effective indices for predicting crop productivity. Meteorological and satellite-
based drought indices, including the Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration
Index (SPEI), Palmer Drought Severity Index (PDSI), Evaporative Demand Drought Index (EDDI), Crop Moisture Index
(CMI), and Normalized Difference Vegetation Index (NDVI), were analyzed alongside USDA crop yield data. Soybean yields
showed strong positive correlations with SPI-6, SPI-12, SPEI-6, and SPEI-12, indicating these indices are reliable predictors of
soybean productivity. Conversely, corn yields were negatively correlated with EDDI, highlighting corn’s higher susceptibility to
severe drought conditions than soybeans. The Palmer Drought Severity Index (PDSI) showed stronger correlations with soybean
yields over time, reflecting the crop’s reliance on sustained moisture. These findings emphasize that soybeans are more resilient
to longer-term moisture deficiencies, whereas corn is more sensitive to short-term droughts. The analysis provides valuable
insights for drought relief planning, agricultural decision-making, and proactive strategies for managing drought impacts. The
results can inform the development of resilient farming practices and policies, ensuring sustainability in agriculture under

changing climate conditions.
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Abstract

Agricultural drought occurs when inadequate soil moisture, caused by prolonged precipitation deficiency,
significantly reduces crop yields. Corn and soybeans, vital to the U.S. agricultural sector and making up
90% of Towa’s crop production, are highly vulnerable to drought. This study quantified widely used drought



indicators and their relationship with corn and soybean yields from 2000 to 2022 to identify the most effec-
tive indices for predicting crop productivity. Meteorological and satellite-based drought indices, including
the Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI),
Palmer Drought Severity Index (PDSI), Evaporative Demand Drought Index (EDDI), Crop Moisture In-
dex (CMI), and Normalized Difference Vegetation Index (NDVI), were analyzed alongside USDA crop yield
data. Soybean yields showed strong positive correlations with SPI-6, SPI-12, SPEI-6, and SPEI-12, indi-
cating these indices are reliable predictors of soybean productivity. Conversely, corn yields were negatively
correlated with EDDI, highlighting corn’s higher susceptibility to severe drought conditions than soybeans.
The Palmer Drought Severity Index (PDSI) showed stronger correlations with soybean yields over time, re-
flecting the crop’s reliance on sustained moisture. These findings emphasize that soybeans are more resilient
to longer-term moisture deficiencies, whereas corn is more sensitive to short-term droughts. The analysis
provides valuable insights for drought relief planning, agricultural decision-making, and proactive strategies
for managing drought impacts. The results can inform the development of resilient farming practices and
policies, ensuring sustainability in agriculture under changing climate conditions.Keywords: agricultural
drought indicators, SPI, SPEI, NDVI, PDSI, Corn and Soybean yields.

Introduction

Food production is a cornerstone of food security, directly influencing the availability of essential resources
necessary for sustaining life. Food security encompasses multifaceted dimensions, including production,
availability, access, utilization, and stability over time (Capone et al., 2014). Agricultural productivity is
influenced by a combination of factors, such as temperature and precipitation, which affect crop development,
health, annual yields, and the long-term productivity of cropping systems (Howden et al., 2007; Liang et
al., 2017; Ray et al., 2018). In Towa, corn and soybeans are vital for food and biofuel production, with corn
serving as a key feedstock for ethanol and soybeans for biodiesel. Climate change exacerbates these challenges,
increasing the frequency of climatic extremes and their adverse impacts on agricultural production (Gornall
et al., 2010; Vogel et al., 2019; Alabbad et al., 2023). Numerous studies have investigated the impact of
climate change on agriculture across various geographical levels (Kang et al., 2009; Olesen et al., 2011; Parry
et al., 2004). However, most have not explicitly focused on the interaction between hydrological extremes—
such as droughts and floods—and crop production. Understanding these opposite but equally disruptive
events is critical for designing adaptive strategies to mitigate adverse effects and improve cropping systems.
This omission leaves a gap in understanding the specific links between drought conditions and agricultural
yields. Drought, a complex natural phenomenon, profoundly impacts global environmental, societal, and
economic domains, posing significant challenges to sustainable agriculture. Regions like Iowa, heavily reliant
on rain-fed systems, are particularly vulnerable (Haile et al., 2020; Islam et al., 2022, 2024; Savelli et al.,
2022; Sen, 2015; Yesilkoy et al., 2023). Forecasted climate changes predict an increase in extreme weather
events, including droughts, which impact water resources, population health, economic stability, and crop
production (Cikmaz et al., 2023; Field, 2012; Raymond et al., 2020; Sivakumar & Stefanski, 2011; Yildirim
et al., 2024). Anthropogenic activities and climate change have intensified drought unpredictability and
severity, permanently damaging sensitive agroecosystems, increasing crop losses, and exacerbating pest and
disease outbreaks (Mahdi et al., 2015; Subedi et al., 2023; Tadele, 2017; Yildirim et al., 2022). For example,
the flash drought in the U.S. Central Great Plains in 2012—the most severe since 1930—caused agricultural
losses exceeding $20 billion (Fuchs et al., 2012; Hoell et al., 2020; Hoerling et al., 2014). Such extreme events
underscore the urgent need for effective drought management strategies and the development of resilient
agricultural systems. As a leading producer of corn and soybeans, Iowa is particularly susceptible to climate
variability due to its dependence on favorable climatic conditions, high soil quality, and sufficient water
availability (Grassini et al., 2015; Kukal & Irmak, 2018). Between 1989 and 2022, drought-related crop
insurance claims in Iowa alone amounted to over $5.3 billion, illustrating the substantial economic toll of
drought (Beach et al., 2010; Maisashvili et al., 2023). Understanding extreme weather events such as flooding
and droughts is crucial, given their profound impacts on human life, infrastructure, and properties (Mount



et al., 2019). These events can cause extensive damage, disrupting transportation networks (Alabbad et al.,
2024), overwhelming drainage systems, and compromising buildings’ structural integrity, necessitating costly
repairs, and posing significant risks to human safety. Adequate comprehension and communication of these
risks are paramount, enabling communities and policymakers to adopt initiative-taking measures (Sermet
and Demir, 2022). Utilizing novel data-driven models (Li and Demir, 2022) and decision support systems
enhances our ability to predict, monitor, and assess the extent of these events. These systems integrate
real-time data, advanced analytics (Sit et al., 2021a; Ramirez et al., 2022), and machine learning (Sit et al.,
2021b) to provide accurate, timely information, aiding in preparedness, response, and recovery efforts. By
leveraging these technologies, we can develop more resilient infrastructure, foster informed decision-making,
and ensure swift, coordinated actions to mitigate the adverse effects of extreme weather, safeguarding both
lives and properties. Despite its critical importance, limited research has explicitly investigated drought
impacts on agricultural production in Iowa within the context of climate change. Addressing this gap, this
study aims to evaluate the extent of drought’s impact on agricultural yields using indices that incorporate
both temperature and precipitation, which are critical for computing potential evapotranspiration. This
approach offers a pathway to mitigate drought’s effects and establish a sustainable farming system for optimal
agricultural output. The urgency of this research is underscored by the increasing frequency of extreme
weather events, including droughts, and their adverse impacts on agricultural production. Immediate action
is needed to address this issue and ensure the future of agricultural management. Several indices have been
developed to assess drought impacts, each leveraging distinct environmental data. Commonly used indices
include the Palmer Drought Severity Index (PDSI) (Palmer, 1965), the Standardized Precipitation Index
(SPI) (McKee et al., 1993), and the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-
Serrano et al., 2010). While PDSI evaluates water balance over specific periods, its limited ability to capture
short-term droughts reduces its applicability for meteorological and agricultural assessments. On the other
hand, SPI focuses solely on precipitation but provides flexibility across varying timescales for meteorological,
agricultural, and hydrological purposes (Laimighofer & Laaha, 2022; McKee et al., 1993). SPEI combines
precipitation and temperature data, making it more suitable for assessing the impacts of climatic changes
on drought (Ma et al., 2014; Vicente-Serrano et al., 2010). Recent studies have demonstrated the utility
of SPEI for evaluating drought impacts on crops globally (Potop et al., 2012; Ribeiro et al., 2019; Tian
et al., 2019). In addition to these indices, this study considers the Evaporative Demand Drought Index
(EDDI), developed by NOAA, which serves as an early warning indicator by assessing atmospheric dryness
(Hobbins et al., 2016; McEvoy et al., 2016). Other indices, such as the Normalized Difference Vegetation
Index (NDVI) (Krieger, 1969) and the Crop Moisture Index (CMI) (Juhasz & Kornfield, 1978), were also
analyzed to determine their suitability in assessing drought impacts on crop yields in Iowa. This study
examines the correlation between drought indices and yields of Iowa’s primary crops, corn, and soybeans,
during 2000-2022. By leveraging multiple datasets, including temperature, soil moisture, evapotranspiration,
and rainfall, the research provides comprehensive insights into the interplay between drought and crop yields.
The findings aim to guide future agricultural practices and policies, enhancing resilience and sustainability
in Towa’s agricultural sector.

Materials and Methods

This study focuses on lowa, utilizing secondary atmospheric and spatial data to analyze the effects of drought
on corn and soybean yields. Statistical analyses and GIS tools were combined to examine numerical data and
geographical patterns. Detailed justifications for data selection, preprocessing steps, and analysis methods
are provided to enhance transparency and reproducibility.

Study Area

The study area includes Iowa, an agriculturally dominant region in the U.S., where 85% of the land is
dedicated to farming (Bell, 2010). The state produces essential crops like corn and soybeans, supported by
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its fertile loess soils, flat terrain, and a continental climate characterized by hot summers and cold winters
(Islam et al., 2024).
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Figure 1: Land use and land classification map of lowa. The map, derived from the USDA’s Cropland Data
Layer (CDL), highlights the distribution of key agricultural regions, with classifications for corn, soybeans,
and other land uses. The CDL’s pizel-level accuracy exceeds 80% for primary crops such as corn and
soybeans.

Data and Methods

The study utilized data from 126 meteorological stations across Iowa, chosen for their comprehensive and
consistent data availability. These stations monitor key atmospheric variables, including rainfall, tempera-
ture, humidity, and solar radiation. Additionally, land cover data were obtained from the USDA’s Cropland
Data Layer (CDL), which provides raster-based classifications of land use. Each pixel in the CDL is catego-
rized based on land-use type, with an accuracy exceeding 80% for primary crops such as corn and soybeans
(Boryan et al., 2011; Johnson et al., 2010). Data integration involved matching the spatial resolution of the
meteorological data with crop-specific land cover maps using interpolation techniques.

Crop Yields

Crop yield data for corn and soybeans from 2000-2022 were obtained from USDA’s NASS Quick Stats
database (USDA, 2023). These yields represent statewide averages based on field surveys, farmer reports,
remote sensing, and statistical modeling. While statewide yields were used for this analysis, future studies
could investigate finer-scale yield data to differentiate between irrigated and non-irrigated crops, as irrigation
practices can significantly influence drought resilience.

Standardized Residual Yield Series (SRYS)

A linear regression approach was applied to detrend crop yield data to account for technological advancements
and climate adaptations influencing yield trends. The residuals from this regression, termed the Standardized
Residual Yield Series (SRYS), represent deviations attributed to weather variability (Liu et al., 2018). SRYS
is calculated as follows:



SRYS = %(1)

A sensitivity analysis was conducted to evaluate SRYS’s robustness against variations in regression parame-
ters, addressing potential uncertainties related to its use in interpreting weather impacts. This ensures that
SRYS reliably isolates the effects of weather from long-term technological improvements.

Yearly Mean Yields of Corn and Soybean (2000-2022)
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Figure 2: Mean yearly corn and soybean yields in Iowa between 2000 and 2022.

Drought Indices

This study utilized six drought indices to capture various dimensions of drought and their potential impacts
on crop yields. The indices were selected based on their ability to represent short-term and long-term drought
conditions. Each index is described below, along with its limitations and rationale for inclusion.

Standardized Precipitation Index (SPI)

SPI quantifies precipitation deficits or surpluses over multiple timescales, such as 1, 3, 6, and 12 months
(McKee et al., 1993). Contrary to earlier statements, SPI values can range widely but typically fall between -
3.0 and +3.0, with negative values indicating drought conditions and positive values indicating wet conditions.
Precipitation data from the Towa Mesonet (https://mesonet.agron.iastate.edu/) were used to calculate SPI
values.

Standardized Precipitation Evapotranspiration Index (SPEI)

SPEI combines precipitation and potential evapotranspiration (PET) to better account for temperature
effects on drought (Vicente-Serrano et al., 2010). SPEI values were derived using the SPEI R package,
incorporating monthly precipitation and temperature data. SPEI is particularly useful for capturing the
combined impact of temperature and rainfall, a critical factor for agricultural applications.

The Standardized Precipitation-Evapotranspiration Index (SPEI) combines precipitation (Pi) and potential
evapotranspiration (PETi) data to compute drought conditions. Pi and PETi were utilized to calculate the
monthly water balance, represented as Di.



After computing the value of Di at each station, the results were then processed using the SPEI R package
to determine the SPEI at various time intervals. The SPEI R package may be accessed at http://cran.r-
project.org/web/packages/SPEIL. Di was fitted using the logarithmic distribution function f(x) in Equation
(3). The SPEIs were derived from numerous time series, including SPEI-1, SPEI-3, SPEI-6, and SPEI-12,
using Equation (4):

)= |1+ (%)B o e (3)

Here, a, 3, and vy represent the scale, shape of the graph, and the origin parameters, respectively.

2
SPEI =W — —daWe®”  py = O (P) e (4)

1+d,W+d,W2+d,w?3

P = 1-f(x) when P < 0.5; P = 1-P, and the SPEI’s sign is inverted when P > 0.5. The values of the
constants are d1 = 1.432788, d2 = 0.189269, d3 = 0.001308, c0 = 2.515517, c1 = 0.802853, c2 = 0.010328 c3
= 0.010328. SPEI values also range from -2.0 to +2.0, with negative values indicating drought and positive
values indicating wet conditions. The SPEI time series displays positive and negative values corresponding
to wet and dry periods. The drought state was determined using a threshold of -1 (SPEI [?] -1).

Palmer Drought Severity Index (PDSI)

PDSI measures long-term drought using local temperature and moisture data (Palmer, 1965). While helpful
in assessing prolonged droughts, PDSI has limitations in reflecting short-term droughts due to its lagging
nature. Monthly observations from 126 meteorological stations were used to calculate PDSI values.

PDSI aims to measure the duration and intensity of long-term droughts using local temperature and moisture
data. The index estimates the amount of water stored in the soil using an equation considering precipitation
and the soil’s water balance. The anomaly index (z-index) was calculated using cumulative monthly precip-
itation data. The z-index was determined each month by calculating the difference between the climatically
suitable for existing conditions (CAFEC) and actual precipitation. The z-index was incrementally computed
using a recursive method. Its value ranges from -4.0 (extreme drought) to +4.0 (incredibly moist conditions),
making it helpful in tracking prolonged drought or wet spells.

1
PDSI = 0897PDSIi_y + 5 Zi v e (5)

Where i is the dry spell of a specific month, di represents the difference between the original rainfall and the
CAFEC one, and Ki is the factor of weight. The primary factors utilized in the PDSI are the air temperature,



rainfall, and the Thornthwaite method-based potential evapotranspiration (PET) described by Thornthwaite
(1948).

Evaporative Demand Drought Index (EDDI)

EDDI evaluates atmospheric potential for evaporation, offering early warnings for drought onset (Hobbins
et al., 2016). It is susceptible to atmospheric dryness and complements other indices by providing insights
into potential drought development.

EDDI measures the atmospheric potential to evaporate water, calculated like the SPI and SPEI, which range
widely around zero, with higher values indicating higher evaporative demand and potential drought condi-
tions. The viability of applying the two-variable Gamma distribution, specifically for SPI, may be limited
when the application area is extensive due to the dependence on parameter-based probability distribution
types (Heim Jr et al., 2023). The probability of exceeding the set period, E,, denoted as P (E,;), is calculated
using the following formula:

i —0.33
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(7)

Where n represents the total number of years of observations, i is the rank in the previous E, time series
for that specific time duration, and P(E,;) represents the probability of exceedance. Here, the mean value
of evapotranspiration is applied to that. EDDI index is calculated by the inverse version of the normal
distribution function, i.e.:

EDDI = W Co + W + c,W? @
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Where, c0 = 2.515517, c¢1 = 0.802853, c2 = 0.010328, c¢3 = 0.010328, d1 = 1.4328, d2 = 0.1893, and d3 =
0.00131. An EDDI of 0 on any day of the year during a specific period has a median temperature value of
0. Negative Evaporative Demand Drought Index (EDDI) states have more moisture, whereas positive EDDI
states have less moisture, resulting in dry circumstances. Thus, the EDDI value rises with drought severity.
EDDI variability depends on the length of data collection. For n = 30, values vary from -2 to +2.

Crop Moisture Index (CMI)

CMI assesses weekly crop conditions using precipitation and temperature data. As a short-term index, CMI
provides valuable insights into rapidly changing crop moisture conditions (Palmer, 1968). CMI is particularly
useful in agricultural settings, as it assesses short-term crop moisture conditions and is sensitive to weekly
changes. The Crop Moisture Index (CMI) assesses weekly crop conditions using hydrological parameters.
Palmer (1968) derived it from PDSI calculating algorithms. CMI value ranges from -3.0 (dry conditions
harmful to crops) to +3.0 (excessively wet conditions).

Normalized Difference Vegetation Index (NDVI)

NDVT uses satellite imagery to assess vegetation health by measuring the difference and sum of near-infrared
(NIR) and red light (R) reflectance. While NDVI was calculated for this study, it was excluded from the
correlation analysis due to its sensitivity to cloud cover, which introduces noise in time series data. NDVI
values, ranging from -1.0 to +1.0, were derived from MODIS satellite data using standard preprocessing
steps (Rouse Jr et al., 1974).

The NDVI utilizes satellite imagery to assess vegetation health by measuring the difference and sum of near-
infrared (NIR) and red light (R) reflected by vegetation (Rouse Jr et al., 1974). MODIS MOD13Q1 data



was used for the index quantification. They were put through five steps, one after the other: (a) mosaicking,
(b) projecting the tiles, (c) raster clipping based on the study area using ArcGIS, (d) resampling based on
the other raster file to make sure the analysis would work, and finally (e) masking. NDVT is computed using
the following formula:

NDVI = 22X i (9)

NIR+R

Its value ranges from -1.0 to +1.0, where higher values (closer to +1.0) indicate healthier and denser green
vegetation, useful for monitoring overall vegetation health, detecting changes in land cover, and estimating
biomass.

Table 1: Name of the indices and data sources.

Name of the Index Data required Data source
Different SPI time scales SPI-1 Monthly precipitati
SPI-3
SPI-6
SPI-12
Different SPEI time scales SPEI-1 Monthly precipitati
SPEI-3
SPEI-6
SPEI-12
PDSI Monthly precipitation and temperature data, soil water holding capacity Iowa Mesonet webs
EDDI Temperature, relative humidity, wind speed, and solar radiation data Towa Mesonet webs
CMI Weekly precipitation and temperature data Towa Mesonet webs
NDVI Satellite imagery data (visible and near-infrared light) Satellite data provi

Quantifying Correlation Analysis

The relationships between drought indices and crop yields were analyzed using Spearman’s rho correlation
coefficient. This non-parametric method was chosen to account for potential non-linear relationships. Sta-
tistical significance was determined at p<0.05p < 0.05p<0.05. Limitations of satellite-based indices, such as
uncertainties in NDVI and SPEI compared to ground-based measurements, were considered in interpreting
results.

Results and Discussion

This chapter presents the correlations between drought indices and crop yields, their spatio-temporal vari-
ability, and the implication for understanding drought impacts on agricultural productivity. The findings
are discussed in detail to highlight the significance of both short- and long-term drought indices for corn
and soybean yields. Insights into climatic conditions, spatial patterns, and implications for drought risk
management are also explored.



Yearly Correlation of Corn Yields with Drought Indices

Figure 3 illustrates the yearly correlation coefficients between corn yields and various drought indices from
2000-2022. Shorter-term indices, such as SPI-1 and SPEI-1, exhibit greater variability in correlations, with
significant swings in positive and negative values. These trends indicate that corn production is susceptible
to short-term precipitation variability, particularly during critical growth stages such as silking and grain
filling. For instance, corn is highly reliant on moisture availability during its reproductive phase, and a lack
of rainfall during these periods can result in substantial yield reductions. In contrast, longer-term indices like
SPI-12 and SPEI-12 reflect the cumulative impact of extended moisture conditions. These indices capture
broader seasonal or yearly precipitation trends, which align with the water requirements of corn during
the entire growing season. Notably, sharp peaks and troughs in 2005, 2012, and 2018 correspond to years
of significant climatic anomalies. For example, the severe drought of 2012, widely regarded as one of the
most impactful droughts in U.S. history, resulted in significant negative correlations across most indices,
underscoring the vulnerability of corn to prolonged droughts.

Yearly Correlation of Various Indicatars with Com Yield
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Figure 3: Annual correlation of corn yield with different drought indices.

Higher correlations observed for indices such as PDSI and EDDI during 2004 and 2010 suggest that these
indices may more effectively capture specific drought dynamics during favorable or extreme weather condi-
tions. The variability in correlation coefficients reflects the complex interplay between climatic variables and
corn productivity. This underscores the importance of using multiple indices to understand drought impacts
comprehensively. Higher correlations between drought indices and productivity suggest that these indices
describe the conditions better than other low correlations. The variability in the data is sometimes different,
which shows how complicated the relationship is between climate variables and agricultural productivity. It
also demonstrates the importance of using more than one drought index in planning farms and managing
risks to help mitigate production loss due to short-term and long-term droughts. Drought indices provide a
comprehensive understanding of how drought impacts agricultural production by analyzing various aspects
of drought, such as soil moisture, plant health, and precipitation deficits. Previous studies have typically
considered only a few drought indices, and research is scarce in Iowa that correlates crop yields with all
the common drought indices in this region. This research addresses this gap by identifying which drought
indices correlate most with corn and soybean yields in Iowa. The effectiveness of each index depends on
the type of drought being tracked, the agricultural context, and the local climate. Some indices are more
adept at detecting short-term droughts, while others are better suited for assessing long-term droughts. By
evaluating the full range of standard drought indices, this study aims to provide a more complete picture of
drought impacts on crop yields in Iowa.



Yearly Correlation of Soybean Yields with Drought Indices

Figure 4 highlights the annual correlation coefficients between soybean yields and drought indices. Unlike
corn, soybeans exhibit greater resilience to short-term indices such as SPI-1 and SPEI-1, as indicated by
smaller fluctuations in correlation values. However, longer-term indices like SPI-6, SPI-12, SPEI-6, and
SPEI-12 show stronger and more consistent correlations with soybean yields. This suggests soybeans benefit
more from sustained moisture availability over extended periods, particularly during key growth stages like
pod setting and filling.

The oscillations observed around 2005, 2012, and 2018 reflect the complex interaction between climatic
conditions and soybean yields. For example, 2012, severe drought conditions led to negative correlations
across most indices, although soybeans demonstrated slightly higher resilience than corn. This can be
attributed to the crop’s ability to recover from moderate drought stress during non-critical growth phases.

Yearly Corralation of Various Indicators with Soybean Yield
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Figure 4: Annual correlation of soybean yield with different drought indices.

From 2010 to 2015, notable shifts in climatic trends influenced yield responses, as evidenced by increasing
positive correlations with shorter-term indices. After 2015, the influence of rapid precipitation changes (as
captured by SPI-1 and SPEI-1) became more apparent, emphasizing the need for adaptive management
strategies that consider these dynamics.

Mean Correlation Analysis

Figure 5 presents the mean correlation coefficients for corn and soybean yields with all drought indices
over the study period. Soybeans demonstrate stronger correlations with SPI-6, SPI-12, SPEI-6, and SPEI-
12, highlighting their dependence on long-term moisture availability. These indices may serve as reliable
predictors of soybean productivity in Iowa under similar climatic conditions.

In contrast, corn yields exhibit less consistent correlations with these indices, likely due to the crop’s greater
sensitivity to short-term drought conditions. Notably, EDDI shows a strong negative correlation with corn
yields, reflecting the crop’s susceptibility to high evaporative demand during critical growth phases. This
aligns with corn’s higher water requirements and sensitivity to drought-induced stress.
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Mean Correlation Coefficients with Corn and Soybean Yields (2000-2022)
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Figure 5: Mean correlation coefficients for corn and soybean yields.

The results also show that SPI-1 and SPEI-1 have limited predictive value for soybeans but significantly
influence corn yields. These findings underscore the importance of selecting appropriate drought indices
tailored to specific crops and growth stages to enhance drought forecasting and risk management strategies.

Spatio-Temporal Patterns of Drought Indices

Figures 6-11 illustrate the spatiotemporal distribution of SPI-3, SPEI-3, and PDSI values, providing insights
into the geographical and temporal variability of drought impacts on crop yields in Iowa.

SPI-3 and SPEI-3 Trends

Figure 6 shows the temporal trends of SPI-3 and SPEI-3, capturing short-term precipitation anomalies and
their combined temperature effects. Positive values indicate wet conditions, while negative values denote
drought conditions. The 2012 drought is particularly notable, with severe negative values reflecting extreme
dryness. Wet years, such as 2010 and 2014, correlate with increased crop yields, highlighting the critical role
of moisture availability.
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Figure 6: SPI-3 and SPEI-3 values averaged across all stations.

PDSI Temporal Trends

Figure 7 complements SPI-3 and SPEI-3 by capturing longer-term soil moisture anomalies. The 2012 drought
stands out, with PDSI values reaching extreme lows, indicative of prolonged water deficits. Wet conditions in
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2008 and 2010 demonstrate the index’s ability to capture excessive moisture periods, which can also influence
crop productivity.

PDSI Drought Condition Over Time
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Figure 7: PDSI values averaged across all stations.
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U.S. Soybean Areas Experiencing Drought
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Figure 8: Corn and soybean areas experiencing 2012’°s drought in the US.

The U.S. National Drought Mitigation Center’s study in July 2012 (Figure 8) revealed that about 87% of
soybeans cultivated in the U.S. were produced in regions affected by drought, as indicated by historical
NASS crop production statistics (USDA, 2012). In addition, on July 31, 2012, Iowa’s drought coverage
nearly reached 100% throughout the reproductive stage of soybeans, from flowering to setting pods.

Spatial Distribution Analysis

A detailed understanding of the spatial and temporal distribution of drought indices is essential for evaluat-
ing localized drought impacts on agricultural productivity. This subsection focuses on the spatio-temporal
variability of key drought indices, including the Standardized Precipitation Index (SPI-3) and the Stan-
dardized Precipitation-Evapotranspiration Index (SPEI-3), across Iowa from 2000 to 2022. These indices
provide critical insights into short-term precipitation anomalies and moisture demand, offering a compre-
hensive framework to assess trends, regional variability, and anomalies influencing crop yields over the study
period.

Spatio-Temporal Patterns of Drought Indices

Figure 9 illustrates the spatial and temporal variability of the Standardized Precipitation Index (SPI-3)
across lowa from 2000 to 2022, providing insights into short-term precipitation anomalies. The maps reveal
significant fluctuations in drought intensity, with severe and moderate droughts dominating 2003, 2012, and
2020, particularly in the southern and western regions. These patterns align with periods of persistent
dryness, coinciding with notable yield reductions in these areas. Conversely, wet years like 2008, 2010, and
2014 show widespread excessive rainfall, which supported higher yields but also risked flooding, emphasizing
the dual challenges of extreme moisture variability.

Figure 10 complements this analysis with the Standardized Precipitation-Evapotranspiration Index (SPEI-
3), incorporating the effects of temperature and atmospheric moisture demand. While trends generally
align with SPI-3, SPEI-3 highlights the amplified severity of droughts, particularly in 2012, due to elevated
evapotranspiration. The index reveals critical differences during wet years like 2010 and 2014, underscoring
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the role of temperature in either mitigating or exacerbating drought impacts. Localized dry spells in 2007
and 2017 suggest regional climate variability influenced by changing atmospheric conditions.

2000 2001 2002 2003
. —— ‘ ;
. t . “.‘i'il’. I"’; ) 9. 1'! .
. b o ) .»,‘ ‘e
) " ae ‘ ‘T
2005 2006
.. v.‘." ”
L] . : F
KRN ! $ .
2008 2009 2010
. : - . ') ; L i -
‘-1‘|II|I|P‘ ‘s a
2012 2013 2014
R A
a
2016 2017 2018
s Y i ) -‘
2020 2021 2022

Drought classes
L4 ? =) ‘ . v [ ] B severe drought
. L ‘ @' . [ Moderate drought
’ w ) Near normal
¢ I Moderately wet
. N ’ .. ' . - Very wet

Figure 9: Spatio-temporal distribution of SPI-3 drought conditions in lowa.
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Figure 10: Spatio-temporal distribution of SPEI-3 drought conditions in Iowa.

Figure 11 presents the Palmer Drought Severity Index (PDSI), which reflects the cumulative effects of
temperature and precipitation on soil moisture over extended periods. The PDSI confirms the prolonged
nature of the 2012 drought, particularly in southern Iowa, while also identifying significant moisture surpluses
in 2008 and 2010. These findings validate insights from SPI-3 and SPEI-3 while emphasizing PDSI’s utility
in understanding sustained drought and wetness impacts. Mild droughts in 2006 and 2015 and moisture
surpluses in 2014 and 2016 further highlight localized variability, suggesting the influence of regional climate
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Figure 11: Spatio-temporal distribution of PDSI drought conditions in Iowa.

Discussions

The spatio-temporal analysis of these indices demonstrates their complementary roles in assessing drought
impacts on crop yields. SPI-3 captures immediate precipitation anomalies, SPEI-3 incorporates temperature-
driven evaporative demand, and PDSI reflects cumulative moisture conditions. The indices collectively
highlight the temporal and spatial variability of drought impacts, with 2012 emerging as a critical year
for agricultural productivity loss. The year was marked by prolonged precipitation deficits, elevated tem-
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peratures, and heightened evapotranspiration, which collectively exacerbated soil moisture depletion and
hindered crop growth during critical developmental phases. This underscores the need for region-specific
agricultural planning that considers the dual risks of drought and flooding.

These findings emphasize the importance of integrating multiple drought indices to develop resilient farm-
ing strategies. Future work should explore how these indices perform under changing climate scenarios,
particularly with increasing temperatures and variability in precipitation patterns.

Conclusion

This research investigates the relationship between drought indices and crop yields, focusing on corn and soy-
bean production in Towa from 2000 to 2022. By analyzing both conventional and satellite-based drought in-
dices, such as the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration
Index (SPEI), the Palmer Drought Severity Index (PDSI), and the Evaporative Demand Drought Index
(EDDI), this study provides a comprehensive assessment of how climatic variability impacts agricultural
productivity. These indices, applied at various temporal scales (1, 3, 6, and 12 months), capture the com-
plex interplay of precipitation, evapotranspiration, and soil moisture dynamics in crop growth stages. The
findings reveal a high frequency of intense drought episodes in 2003, 2012, 2013, 2020, and 2022, which had
pronounced impacts on crop yields, particularly in Iowa’s central, southern, and western regions. While
drought is likely the primary driver of these yield reductions, other confounding factors, such as pest infes-
tations, disease outbreaks, soil fertility variability, and management practices, could also have contributed
to these fluctuations. Additionally, extreme weather events like heat waves during critical growth phases
may have compounded the impacts of water deficiency. The detrended standardized yield residual series
(SRYS) effectively isolated the effects of climatic variability, illustrating significant crop output fluctuations
for corn and soybeans. These analyses identified SPI-3, SPEI-3, and PDSI as critical indices for detecting
water deficiency during key growth phases, underscoring their utility in assessing drought impacts. Geo-
graphically, variations in soil moisture across Iowa’s regions indicate drought conditions can induce severe
water scarcity, particularly in areas with lower soil water-holding capacity. These spatial patterns emphasize
the importance of integrating localized data into drought mitigation strategies. The results also demonstrate
crop-specific sensitivities: SPI-3 and SPEI-3 exhibited stronger correlations with corn yields, effectively cap-
turing the impact of short-term precipitation deficits on corn productivity. In contrast, soybeans showed a
stronger association with PDSI, which reflects prolonged moisture availability, indicating that soybeans are
more sensitive to cumulative soil moisture conditions over time. Medium-term indices, such as SPI-6 and
SPEI-6, were particularly effective at capturing conditions that align with soybean growth and productiv-
ity, suggesting that these indices reflect the environmental conditions influencing soybeans rather than any
intrinsic association with the indices themselves. This distinction highlights the value of selecting appropri-
ate drought metrics based on the crop and its sensitivity to specific temporal scales of moisture variability.
Furthermore, the findings indicate that EDDI, which measures evaporative demand, negatively impacts corn
yields, reinforcing the crop’s vulnerability to high-temperature stress during critical growth periods. These
observations highlight the significance of maintaining consistent moisture levels across the growing season
to enhance crop productivity. This study’s insights can inform strategies to optimize water resource man-
agement and mitigate the adverse effects of drought on agriculture. The results of this study hold practical
relevance for agricultural planning and drought management. While the integration of multiple drought
indices enhances our understanding of drought dynamics, it is important to recognize that these indices
are models with inherent limitations. Rather than providing absolute ”truth,” they offer complementary
perspectives on drought impacts, such as short-term deficits (e.g., SPI-3) or cumulative moisture conditions
(e.g., PDSI). These insights can guide adaptive strategies, including selecting drought-tolerant crops, opti-
mizing irrigation, and aligning planting schedules with moisture availability. Decision-support systems, such
as drought relief programs and crop insurance frameworks, can benefit from incorporating these findings
to enhance risk aversion strategies and minimize economic losses. While this study primarily models his-
torical environmental conditions, its insights into the differential responses of corn and soybeans to short-
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and long-term drought indices lay the groundwork for developing forecasting tools. Such tools could help
farmers anticipate drought impacts and make informed decisions about crop selection, planting schedules,
and resource allocation. Although predicting drought cycles and long-term climate variability is a complex
challenge, integrating these findings with climate models and real-time monitoring systems could improve
agricultural resilience and guide investments in climate-adaptive practices tailored to Towa’s regional needs.
While this study provides valuable contributions, certain limitations should be acknowledged. The reliance
on standardized drought indices derived from meteorological and satellite data introduces inherent uncertain-
ties, particularly in regions with limited ground-based observations. Additionally, statewide yield averages
may obscure localized variations in drought impacts, as factors like irrigation practices, soil properties, and
crop management strategies can significantly influence outcomes. Future research should address these lim-
itations by incorporating finer spatial resolutions and integrating field-level data. The findings highlight the
need to examine the implications of climate change on drought-crop relationships. Rising temperatures and
variable precipitation will challenge the utility of current drought indices. Real-time monitoring tools and
precision agriculture can help farmers make adaptive decisions, but farming’s inherent path dependencies
mean risks cannot be entirely eliminated once planting decisions are made. These tools could mitigate risks
during the growing season, but systemic feedback, such as market responses and price stability, must also
be addressed. Future work should explore integrating real-time tools with crop insurance and government
subsidies to reduce risk and sustain profit margins under changing climate conditions.
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