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Abstract

The use of additive manufacturing has increased significantly in recent years, particularly in the aerospace industry. How-

ever, AM materials often exhibit defects that adversely impact fatigue performance. This study examines the geometric and

morphological features of critical defects observed in Ti-6Al-4V specimens. A framework for automatic fatigue failure analysis

through computer vision is proposed. An AI-based tool was trained to identify critical defects, measure their proximity to

the surface, and quantify 14 geometric and morphological features. The findings indicate that surface proximity is the most

influential factor in fatigue life classification, with defects near the surface exerting a negative impact on performance. No clear

trend was observed in defect morphology beyond a certain surface distance. For lack-of-fusion defects classified as critical, the

X -parameter model was applied and a correlation of R 2 = 0 . 9 1 with the measured CTF was obtained.
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Abstract

The use of additive manufacturing has increased significantly in recent years, particularly in the

aerospace industry. However, AM materials often exhibit defects that adversely impact fatigue

performance. This study examines the geometric and morphological features of critical defects

observed in Ti-6Al-4V specimens.

A framework for automatic fatigue failure analysis through computer vision is proposed. An

AI-based tool was trained to identify critical defects, measure their proximity to the surface, and

quantify 14 geometric and morphological features. The findings indicate that surface proximity

is the most influential factor in fatigue life classification, with defects near the surface exerting

a negative impact on performance. No clear trend was observed in defect morphology beyond a

certain surface distance. For lack-of-fusion defects classified as critical, the X-parameter model

was applied and a correlation of R2 = 0.91 with the measured CTF was obtained.

Keywords: Additive Manufacturing, Deep Learning, Fatigue Failure, Image Segmentation,

Fractography.



1 INTRODUCTION

In recent years, there has been a surge of interest in Additive Manufacturing (AM)1 across var-

ious industries, particularly in aerospace.2,3 Compared to traditional manufacturing methods,

AM techniques can produce parts with complex geometries and low buy-to-fly ratios. How-

ever, several studies, such as Edwards & Ramulu,4 or Leuders et al.,5 have shown that while

the quasi-static properties and crack propagation behavior of AM materials are comparable

to those of standard materials, their fatigue life is not. Post-processing techniques, including

machining and Hot Isostatic Pressing (HIP)6, can enhance the fatigue performance of AM ma-

terials by removing surface defects and sealing internal pores.7–9 However, fatigue performance

still depends on specific printing parameters,10,11 print orientations ,12 heat treatments,8 and

complementary processes (such as HIP or surface treatments),13,14 making it highly reliant on

quality assurance measures to eliminate defects to achieve the levels observed in convention-

ally manufactured materials. Consequently, the use of AM for manufacturing key structural

elements is not yet mature due to the lack of efficient, generic quality control methods for

economically detecting defects.

Defects in AM include lack of fusion (LOF), inclusions, and poor surface quality.10,15 Ad-

ditionally, due to rapid cooling during manufacturing, residual stresses are common. These

phenomena have a negative effect on fatigue performance. Currently, there are no regulatory

guidelines for disqualifying defective AM parts during the manufacturing process. To establish

mechanical characterizations for critical defects that warrant part dismissal, extensive studies

of fatigue failure are required, linking post-mortem fractographic analyses to measured fatigue

life. Insights into the geometrical and morphological characteristics of failure sources, as well as

crack formation and propagation, can be gained through fractographic examination of fractured

surfaces using a scanning electron microscope (SEM).16

The types of defects within an AM part may be divided into three main types of fatigue

crack initiation sites, namely, LOF defects, surface defects, or ’random’ where no specific initial

defect is observed but the location of initial fatigue failure is clear. An example of each failure

source type is presented in Fig. 1. The initiation sites act as stress concentration surfaces where

fatigue cracks may form.17 While LOF and surface defects are clearly visible in SEM scans of

the fractured surface, as shown in Fig.1A and 1B, respectively, ’random’ initiation sites, as

shown in Fig. 1C, are not apparent defects and are likely fatigue cracks originating at grain

boundaries.18

Various semi-empirical models may be found in the literature that relate defect character-

istics to fatigue properties. Murakami et al.19–21 proposed a method for predicting the fatigue
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Figure 1: Examples of SEM scans of fatigue crack initiation sites: (A) Lack of fusion
(LOF) initiation site, (B) Fatigue crack originating from a surface defect, (C) A
’random’ initiation site, likely originating at grain boundaries.

limit and fatigue life of metal materials with defects as

σw =
C(HV + 120)

(
√
area)1/6

(1)

where σw denotes the rotating bending or tension-compression fatigue limit, C is defined as

1.43 for surface defects and 1.56 for subsurface defect, HV is the Vickers Hardness, and
√
area

is the square root of the effective area of the defect. The effective area is determined as the

convex area when the defect’s diameter exceeds its distance to the surface of the specimen. For

defects situated closer to the surface, the effective area encompasses the projection of the defect

onto the plane perpendicular to the direction of the maximum principal stress. The fatigue life

of a specimen may then be calculated using

da

dN
= C∗

(
σ

σw
− 1

)m∗

an
∗
. (2)

where da/dN is the crack propagation rate, σ is the applied stress amplitude, a represents the

defect size in terms of
√
area. The parameters C∗, m∗, and n∗ were obtained for various steels,

cast irons and alloys empirically and are equal 10−4, 2 and 1, respectively.20 It is crucial to

recognize that other defect attributes, such as their proximity to the surface and shape—where

the former is considered in C in a binary manner, while the latter is not considered—could

potentially influence fatigue crack initiation. It may be noted that, even if fatigue limit, S-N

curve or fatigue propagation rate may be estimated for a particular defect, discerning the criti-

cality of a detected defect and identifying its most crucial features for quality control assessment

remains challenging.

Zhu et al.22 introduced the Z-parameter model to relate defect geometry, stress amplitude,
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and fatigue life, expressed as

Z = Y σa
(√

area
)−1/6

Dβ (3)

where Y is the shape factor related to the fatigue source morphology, σa is the applied stress

amplitude, andD is the location factor, defined as (d−h)/d, with d being the specimen diameter

and h the distance between the defect center and the outer surface. The parameter D ranges

from 0.5 (center) to 1 (surface), the parameter β is a fitting parameter based on Z −Nf data,

where Nf is the number of cycles to failure (CTF). This model reduces variability in fatigue

life data, emphasizing the effects of stress, defect location, size, and shape.

Later, Hu et al.23 proposed the X-parameter model to also include defect circularity as

X =
σa (

√
area)

−1/6
Dβ

Cα
(4)

where C represents defect circularity, with values close to 1 for circular defects, and decreasing

as the defect shape becomes more irregular. Here, the parameter α is an additional fitting

parameter.

While the Murakami, Z-parameter, and X-parameter models provide valuable insights and

simplifications for predicting fatigue life based on defect size and location, they are phenomeno-

logical and require extensive testing. In Powder Bed Fusion (PBF) techniques, materials are

produced using powders with varying properties, leading to inconsistent defect types and char-

acteristics, which these models may struggle to capture effectively.

Recently, purely data-driven approaches have shown great potential in addressing high-

dimensional data and regression challenges, making them a valuable tool for researchers study-

ing complex fatigue processes and assessing fatigue performance. Machine Learning (ML)

algorithms are renowned for their ability to detect intricate patterns in complex datasets.24

Additionally, these algorithms are instrumental in assessing the impact of individual input

parameters on model outcomes and establishing mathematical criteria, curves, or trends. In

Ref.,25 a review of ML-based methods for fatigue life prediction of AM metals is presented, and

the challenges and opportunities facing researchers today are discussed. Bao et al.26 investi-

gated machine learning (ML) techniques for predicting the fatigue life of AM metals, an SVM

model was used in that study to assess the impact of defect characteristics on the high-cycle

fatigue (HCF) life of SLM Ti-6Al-4V, achieving predictions with less than 4% error from actual

measurements. Li et al.27 developed a data-driven framework to evaluate defect criticality in

Laser Powder Bed Fusion (L-PBF) 17–4 PH stainless steel specimens concerning fatigue life.

They measured geometrical attributes from 192 critical defects identified postmortem. The

ML analysis utilized support vector regression (SVR) to correlate defect features with the CTF
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of the specimen. A total of 14 features were used, comprising 8 size-related features such as

defect area and perimeter, 5 morphology-related features such as eccentricity and circularity,

and the distance to the surface. The results showed high feature correlations and accurate

fatigue life predictions, especially in small, consistent datasets. Peng et al.28 identified applied

stress, projected defect area, defect location, and defect morphology as the four key parame-

ters affecting the fatigue life of AM metals. They developed a fatigue life prediction method

using the XGBoost algorithm,29 which was compared with predictions from Murakami19 and

the X-parameter model23 with more accurate predictions made with the ML algorithms.

A crucial factor in determining the effectiveness of ML analyses is the size of the dataset

used for training the models. Larger datasets are typically more effective at capturing real-

world patterns, leading to more accurate models, as they encompass greater variability, reduce

over-fitting, enhance statistical significance, and improve the handling of outliers30. However,

creating such extensive datasets requires detailed manual fractographic analysis, which is sig-

nificantly time-consuming. Implementing Deep Learning and computer vision31 tools in frac-

tography is a relatively new field. Tsopanidis et al.32 employed a VGG16 model in a U-net

architecture33,34 for segmenting intergranular and transgranular fractures in ceramic materials,

achieving a total mean Intersection over Union (IoU) of over 91% for two different materials.

Similarly, Tang et al.35 compared the effectiveness of different segmentation models in segment-

ing multiple morphological features, achieving an mean IoU of 59.7%. Another fractographic

challenge, image classification, was explored by Bastidas-Rodriguez et al.,36 who used Deep

Learning models to classify images with different failure mechanisms, achieving an accuracy of

87.1%.

One of the primary objectives of this research is to develop a computer vision framework

for the automatic fractographic analysis of metal AM high-cycle fatigue (HCF) specimens,

thereby streamlining future research efforts. In Ref.,37 a framework for detecting fatigue crack

initiation sites in AM materials was proposed. In this study, the algorithm for measuring the

distance from the initiation site to the surface is further enhanced. Additionally, a framework for

automatically measuring LOF defect features, based on a U-net model combined with standard

image processing techniques, is introduced. The results from these frameworks were utilized to

conduct a detailed fatigue failure analysis of AM Ti-6Al-4V38 specimens.

The specimens used in this study for fatigue life predictions were manufactured at various

quality levels and subjected to heat treatment (HT) or HIP conditions. High-cycle fatigue tests

were conducted until full fracture occurred. For each specimen, a comprehensive fractographic

analysis was performed, and 14 features were measured using the proposed defect-measuring

framework to fully characterize each initiation site. A dataset was generated from these mea-
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Figure 2: Research methodology

surements, and correlations with the measured fatigue life were established. From the analysis

of these features, it was demonstrated that, for all printing qualities, the critical defect size

and distance from the surface are bounded by specific dimensions. Feature importance was

assessed, and the results were compared with key features identified in previous studies.

An innovative framework for the automatic failure analysis of additively manufactured Ti-

6Al-4V specimens, based on defect characterization, is proposed. The framework examines

the influence of various geometric and morphological defect characteristics obtained from de-

structive HCF tests across different specimen qualities. This approach has the potential to

significantly expedite the failure analysis process while providing valuable insights into critical

defect characteristics.

The remainder of the paper is structured as follows: Section 2 describes the materials tested

and the research methodology. Section 3 presents the computer vision framework for automatic

AI-based failure analysis, including the required dataset, identification of the fatigue failure

source, distance measurement framework, and segmentation framework for measuring 14 char-

acterizing geometrical and morphological features of the fatigue source. Section 4 provides the

results and discussion on the correlation between the measured CTF and the feature measure-

ments. Finally, Section 5 summarizes the key findings and conclusions of this investigation.

2 MATERIALS AND METHODS

The research methodology is illustrated in Fig. 2. The initial stage, highlighted in green frames,

was carried out in Ref.11 and involved the manufacturing 80 AM Ti-6Al-4V fatigue specimens,

out of which 33 specimens were used in this study. The specimens were produced using Se-

lective Laser Melting (SLM)39 on an ALM EOS M290 machine (Laser-Power=340 W, Print-

Layer-Thickness=60 µm), with varying print parameters corresponding to three different quality

levels. All levels included the recommended parameters defined by EOS, with minor modifica-

tions to create higher and lower quality specimens. The three parameter sets are: P1 – default
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Table 1: Summary of specimen counts by quality group, printing parameters, and post-
processing method (HT or HIP).

Printing quality Printing parameters HIP HT Total

P1 Default 7 8 15

P2 x2 stripe width 5 6 11

P3 x2 stripes distance 7 0 7

Total - 19 14 33

recommended parameters, P2 – improved quality, with the stripe width increased to double

the EOS recommendation, and P3 – lower quality, with the stripe distance increased to double

the EOS recommendation. For each set of specimens, half underwent HIP post-processing fol-

lowing the procedure in Ref.,40 while the other half were subjected to standard HT at 800◦C

for 2 hours in an Argon atmosphere (furnace cooled, using optimized temperature control in

the inert gas chamber). This resulted in six different specimen quality types. However, the P3

HT specimens were excluded from the study due to an excessive number of pores, making them

unrepresentative for analysis. Table 1 summarizes the number of specimens for each printing

group across four columns: quality group, modified printing parameters, number of specimens

with HT treatment, and those with HIP treatment. The final row and column present the total

specimen count.

To eliminate surface roughness as a potential factor in fatigue crack initiation, all specimen

surfaces were machined to a surface roughness quality of N6 (32 µin). The manufactured

specimens were then subjected to HCF tests following,41 with a maximum stress of 634 MPa

and a stress ratio of Rp = 0.1.

Following this, as indicated by the red frames in Fig. 2, a fractographic analysis was per-

formed. The initiation sites were categorized, and features such as distance to the surface and

defect area were measured manually. Subsequently, the method described in Ref.37 was utilized

along with several enhancements as will be described in Section 3.2. In addition, a computer

vision-based framework was developed to measure the geometrical and morphological features

of the fatigue source automatically as will be described in Section 3.

In the final stage, highlighted by the orange frames in Fig. 2, a failure analysis was con-

ducted using the generated data to identify patterns and correlate the measured CTF with

various measured features. This analysis also aimed to establish the bounding dimensions and

significance of each feature in contributing to premature failure. Finally, theX-parameter model

was employed and examined with the scattered data. The proposed framework can facilitate

automatic post-failure inspections and aid in determining specific mechanical and geometrical

characteristics of critical defects in the future.
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Figure 3: SEM scans of the fractured surface: (A) The entire fractured surface (pixel
size of 1.34 µm), (B) The initiation site (pixel size of 0.378 µm), with the red box
indicating the cropped area for image C, (C) A 640×640 section of the LOF defect
cropped from image B.

3 Failure analysis automation framework

The following sections provide a detailed explanation of the framework utilized in this study to

analyze and process the SEM images of fractured surfaces, focusing on defect identification, seg-

mentation, and measurement. In Section 3.1, the datasets used are presented. The frameworks

for measuring distances and segmenting defects from the images are described in Section 3.2

and Section 3.3. These methods are crucial for extracting meaningful information about the

defects and automating the analysis.

3.1 Dataset

In order to create the dataset used in this study, SEM images of the fractured surfaces were

captured at two different resolutions, as shown in Fig.3A and 3B. The first image is a SEM

scan of the entire fractured surface with a pixel size of 1.34 µm and view field of 5.5 mm, as

depicted in Fig.3A. This image type was utilized to identify the critical defect and measure

the distance between its center and the specimen’s outer surface, as described in Ref.,37 with

several enhancements introduced in this study. The second image, capturing the initiation site

at a higher resolution with a pixel size of 0.378 µm and a field of view of 1.55 mm, is shown

in Fig.3B. Note that higher-resolution images are necessary to perform precise measurements

of the defects. After scanning the specimen, regions where LOF defects were identified were

manually cropped from the higher-resolution image using a 640×640 pixel mask. An example

of such an image is shown in Fig.3C. The mask size was selected to be sufficiently large with

respect to the maximum LOF defect found.

Segmentation of high-resolution images was necessary to measure the geometric and morpho-

logical features of identified lack-of-fusion (LOF) defects. For defect segmentation, 44 defects
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observed in high-resolution images from 11 tested specimens were analyzed. It is important to

note that the dataset included both initiation sources and defects identified on the fractured

surface that were not the primary cause of failure. Since random type initiation sites do not

have a clear morphology or size, they were not suitable for this dataset, resulting in only 11

specimens being used. The final dataset used for defect segmentation comprised 56 cropped

sections of 640×640 pixels containing defects. Note that for some defects, multiple images

were used. This occurred due to the scanning method for higher resolution images, where the

fractured surface was divided into 16 overlapping sections, causing defects to sometimes appear

in the overlap. However, due to slight variations in contrast and brightness, both instances of

the defect differed and were therefore included in the dataset. Label annotations of the defects

were created using the open-source tool VGG Image Annotator (VIA).

The dataset was partitioned into two subsets: a train set and a test set, with an 80-20

distribution ratio, respectively. Due to the small size of the training set, data augmentation

was performed to increase its size artificially. Each image in the training set was rotated by

a random selection of 2 out of 3 possible rotations (90◦, 180◦, and 270◦ degrees), effectively

tripling the training set size. This approach aimed to enhance data variability and reduce the

likelihood of over-fitting while artificially expanding the dataset for the defect segmentation

framework.

3.2 Distance measurements

In this study, modifications to the framework suggested in Ref.37 were made. For completeness,

a short description of the framework in Ref.37 is given here. The framework for detecting the

fatigue crack initiation site comprised two deep learning models: a ResNet152 model used to

filter out sections of the image that do not contain the initiation site and a YOLOv5 model

trained to detect the initiation site in the remaining sections. Following the detection of the

initiation site, a framework for measuring the distance to the surface was employed. This

framework utilized standard image processing techniques such as Canny edge detection. It

identified the center of the specimen, masked the specimen area, and, using this information,

computed the distance to the surface.

The main modification to the framework developed in Ref.37 is the replacement of the

masking of the fractured surface via standard image processing techniques with a VGG16-based

U-net. The U-net was trained to segment the fractured surface of the specimen, allowing for

more precise detection of its outer contour. This, in turn, enabled a more accurate computation

of the distance from the initiation site to the specimen’s surface. Another modification involved

applying a modified histogram equalization method to the SEM images, followed by retraining

10
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Figure 4: (A) Difference in pixels between the manual and autonomous measure-
ments of the distance between the anomalies and the outer rim of the specimen.
The anomaly was detected in 63 out of 65 images of the entire fractured surface.
(B) An example of the distance measured is indicated by the green line.

the initiation site detection framework.

In Ref.37 the same 33 specimens used in this study were examined. Note that each fractured

specimen has two fractured surfaces, resulting in a total of 66 images. However, one fractured

surface was damaged, leaving 65 images available for analysis. The initiation site was success-

fully detected in 61 out of these 65 images in Ref.37 Whereas, in this study, the initiation site

was detected in 63 out of 65 images.

The improved distribution of absolute errors in measuring the distance to the surface is

illustrated in Fig.4A. The measured distance is shown by the green line in Fig.4B, where the

two red dots indicate the center of the anomaly and the intersection point with the outer rim

of the specimen. The average difference between the manual and autonomous measurements

achieved in this study was 19 pixels, with a standard deviation (SD) of 19 pixels calculated as

SD =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (5)

where N = 63 is the sample size, xi is the absolute value of the individual difference between

the distance measured automatically using the calculation model and measured manually for

specimen i, and µ is the mean value of xi across all N specimens. Note that the manually

measured values ranged between 6 pixels and 810 pixels. This error equates to an average dif-

ference of 25.5 µm, representing a significant improvement from the average difference obtained

in Ref.37 of 74.7 µm. These results translate to an average relative difference of 14.3%, with

a SD of 14.1% calculated with xi in eq. (5) as the individual relative difference between the

automatically and the manually measured distance for specimen i.
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Figure 5: An illustration of the VGG16-based U-net model used to Segment LOF
defects from SEM images.

3.3 Segmentation framework

A supplementary VGG16-based U-net model was specifically trained to segment LOF defects

from the higher-resolution images of the initiation site, as detailed in Section 3.1. An illustration

of the model is shown in Fig. 5, where the input to the U-net model consists of SEM images with

LOF defects, and the output is the predicted masks of the defects. The training set initially

consisted of 45 images prior to augmentation, while the test set included 11 images. During

training, a batch size of 4 was utilized, and the model underwent training for 100 epochs,

with the best-performing weights being saved. The evaluation of the training process involved

assessing the performance of the model using the average IoU, calculated according to

IoU(Prediction, Label) =
Prediction ∩ Label

Prediction ∪ Label
, (6)

on the test set.

Following model training, standard image processing techniques were applied to the model’s

predictions to extract 14 features which are detailed in Table 2. To reduce noise from model

predictions where the model incorrectly segments additional small pixel groupings as defects,

the algorithm assumes that the image contains only a single LOF defect. Consequently, only

the largest contour in terms of area within the prediction is analyzed. This assumption is valid,

as the segmentation model is part of a larger framework. Based on the model developed by37

to detect LOF defects in the lower resolution images of the entire fractured surface, a 640×640

image of the identified defect, with pixel size of 0.378 µm, can be captured autonomously by

the SEM.

4 RESULTS

In this section, the results achieved in this study are described. Section 4.1 discusses the

influence of printing quality and heat treatment on fatigue life. In Section 4.2, the improved

12



Table 2: Parameters derived from defect masks that are employed in the machine
learning analysis. Measurements are initially calculated in pixel values and subse-
quently converted to units of micrometers (µm).

Parameter Symbol Units Description

Area S µm2 Area of defect

Perimeter C µm Perimeter length of defect

Major axis length a µm Major axis length of ellipse approximation for the
defect

Minor axis length b µm Minor axis length of ellipse approximation for the
defect

Eccentricity e - Eccentricity of approximation ellipse:
√
a2−b2

a

Convex Area Sc µm2 Area of defect convex

Bounding box area Sb µm2 Area of defect bounding box

Equivalent diameter De µm Diameter of circle with equivalent area to defect:√
4S
π

Max Feret diameter Dfmax µm Max Feret diameter of defect

Min Feret diameter Dfmin
µm Min Feret diameter of defect

Circularity - - Resemblance of defect shape to a circle: 4π · S
C2

Solidity - - Area to convex area ratio: S
Sc

Extent - - Area to bounding box area ratio: S
Sb

Angularity - - Resemblance between defect and approximated
ellipse: |4S−a·b·π|

4S

results for the distance-to-surface measuring framework are presented. Finally, Section 4.3

details the results of the defect segmentation and measurement framework. For this analysis,

three specimens were excluded, resulting in the evaluation of only 30 specimens. Two of the

excluded specimens exhibited unique defects not found in the rest of the dataset: one had a

large LOF surface, and the other had a surface defect. Additionally, another specimen was

excluded due to being an outlier in terms of fatigue life. It is worth noting that both the

specimen with the large LOF surface and the outlier regarding fatigue life were produced using

the lowest print quality P3.
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Figure 6: S-N curves illustrating the relationship between maximum applied stress and cycles
to failure (CTF) for the specimens examined in this study, of which were tested in study Ref.11

The results are compared with data from HIP-treated SLM AM Ti-6Al-4V specimens tested
under RP = −1 from Ref.,13 as well as data from HIP-treated and heat-treated (HT) EBM AM
Ti-6Al-4V specimens tested under RP = 0.1 from Ref.14

4.1 Cycles to Failure Based on Printing Quality and Heat Treatment

In this section, a comparison of the CTF values across different printing qualities and post-

processes is discussed. Figure 6 presents the resulting CTF values of the specimens examined

in this study and compares them to the values obtained from HIP SLM Ti-6Al-4V specimens

tested in RP = −1 in Ref.13 and to the values obtained from HIP and HT EBM Ti-6Al-4V

specimens tested in RP = 0.1 in Ref.14 With the exception of several P1 HT specimens, the

results for all printing qualities and post-processes in this study show higher CTF values than

those reported in Ref.13 and are within the bounded EBM results from Ref.14 The scatter in

the results is also evident in the figure, particularly for HT-treated specimens, which are marked

with triangles. However, it is apparent that the scatter is substantially reduced for the HIP-

treated specimens, which are marked with green, purple, and blue circles. Note that in Ref.,11

five additional specimens from the P3-HIP batch were tested and failed after a lower fatigue

life. For these specimens, the fractographic analysis revealed high porosity, as demonstrated

in Figure 7, and the fatigue source could not be determined. These specimens contributed to

significant scatter in the P3-HIP data as reported in Ref.11 The reduced scatter obtained here

is a result of the omission of these specimens which were not used for the fractographic analysis

performed here.
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Figure 7: An example of a SEM image of one of the specimens from batch P3 which was
dismissed from the analyses of this study due to high porosity which resulted in relatively low
fatigue life.

To evaluate the effect of printing quality and heat treatment on fatigue life, Figs. 8a and

8b present the results for HIP and HT treatments, respectively, across the three printing qual-

ities. Specimens are grouped into three CTF ranges: 0 ≤ CTF ≤ 3.5, 3.5 < CTF ≤ 8, and

CTF > 8. The results show that for recommended and improved printing qualities, P1 and P2,

respectively, characterized by fewer pores and LOF defects, HIP treatment was highly effective,

with no specimens failing below 3.5 million cycles. In contrast, HT treatment, yielded poorer

results for baseline P1 specimens, with five failing under 3.5 million cycles. Among the modified

quality (P2) specimens treated with HT, three showed excellent fatigue lives exceeding 8 million

cycles, while two failed below 3.5 million cycles. For P3 specimens, which exhibited numerous

LOF defects, only HIP treatment was applied. While HIP offered a marginal improvement, the

overall fatigue life of these specimens remained relatively low.

Figure 8: Number of specimens within various CTF ranges, categorized by printing quality and
post-processing treatment. Panel (A) shows HIP specimens, (B) shows HT specimens.
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Table 3: Median, mean and SD of CTF values for each printing quality and post-processing
combination.

Printing
Quality

Post-
process

Median
CTF

Mean
CTF

SD LOF Random

P1
HIP 7,759,547 8,360,430 2,729,929 0 7
HT 778,143 2,962,016 3,720,664 7 1

P2
HIP 10,399,595 8,908,806 2,735,179 0 5
HT 8,268,660 5,761,666 4,052,435 3 2

P3 HIP 5,759,186 5,331,642 1,102,028 0 5

Total
HIP - - - 0 17
HT - - - 10 3

In Table 3, the median and mean CTF values are summarized for each group. Both the

improved P2 and baseline P1 HIP-treated specimens had mean CTF values exceeding 8 million

cycles. However, for the specimens subjected to HT the CTF values reduced by 65% for P1

and 35% for P2. Interestingly, the median CTF for P1 was lower than the mean, whereas the

opposite was true for P2, indicating skewness in the data. The high SD for P2 specimens further

reflects this variability. For P3 specimens, the mean CTF was more normally distributed with

a mean value of approximately 5.3 million cycles which is relatively low.

Also, in Table 3, the types of defects identified for each group are specified. Recall that LOF

defects include both lack of fusion and pores. The table reveals that HIP-treated specimens

generally have random-type failure sources, while HT-treated specimens retained more LOF

defects with consistent morphology and size.

4.2 Distance measurements

The correlation between the measured distance and the CTF for the 30 tested specimens is

shown in Fig. 9. The plot legend in the figure provides details on the post-processing method

for each specimen (HT or HIP) and the type of killer defect identified. Notably, in the HIP-

processed specimens (marked in red), only ’random’ defects were identified, while in the HT-

treated specimens, the majority (10 specimens, marked in blue) contained an LOF defect, with

only 3 specimens (marked in yellow) showing a ’random’ defect.

It may be observed from the figure that generally, initiation sites closer to the specimen

surface correlate with shorter fatigue life. Particularly, specimens with an LOF defect with a

fatigue life of less than 1.6 million cycles generally exhibited initiation sites located within a

distance smaller than 0.025 mm to the surface. The single random specimen that resulted in

a fatigue life shorter than 1.6 million cycles included a random fatigue source identified within

0.1 mm from the specimen surface. As for the other specimens with fatigue lives longer than

3.7 million cycles, the fatigue source was observed at a distance larger than 0.16 mm from
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Figure 9: Distance to the surface relative to CTF for all 30 specimens used in the
ML analysis.

the surface. Additionally, for HIP-treated specimens, initiation sites were typically located

between 0.16 mm and 0.5 mm from the surface. In contrast, HT specimens exhibited a split

pattern: some had initiation sites close to the surface with shorter fatigue lives, while others

had initiation sites farther from the surface, corresponding to longer fatigue lives.

These results indicate that surface-adjacent defects, particularly LOF types, are critical

contributors to reduced fatigue life. Hot isostatic pressing (HIP) post-processing is well-

documented to enhance fatigue performance.13,14 In this study, it was observed that ”random”

failure sources were displaced deeper into the material following HIP treatment, resulting in im-

proved fatigue performance compared to HT processing. This finding highlights the importance

of optimizing post-processing techniques and defect management strategies in AM.

4.3 Defect Segmentation

Following the training methodology detailed in Section 3.3, the highest mean IoU achieved for

the test set was 0.836. It is noteworthy that when training was conducted without augmentation,

the upper limit for the test IoU was approximately 0.78. The results for two images in the

test set are illustrated in Fig.10. In Fig.10A, the model accurately predicted the defect, with

negligible differences between the label and predictions. However, in Fig. 10B, although the

IoU was 0.83, there is a noticeable difference primarily due to the model incorrectly predicting

an additional part of the image belonging to the defect.
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Figure 10: Two images from the test set: (A) Image with an IoU of 0.95 and (B)
Image with an IoU of 0.83. In both images, the yellow-tinted area represents the
overlap between the prediction and the label. The green area is part of the label,
but is not predicted by the model, while the red areas were predicted by the model
to be part of the defect but are not.

Since the goal of defect segmentation was to compute 14 features for subsequent failure

analysis, the computed features for both the labels and predictions of the test set are compared

in Table 4. Note that the SD values in columns four, six, and eight in Table 4 correspond

to the feature value measured manually, the absolute error between the automatic and manual

measurements of the feature, and the absolute relative error between the automatic and manual

measurements, respectively. The SD was calculated for each case using eq. (5) with N = 11,

where xi refers to the manually measured value of specimen i, the absolute difference between

the feature measured automatically and manually for specimen i, or the relative difference

between the two measurements for specimen i, and µ is the mean value of xi across all N

specimens. It may be observed from Table 4 that the measured dimensions shown in the third

column for all features and the SDs for these measurements, given in the fourth column, are

approximately the same. This indicates that the initiation site dimensions are distributed over a

large range. Similarly, the accuracy of the U-net measurement compared with the labeled values

is also distributed over a large range, as may be understood from the mean absolute error and

mean relative error for these measurements given in the fifth and seventh columns, respectively,

and the SDs of each error type in columns six and eight, which are also approximately the

same size. For some features, namely ’minor axis length,’ ’Max Feret diameter,’ and ’Min Feret

diameter,’ it may be observed in Table 4 that the SD values related to the absolute error are

larger than the mean. This is because, for these features, two or three specimens exhibited

significantly larger errors between the automatic and manual measurements compared to the

other specimens. These outliers skewed the data, leading to a substantial increase in the SD

values. Note that the average relative error for most features is approximately 10%.
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Table 4: Mean and SD of manually measured defect features, with absolute and
relative errors between segmentation model predictions and ground truth mea-
surements.

Parameter Units
Measured Value Absolute Error Relative Error [%]

Mean SD Mean SD Mean SD

Area µm2 2,432.8 1,874.6 149.3 112.0 9.9 10.2

Perimeter µm 208.7 88.6 11.9 9.6 7.4 7.4

Major axis length µm 68.9 26.8 4.1 3.5 7.5 7.9

Minor axis length µm 45.7 19.5 2.9 3.7 6.9 7.0

Eccentricity - 12.4 3.9 2.4 1.7 21.5 16.4

Convex Area µm2 2,808.8 2,455.5 141.0 132.9 10.0 10.1

Bounding box area µm2 4,613.5 4,686.5 220.7 167.5 10.5 10.0

Equivalent diameter µm 51.8 20.4 2.0 1.5 4.9 5.0

Max Feret diameter µm 75.4 24.6 7.4 14.4 10.0 17.8

Min Feret diameter µm 47.2 18.2 5.1 5.6 13.6 16.9

Circularity - 0.62 0.13 0.06 0.04 10.1 7.3

Solidity - 0.89 0.07 0.03 0.02 3.2 3.0

Extent - 0.57 0.11 0.04 0.03 7.5 5.5

Angularity - 0.17 0.14 0.03 0.03 41.1 53.3

The correlation between the 14 manually measured features and the CTF for the 10 speci-

mens with LOF initiation sites is illustrated in Figs. 11 through 13. The area-related features

are shown in Fig. 11, while length- and ratio-related features appear in Fig. 12 and Fig. 13,

respectively. As concluded in Fig. 9, initiation sites closer to the specimen surface are associ-

ated with shorter fatigue life. The data in Fig. 11 and Fig. 12 indicate that specimens with

surface-adjacent initiation sites tend to have smaller defects, with area features below 3000 µm2

and corresponding length features lower than those found in specimens with longer fatigue lives.

It is worth noting that while all area-related features produced similar results and trends, the

most pronounced differences were observed in the bounding box area feature. Although the

threshold for length-related features varies, clear distinctions for fatigue life above or below 1.6

million cycles are evident for most features. For example, lower fatigue life specimens generally

have a perimeter less than 185 µm, an equivalent diameter smaller than 42 µm, a major axis
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Figure 11: Area features for the 10 specimens with LOF initiation sites as a function
of the CTF.

shorter than 67 µm, and a minor axis shorter than 35 µm. A noticeable borderline appears for

most measured constants around the 1.6 million cycle mark.

In contrast, specimens with fatigue lives over 1.6 million cycles failed due to larger defects

Figure 12: Length features for the 10 specimens with LOF initiation sites as a
function of the CTF.
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Figure 13: Ratio features for the 10 specimens with LOF initiation sites as a function
of the CTF.

located farther from the surface. This suggests that defect size is critical for determining fatigue

life, alongside the defect’s distance from the surface. The absence of large killer defects near the

surface and small defects farther from it minimizes the observable impact of area and length

features on fatigue life, making them secondary factors related to defect criticality. Additionally,

the lack of large defects near the surface could indicate that standard HT may partially seal

surface-adjacent pores or that larger LOF defects tend not to form near the surface. Regarding

ratio-related features, as depicted in Fig. 12, no clear correlation was evident between these

features and fatigue life.

A plot of the distance from the surface versus the square root of the convex area,
√
area,

for all LOF killer defects identified is presented in Fig. 14A, showing data for ten specimens.

The figure demonstrates that as the distance from the surface decreases, smaller defects become

critical. In Fig. 14B, only specimens with a distance smaller than 0.16 mm are included. A

linear correlation between the two parameters is observed, given by

Distance =
√
area− 13.76 . (7)

This linear relationship may provide a means to determine critical small defects based on their

distance from the surface.
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Figure 14: Defect distance from the surface versus
√
area: (A) Ten specimens with LOF killer

defects identified. (B) Seven specimens from the ten shown in (A) with a defect distance from
the surface smaller than 0.16 mm, revealing a linear correlation: as the distance from the surface
increases, the

√
area also increases.

4.4 Cycles to failure - prediction models

The geometrical and morphological characterizations measured in this study using the segmen-

tation algorithm described in Section 3.3, and the results presented in Section 4.3, respectively,

were used for the X-parameter model in eq. (4). This model enables the prediction of the

CTF based on the features of distance from the surface (D),
√
area, and circularity (C) of the

identified defect.

The X-parameter was calculated for the ten LOF killer defects identified. The model pa-

rameters α and β were optimized using the least squares method with the Generalized Reduced

Gradient (GRG) solver in Excel,42 yielding values of α = 0.45 and beta = 2.18.

The resulting curve, shown in Fig. 15, demonstrates a clear inverse correlation: as the X-

parameter increases, CTF decreases. This reflects the combined effect of defect size, proximity

to the surface, and morphology. Larger or surface-near defects cause higher stress concentra-

tions, which accelerate crack initiation and material failure.

This strong correlation, with an R2 value of 0.91, validates the X-parameter model’s accu-

racy in predicting Nf and highlights its capability to integrate the combined effects of defect

size, location, and morphology. The resulting criterion may be applied to predict fatigue life

in specimens with LOF defects. These findings underscore the robustness of the X-parameter

model as a versatile tool for predicting fatigue life and optimizing defect tolerances in industrial

components across various manufacturing methods.
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Figure 15: The X-parameter from eq. (4) for the 10 specimens with identified LOF fatigue
sources, plotted against the CTF measured in the tests. The dotted line represents the linear
fit to the data, with α = 0.45, β = 2.18, and R2 = 0.91.

5 DISCUSSION AND CONCLUSIONS

In this study, AM Ti-6Al-4V specimens, produced via SLM at three quality levels and subjected

to either HIP or HT post-processing, were tested for fatigue. After testing, each fractured

surface was scanned using SEM for failure analysis to identify ”killer” defects and provide

geometrical and morphological characterization. Of the 33 specimens tested, 30 were included

in the analysis. Among these, 10 contained visible LOF defects, while the remaining specimens

showed failure initiated by random defects. The HIP-treated specimens exhibited reduced

scatter in fatigue life and a higher average fatigue life across all quality levels.

To automate the identification of failure sources and measure the distance between the

defect center and the specimen surface, a model adapted from37 was modified and used. For

LOF defects, a VGG16-based U-net and image processing framework was employed to extract

14 key geometrical and morphological features (see Table 2). To mitigate errors caused by SEM

specimen tilt, values for these 14 features along with the distance to the surface were averaged

across two fractured surface measurements for each specimen.

Upon analysis of the results, the following conclusions can be drawn:

• A U-net model successfully enhanced the algorithm for measuring the distance to the

fatigue crack initiation site by improving the detection of the specimen’s outer contour.

The average measurement error decreased from 55.6 pixels in Ref.37 to 19 pixels, reducing
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the average error from 74.7 µm to 25.5 µm.

• Defect segmentation with augmentation achieved an average test IoU of 0.836, showing

that a VGG16-based U-net can yield good results even with a relatively small training

dataset, making it a valuable tool for automating fractographic analyses.

• Three printing levels, combined with HIP or HT post-processing, were examined. The

average fatigue life was well correlated with the respective printing levels.

• Correlation between heat treatment and the measured CTF, as shown in Fig. 6 and

Table 3, revealed that HIP substantially improved the fatigue performance of all AM

SLM specimens tested. This result aligns with previous studies.9,11,13,14

• The most significant factor influencing failure was the distance from the surface, sup-

porting previous findings that proximity to the surface is linked to premature failure.5,11

Particularly, specimens with an LOF defect with a fatigue life of less than 1.6 million cy-

cles generally exhibited initiation sites located within a distance smaller than 0.025 mm

to the surface.

• HIP-treated specimens exhibited mostly random initiation sites. These sites were located

within a band approximately 0.16 µm through 0.5 µm from the surface.

• A correlation between defect size and distance to the surface was observed. When defects

are located within 0.025 mm of the surface, smaller defects are more detrimental to fatigue

life. Beyond this distance, defect size showed larger influence on fatigue life, suggesting

that the impact of defect size increases as the distance from the surface increases.

• Defects with area features smaller than 3000 µm2 were associated with shorter fatigue

lives. The most pronounced differences in area features were observed for the Bounding

box area.

• For specimens with fatigue lives below 1.6 million cycles, a trend emerged where smaller

defects resulted in longer fatigue lives. Additional testing could confirm this trend through

curve fitting with a possible saturation limit.

• No conclusive trend was found regarding defect morphology (e.g., angularity or circular-

ity), indicating these characteristics do not play a deterministic role in failure.

• The X-parameter model demonstrated a clear trend and can be used as a fatigue life

prediction model that correlates defect location, size, and morphology. The R2 value

of the X-parameter model was found to be 0.91, with α = 0.45 and β = 0.18. These
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parameters were optimized to relate two distinct printing qualities, P1 and P2, of Ti-6Al-

4V specimens tested under HCF conditions.

The main limitation of this study was the small dataset size. Expanding the dataset by in-

cluding more specimens is essential to gain deeper insights from the analysis. A larger dataset

could enhance the accuracy of the LOF measurement framework. Additionally, incorporat-

ing further data augmentation techniques, such as brightness and contrast adjustments, could

improve the model’s performance, complementing the rotation-based augmentation already in

use.

The proposed automated fractographic defect detection and measurement framework could

be a valuable tool for streamlining the fractographic analysis process, enabling the generation

of reliable, quantitative results and trends related to defect location, morphology, and size.

With more data, advanced hybrid machine learning techniques that may account for physical or

phenomenological models such as the X-parameter model could be applied, uncovering stronger

correlations between defect features and fatigue life.

Improving the accuracy and robustness of automatic failure analysis could drive the practical

adoption of AM materials in various industries. Furthermore, the findings from this study offer

valuable insights into the fatigue failure of AM materials.
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