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Abstract

In this paper, a class of hematopoietic stem cell transplantation model with virus-to-cell HIV infection is proposed to characterize

the competitive exclusion and coexistence between the host CD4+T cells and donor CD4+T cells. First, the positivity and

boundedness of solutions as well as the basic reproduction number R are obtained. Second, criteria on the locally and globally

asymptotical stability of all feasiable equilibria are established. Furthermore, bifurcation analysis is performed on the mixed

chimerism infection equilibrium. Finally, the theoretical results are illustrated by numerical simulation, we find that chimerism

is an important indicator of model stability, and AIDS may be cured when chimerism reaches a certain threshold.

1



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3alpha2/3alpha2-eps-converted-to.pdf

2



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3alpha3/3alpha3-eps-converted-to.pdf

3



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3CIF2/3CIF2-eps-converted-to.pdf

4



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3CIF3/3CIF3-eps-converted-to.pdf

5



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3JXH/3JXH-eps-converted-to.pdf

6



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3MI2/3MI2-eps-converted-to.pdf

7



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3MI3/3MI3-eps-converted-to.pdf

8



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3QXFZ/3QXFZ-eps-converted-to.pdf

9



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3SWMX2/3SWMX2-eps-converted-to.pdf

10



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3SWMX3/3SWMX3-eps-converted-to.pdf

11



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3SWSJ/3SWSJ-eps-converted-to.pdf

12



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3SWT2/3SWT2-eps-converted-to.pdf

13



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3SWV/3SWV-eps-converted-to.pdf

14



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3T2FZ/3T2FZ-eps-converted-to.pdf

15



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3T2QP/3T2QP-eps-converted-to.pdf

16



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3T41QP/3T41QP-eps-converted-to.pdf

17



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3T42FZ/3T42FZ-eps-converted-to.pdf

18



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3TFI2/3TFI2-eps-converted-to.pdf

19



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3TFI3/3TFI3-eps-converted-to.pdf

20



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/3ZQJ/3ZQJ-eps-converted-to.pdf

21



P
os
te
d
on

9
J
an

20
25

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
73
64
00
08
.8
48
76
58
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/SWDB3/SWDB3-eps-converted-to.pdf

22



Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

A R T I C L E T Y P E

Stability and bifurcation for a haematopoietic stem cell
transplantation model with HIV virus-to-cell infection

Wencong Wang1 Long Zhang1,2 Hong-Li Li1,2 Zhidong Teng3

1College of Mathematics and Systems Science,
Xinjiang University, Urumqi, China

2The Key Laboratory of Applied Mathematics of
Xinjiang Uygur Autonomous Region, Xinjiang
University, Urumqi, China

3College of Medical Engineering and Technology,
Xinjiang Medical University, Urumqi, China

Correspondence
Long Zhang,

Email: longzhang_xj@sohu.com

Present address
Xinjiang University, Urumqi, China.

Abstract
In this paper, a class of hematopoietic stem cell transplantation model with virus-to-cell HIV infection is
proposed to characterize the competitive exclusion and coexistence between the host CD4+T cells and donor
CD4+T cells. First, the positivity and boundedness of solutions as well as the basic reproduction number R
are obtained. Second, criteria on the locally and globally asymptotical stability of all feasiable equilibria are
established. Furthermore, bifurcation analysis is performed on the mixed chimerism infection equilibrium.
Finally, the theoretical results are illustrated by numerical simulation, we find that chimerism is an important
indicator of model stability, and AIDS may be cured when chimerism reaches a certain threshold.
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1 INTRODUCTION

As we all knows, AIDS caused by the human immunodeficiency virus (HIV) infection is one of the most fatal infectious diseases
in human history, which has infected more than 75 million people1. By the end of 2022, there were 760,000 new cases of HIV
infection, with approximately 39 million people living with HIV, around 630,000 people dying from AIDS-related diseases2.
HIV invades human body mainly by means of blood, sexual contact, and mother-to-child transmission (vertical transmission)2,
which primarily attacks the human immune system, including CD4+T lymphocytes, monocyte-macrophages, and dendritic cells.
The main manifestation of HIV infection is a continuous decrease in the number of CD4+T lymphocytes, ultimately leads to
cellular immune deficiency and various opportunistic infections and tumors2.

Usually, the process of HIV infection in human cells includes adsorption, membrane fusion and entry; reverse transcription,
nuclear entry and integration; transcription and translation; assembly, budding and maturation3. Currently, ART is the most
common treatment method, which could prevent HIV from entering human cells, block HIV replication within cells, or inhibit
the activity of enzymes required for integrating HIV gene material into human DNA. Among all HIV-infected individuals,
76% are receiving antiretroviral therapy? , it could reduce plasma viral levels, prevents viral evolution, and slows disease
progression. However, the effectiveness of ART would significantly decrease as HIV drug resistance becomes increasingly
prevalent4. Additionally, due to the existence of persistent latent reservoirs of HIV-1, ART cannot completely eradicate HIV
from the patient’s body5.

Chemokines are small cytokines or signaling proteins with the ability to induce directed chemotaxis in nearby cells. CCR5 is a
chemokine receptor on the surface of CD4+T cells6. In 1996, multiple research indicated that CCR5 is the preferred chemokine
receptor necessary for HIV to enter lymphocytes7,8,9,10. The CCR5∆32/∆32 homozygous mutation could efficiently prevent
HIV from invading CD4+T cells11,12, which greatly enhance the chance of full HIV cure.

In 2006, a hospital in Berlin, treated a patient named Timothy Brown (the Berlin Patient) who was suffering from both
AML and AIDS. To treat the acute myeloid leukemia, the doctors chose a bone marrow transplant from a donor with the

Abbreviations: ART, antiretroviral therapy; AML, acute myeloid leukemia; HSCT, hematopoietic stem cell transplantation.
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CCR5∆32/∆32 mutation. After transplantation, both AML and AIDS were cured, even several years after stopping ART, no
HIV was detected in his body. In 2011, scientists re-examined Brown’s blood and confirmed that his HIV viral load do not
rebounded, officially named Timothy Brown as “the first person in the world to be completely cured of AIDS”13. In 2020, the
second cured person of HIV, “the London Patient” emerged14. In February 2022, researchers from the United States reported the
third “cured” AIDS patient, “the New York Patient”15. In July 2022, “the City of Hope Patient” was reported; in February 2023,
“the Düsseldorf Patient” was reported16. These cured AIDS patients are similar to the Berlin Patient in that they all recovered after
HSCT. Several studies indicated that allogeneic HSCT is currently the only medical means to completely cure AIDS17,18,19,20.

Usually, HSCT is primarily used for blood system diseases, lymphomas, and many other conditions21. Chimerism status is an
important indicator for assessing transplantation status, referring to the proportion of donor and host hematopoietic cells in the
host’s body. Complete chimerism indicates that donor cells make up more than 95% of the host’s bone marrow or peripheral
blood, while mixed chimerism indicates that donor cells make up between 5% and 95% of the host’s bone marrow or peripheral
blood22. Transplant failure is divided into primary transplant failure and secondary transplant failure. Primary transplant failure
refers that achieve engraftment 28 days after peripheral blood stem cell or bone marrow stem cell transplantation or 42 days after
umbilical cord blood stem cell transplantation; secondary transplant failure refers to the decline or loss of at least two blood cell
lines after initially meeting the criteria for successful engraftment, or the loss of donor-host chimerism23,24.

In 1997, Bonhoeffer et al.25 proposed the following HIV virus-to-cell model.
ẋ = λ – dx – βxv,

ẏ = βxv – ay,

v̇ = ky – uv,

(1)

where x, y, v refer to the density of susceptible, infected CD4+T cells, and free virus, respectively. λ is the rate of healthy cell
production, d is the natural death rate of healthy cells, the infected cells are produced from the uninfected cells and free virus at
a rate of β, dying at a rate of ny, free virus are produced at a rate of ky, and die at a rate of uv.

Shinji et al.26 initially established a mathematical model for HSCT treatment of leukemia, established the theoretical conditions
for successful transplantation. Precup et al.27 proposed the following allogeneic bone marrow transplantation model to discuss
cell evolution after stem cell transplantation.

ẋ =
a

1 + b(x + y + z)
x + y + ε

x + y + ε + gz
x – cx,

ẏ =
A

1 + B(x + y + z)
x + y + ε

x + y + ε + Gz
y – Cy,

ż =
a

1 + b(x + y + z)
z + ε

z + ε + h(x + y)
z – cz,

(2)

where x, y, z represent the normal cells, leukemia cells and donor cells. They found that the model has two asymptotically
stable equilibria. Meanwhile, when the initial concentration of host cells is known, a successful measure of the cells needed for
transplantation could be calculated.

In recent years, HSCT treatment for AIDS has gained great attention, and many related models have been proposed28,29,30.
Alison et al.28 proposed a stochastic model to study the impact of chimerism on AIDS treatment. They concluded that the
probability of lifelong remission(cure) is 98% at 80% chimerism, while the probability of lifelong remission is greater than 99%
at 90% chimerism. Kallel et al.29 proposed a type of model to study the effects of stem cell transplantation on AIDS patients.
Manar et al.30 proposed the following mathematical model for HSCT treatment of AIDS:

Ṡ = (k (αS – αD) – δs) S,

Ṫ = λT – dTT + (2αD + αA) kAS – kTTV ,

Ṫi = kTTV – ρTiTi,

V̇ = πTi Ti – cvV ,

(3)

where S, T , Ti and V represent the concentrations of hematopoietic stem cells, uninfected CD4+T cells, infected CD4+T cells,
and free virus, respectively. k is the stem cell division rate, αs,αA,αD are the probabilities of a stem cell dividing into two
undifferentiated cells, one undifferentiated cell and one differentiated cell, two differentiated cells, respectively. δs, dT , ρTi, cv are
the death rates of stem cells, uninfected CD4+T cells, infected CD4+T cells, and free virus, respectively. λT is the production



Stability and bifurcation for a haematopoietic stem cell transplantation model with HIV virus-to-cell infection 3

rate of uninfected CD4+T cells, k is the stem cell division rate, A is the amplification factor, kT is the infection rate of CD4+T
cells, and πTi is the virus production rate. They found that stem cells offer hope for a cure for HIV-1 infection by increasing the
number of CD4+T cells in the blood immune system of HIV-1 patients

The model (3) characterized the process of hematopoietic stem cell differentiation but did not reflect the replacement
process between host and donor hematopoietic stem cells. According to13,14,15,16,17,18,19,20, the reason why AIDS can be cured
through HSCT is that the selected donor hematopoietic stem cells are all pure for the CCR5∆32/∆32 mutation and could fully
replacement the CD4+T cells of host. Therefore, taking donor and host CD4+T cells as two separate compartments is more
consistent with the actual background. Additionally, hosts are prone to immune exclusion led by CD4+T cells after HSCT as
well as competitive exclusion between the two types of CD4+T cells in host and donor after HSCT31.

Based on above consideration, we propose the following haematopoietic stem cell transplantation model with HIV virus-to-cell
infection 

˙T41 =
α1T41

α1T41 + α2T2
Λ – µ41T41 – βVT41 – k1T41T2,

˙T42 = βVT41 – µ42T42,

V̇ = Nµ42T42 – µVV ,

Ṫ2 =
α2T2

α1T41 + α2T2
Λ – µ2T2 – k2T41T2,

(4)

where T41, T42, V , T2 represent the number of uninfected CD4+T cells of the host, infected CD4+T cells of the host, free virus
particles, and CD4+T cells from the donor in the host’s body after HSCT at time t, respectively. In addition, k1, k2 represents the
competitive exclusion rates between T41 and T2. α1T41

α1T41+α2T2
Λ , α2T2

α1T41+α2T2
Λ reflect the recruitment rates that two types of CD4+T

cells competing in body, where α1 represents the ratio of hematopoietic stem cell chimerism and α2 represents the ratio of donor
CD4+ T cells, satisfying α1 + α2 = 1. The specific parameters are shown in the following table and are all positive constants.

T A B L E 1 Biological significance of variables and parameters.

parameters Description parameters Description

k1(k2) Donor (Receptor )CD4+T cell immune exclusion rate µV Death rate of free viruses
µ41 Death rate of receptor healthy CD4+T cells µ42 Death rate of receptor infected CD4+T cells
α1(α2) The proportion of CD4+T cells in the receptor (donor) µ2 Death rate of donor healthy CD4+T cells
β Infection rate of receptor healthy CD4+T cells Λ Recruitment rate
N Number of new viruses produced per infected cell

The rest of the paper is organized as follows: In Section 2, the basic properties of model (4), i.e., positivity and ultimate
boundedness are obtained. In Section 3, the existence and stability of all feasible equilibria of model (4) are established. In
Section 4, criteria on the bifurcation of model (4) are established. In Section 5, the main theoretical results are illustrated by
numerical simulations. Finally, a brief conclusion is given in section 6.

2 BASIC PROPERTIES

Denote R4
+ = {(x1, x2, · · · , x4) ∈ R4 : xi ≥ 0, i = 1, 2, · · · , 4}. The initial condition for any solution of model (4) is as follows

(T41(0), T42(0), V(0), T2(0)) = (T410, T420, V0, T20) ∈ R4
+. (5)

For the positivity and boundedness of solutions of model (4), we have the following result.

Theorem 1. The solution (T41(t), T42(t), V(t), T2(t)) of model (4) with initial condition (5) is nonnegative and ultimately bounded
for any t ∈ [ 0, +∞).

Proof. By the existence uniqueness theorem for solutions of ordinary differential equations32, the solution
(T41(t), T42(t), V(t), T2(t)) of model (4) under initial condition (5) exists on [0, T), where T ≤ ∞ is the maximum interval of
existence of saturated solutions.



4 TAYLOR ET AL.

First, we prove the nonnegativity of the solutions of model (4). From the first equation of model (4) we have

dT41

dt
=

α1T41

α1T41 + α2T2
Λ – µ41T41 – βVT41 – k1T41T2

= –
(
µ41 + β + k1T2 –

α1

α1T41 + α2T2
Λ

)
T41.

Therefore

T41 = T410e
∫ t

t0
(µ41+β+k1T2– α1

α1T41+α2T2
Λ)T41(s)ds ≥ 0.

Thus for T41(0) > 0, T41(t) is always nonnegative at t ∈ [0, T). Similarly we get the non-negativity of T2(t).
To obtain the nonnegativity of (T42(t), V(t)), we denote m(t) = min {T42(t), V(t)}, thus m(0) > 0. Assume that there exists a

t1 > 0 such that m(t1) = 0, and m(t) > 0 for all t ∈ [0, t1).
If m(t1) = T42(t1) = 0, we have dT42

dt

∣∣∣
t=t1

≤ 0. From the second equation of model (4)

dT42

dt

∣∣∣
t=t1

= βVT41 > 0,

which leads to a contraction. Thus for T42(0) ≥ 0, T42(t) is always nonnegative in t ∈ [0, T). Similarly we can obtain the
nonnegativity of V(t).

Next, we prove the boundedness of solution for model (4). Let P = T41 + T42 + V + T2, from model (4) we have

Ṗ = Λ – µ41T41 – µ42T42 – µVV – µ2T2 – Nµ42T42 – k1T41T2 – k2T41T2

≤ Λ – µ41T41 – µ42T42 – µVV – µ2T2

≤ Λ – µP,

where µ = min{µ41,µ42,µV ,µ2}. Applying the principle of comparison one has lim sup
t→∞

P(t) ≤ Λ
µ , therefore, we can set that

T41, T42, V , T2 is bounded on E ∈ [0, t). Thus by the extension theorem of the solution32 we know that T = ∞.
Furthermore we set Γ =

{
(T41, T42, V , T2) ∈ R4

+ : T(t) ≤ Λ
µ

}
be the positive invariant set of the system (4).

Let T42 = V = T2 = 0, then system (4) has transplant failure infection-free equilibrium E1 = (T1
41, T1

42, V1, T1
2 ) = ( Λ

µ41
, 0, 0, 0).

From the next generation matrix33

F =

(
βVT41

0

)
,V =

(
µ42T42

µVV – Nµ42T42

)
.

F =

(
0 βT0

41

0 0

)
, V =

(
0 µ42

–Nµ42 µV

)
.

Then the basic reproduction number of model (1) R = ρ
(
FV–1

)
= ΛβN

µVµ41
.

Before going into details of discussion, we summarize the conclusions obtained for HIV virus-to-cell infection. It has been
proven that the dynamics of model (1) is fully dependent on the basic reproduction number R25, i.e., if R < 1, the disease-free
equilibrium E0 of model (1) is globally asymptotically stable. While if R > 1, the endemic equilibrium E∗ of model (1) is
globally asymptotically stable.

Remark 1. The classical HIV virus-to-cell infection model (1) discusses the interaction between R ≥ (<)1 and the transmission
dynamics of HIV. In reality, if HIV is extinct, i.e., R < 1, which would be meaningless to consider HSCT. Therefore, it is only
when the disease could persist, i.e., R ≥ 1, then HSCT would be constructive. Therefore, in the following discussion, we will
only consider the case that the virus cannot be extinguished in vivo without HSCT, i.e., R ≥ 1.

3 STABILITY ANALYSIS

In this section, we analyse the stability of all feasible equilibria of model (4).
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3.1 Transplant failure infection-free Equilibrium

After HSCT, with the development of HIV and transplantion of haematopoietic stem cells in body, the infected cells and
viruses may be depleted, and the host CD4+T cells may exclude donor CD4+T cells, i.e., transplant failure infection-free
E1 = ( Λ

µ41
, 0, 0, 0) of (4) would occur.

Theorem 2. If R > 1, the transplant failure infection-free equilibrium E1 = ( Λ
µ41

, 0, 0, 0) of (4) is unstable.

Proof. The characteristic equation at E1 of model (4) is as follows

∣∣λE – J
(
E1)∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

λ + µ41 0 βΛ
µ41

α2µ41
α1

+ k1Λ
µ41

0 λ + µ41 –βΛ
µ41

0

0 –Nµ42 λ + µV 0

0 0 0 λ – α2µ41
α1

+ µ2 + k2Λ
µ41

∣∣∣∣∣∣∣∣∣∣∣
= (λ + µ41)

∣∣∣∣∣∣∣∣
λ + µ42 –βΛ

µ41
0

–Nµ42 λ + µV 0

0 0 λ – α2µ41
α1

+ µ2 + k2Λ
µ41

∣∣∣∣∣∣∣∣
= (λ + µ41)

[(
λ –

α2µ41

α1
+ µ2 +

k2Λ

µ41

)(
(λ + µ42) (λ + µ2) –

βΛNµ42

µ41

)]
.

Then the eigenvalues of
∣∣λE – J

(
E1
)∣∣ are

λ1 = –µ41 < 0, λ2 =
α2µ41

α1
– µ2 –

k2Λ

µ41
.

Where λ3,λ4 are the roots of the quadratic equation λ2 + (µ42 + µV )λ – βΛNµ42
µ41

. We have

△1 = µ42 + µV > 0,

△2 =

∣∣∣∣∣µ42 + µV 0

1 –βΛNµ42
µ41

∣∣∣∣∣ = (µ42 + µV )
(

–
βΛNµ42

µ41

)
< 0.

According to the Hurwitz criterion34, if R > 1, the transplant failure infection-free equilibrium E1 of model (4) is unstable.
This completes the proof.

Remark 2. Theorem 2 means that if HSCT successfully make the virus and infected cells remove and the donor CD4+T cells are
excluded by the host CD4+T cells, then the HIV infection will not disappear. So it is impossible to remove viruses and infected
cells as well as donor CD4+T cells by HSCT except the host CD4+T cell if R > 1, which is consistent with the real circumstance.

3.2 Complete donor chimerism infection-free equilibrium

After HSCT, there may be a complete replacement of host CD4+T cells by donor CD4+T cells, i.e. the complete donor chimerism
infection-free equilibrium E2 = (0, 0, 0, Λ

µ2
) of (4) would occur.

We further introduce the following assumption.

(H1) µ41 +
k1Λ

µ2
>
α1µ2

α2
.

Theorem 3. If (H1) holds, the complete donor chimerism infection-free equilibrium E2 = (0, 0, 0, Λ
µ2

) of model (4) is locally
asymptotically stable.
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Proof. The characteristic equation at E2 of model (4) is as follows

∣∣λE – J
(
E2)∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

λ – α1µ2
α2

+ µ41 + k1Λ
µ2

0 0 0

0 λ + µ42 0 0

0 –Nµ42 λ + µV 0
α1µ2
α2

+ k2Λ
µ2

0 0 λ + µ2

∣∣∣∣∣∣∣∣∣∣∣
= (λ + µ2)

∣∣∣∣∣∣∣∣
λ – α1µ2

α2
+ µ41 + k1Λ

µ2
0 0

0 λ + µ42 0

0 –Nµ42 λ + µV

∣∣∣∣∣∣∣∣
= (λ + µ2)

[(
λ –

α1µ2

α2
+ µ41 +

k1Λ

µ2

)
(λ + µ42) (λ + µV )

]
.

Then the eigenvalues of
∣∣λE – J

(
E2
)∣∣ are

λ1 = –µ2 < 0, λ2 = –µ42 < 0, λ3 = –µV < 0, λ4 =
α1µ2

α2
– µ41 –

k1Λ

µ2
.

If (H1) holds, then λ4 < 0. Thus the equilibrium E2 of model (4) is locally asymptotically stable. This completes the proof.

Remark 3. After a successful HSCT, there would be no more host CD4+T cells except the donor CD4+T cells in the body, since
HIV cannot attack donor CD4+T cells, which means the HIV would disappear. Therefore, the stability of E2 is no longer related
to the basic reproduction number R if a successful HSCT occurs.

Lemma 1 (Castillo-Chavez et al.35). Consider the following differential equations of epidemic model

dX
dt = F(X, Y),

dY
dt = G(X, Y), G(X, 0) = 0,

where X ∈ Rn denotes the uninfected individuals, Y ∈ Rn denotes the infected individuals, and U0 = (X0, 0) is the disease-free
equilibrium(DFE) of the system.

We also assume that the following conditions hold.

(H2) For dX
dt = F(X, 0), X0 is globally asymptotically stable,

(H3) G(X, Y) = AY – Ĝ(X, Y), Ĝ(X, Y) ≥ 0 for (X, Y) ∈ Ω,
where A = DZG(X0, 0) is an M–matrix (non-diagonal elements of A are nonnegative), Ω is a biologically significant region of the
system.

Then the DFE U0 = (X0, 0) is globally asymptotically stable.

For the globally asymptotical stability of E2 of model (4), we have the following result.

Theorem 4. If (H1) holds, the complete donor chimerism infection-free equilibrium E2 of model (4) is globally asymptotically
stable.

Proof. According to the Lemma 1, we rewrite the model (4) into the following form

dX
dt

= F(X, Y),

dY
dt

= G(X, Y), G(X, 0) = 0,
(6)

where X = (T41, T2), Y = (V , T42), and U0 = (X0, 0) is the complete donor chimerism infection-free equilibrium of system (6).
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In the following discussion, we verify that the system (6) satisfies the assumptions (H2), (H3). According to model (4), we have

dX
dt

=


α1T41

α1T41 + α2T2
Λ – µ41T41 – βVT41 – k1T41T2

α2T2

α1T41 + α2T2
Λ – µ2T2 – k2T41T2

 , F(X, 0) =
(
Λ – µ41T41

0

)
.

A =

(
–µ42 βVT0

41

Nµ42 –µV

)
=

(
–µ42

βVΛ
µ41

Nµ42 –µV

)
.

Ĝ(X, Z) = AZ – G(X, Z)

=

(
–µ42 βT0

41

Nµ42 –µV

)(
T42

V

)
–

(
βVT41 – µ42T42

µ42T42 – µVV

)

=

(
–µ42T42 + βT0

41V

Nµ42T42 – µVV

)
–

(
βVT41 – µ42T42

Nµ42T42 – µVV

)

=

(
βV
(
T0

41 – T41
)

0

)
⩾ 0.

According to Lemma 1, we have that E2 of model (4) is globally asymptotical stability. This completes the proof.

Remark 4. The Theorem 4 means that after HSCT, the virus and infected cells would be eventually cleared even if R > 1, and
the donor CD4+T cells would complete replace host CD4+T cells as well, which is the ideal state of HSCT.

3.3 Mixed chimerism infection-free equilibrium

After HSCT, the infected cells and viruses may be depleted and two types of CD4+T cells in host and donor may coexist, i.e.,
mixed chimerism infection-free equilibrium E3 = (T3

41, 0, 0, T3
2 ) would exist. We have the following result.

Theorem 5. If α2
µ2

+ α1Λk1
µ41(µ2µ41+Λk1) > α41

µ41
holds, model (4) has a unique mixed chimerism infection-free equilibrium E3 =

(T3
41, 0, 0, T3

2 ).

Proof. From model (4), let 
α1T3

41

α1T3
41 + α2T3

2
Λ – µ41T3

41 – k1T3
41T3

2 = 0,

α2T3
2

α1T3
41 + α2T3

2
Λ – µ2T3

2 – k2T3
41T3

2 = 0.
(7)

Then we get T3
2 = Λ–µ41T3

41
µ2+(k1+k2)T3

41
, and T3

41 is determined by the following quadratic equation

a1(T3
41)2 + b1T3

41 + c1 = 0. (8)

Where a1 = α1k1(k1 + k2), b1 = 2α1k2µ2 + α1k1µ2 – α2k2µ41, c1 = µ2
2α1 – µ2α2µ41 – α2Λk1. Clearly a1 > 0, the roots of equation

(8) are determined by the following three cases.
Case 1: b1 > 0, c1 > 0. From (8), we have {

2α1k2µ2 + α1k1µ2 – α2k2µ41 > 0,

µ2
2α1 – µ2α2µ41 – α2Λk1 > 0.

(9)

From (9) we have α2
µ2

– α41
µ41

< –α1Λk1
µ41(µ2µ41+Λk1) . According to the Descarte’s rule of sign, the equation (9) has no positive roots.

Case 2: b1 < 0, c1 > 0. We have {
2α1k2µ2 + α1k1µ2 – α2k2µ41 < 0,

µ2
2α1 – µ2α2µ41 – α2Λk1 > 0.

(10)
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From (10) we have 
α1

α2
<

k2µ41

2k2µ2 + k1µ2
,

α1

α2
>
µ2µ41 + Λk1

µ2
2

.
(11)

If (11) holds, then –k2µ
2
2µ41 > 2k2µ2Λk1 +k1µ

2
2µ41 +k2

2Λµ2, which leads to a contradiction. Therefore, according to the Descarte’s
rule of the sign, the equation (8) does not have two positive roots.

Case 3: c1 < 0. We have
µ2

2α1 – µ2α2µ41 – α2Λk1 < 0. (12)

From (12) we have α2
µ2

– α41
µ41

> –α1Λk1
µ41(µ2µ41+Λk1) . According to the Descarte’s rule of sign, for case 3, the equation (8) only has one

positive root, regardless of b1 > 0 or b1 < 0.

Theorem 6. If R > 1 and α2
µ2

+ α1Λk1
µ41(µ2µ41+Λk1) > α41

µ41
hold, the mixed chimerism infection-free equilibrium E3 of model (4) is

unstable.

Proof. The characteristic equation at E3 of model (4) is as follows

∣∣λE – J
(
E3)∣∣ = [λ – B1]

∣∣∣∣∣∣∣∣
λ + µ42 –βT3

41 0

–Nµ42 λ + µV 0

0 0 λ – B2

∣∣∣∣∣∣∣∣
= |λ – B1|

[
(λ + µ42) (λ + µV ) (λ – B2) – Nµ42βT3

41(λ – B2)
]

= (λ – B1)
[
λ3 + (µ42 + µV – B2)λ2 + (µ42µV – µ42B2 – µVB2

– Nµ42βT3
41)λ – µ42µVB2 + Nµ42βT3

41B2

]
,

where

B1 =
α1α2T3

2Λ(
α1T3

41 + α2T3
2

)2 – µ41 – k1T3
2 , B2 =

α1α2T3
41Λ(

α1T3
41 + α2T3

2

)2 – µ2 – k2T3
41.

According to (7), we have

λ1 = B1 =
α1α2T3

2Λ(
α1T3

41 + α2T3
2

)2 – µ41 – k1T3
2 < 0.

λ2,λ3,λ4 are determined by the following cubic equations.

λ3 + (µ42 + µV – B2)λ2 + (µ42µV – µ42B2 – µVB2 – Nµ42βT3
41)λ – µ42µVB2

+ Nµ42βT3
41B2 = 0.

According to the Hurwitz criterion34, we have

△1 = µ42 + µV – B2 > 0.

△2 =

∣∣∣∣∣µ42 + µV – B2 –µ42µVB2 + Nµ42βT3
41B2

1 µ42µV – µ42B2 – µVB2 – Nµ42βT3
41

∣∣∣∣∣
= (µ42 + µV )

[
µ42µV + B2(B2 – µ42 – µV ) – Nµ42βT41

]
.

From the second inequality of (4) we have
B2 < 0, B2 – µ42 – µV < 0,

then
B2(B2 – µ42 – µV ) > 0.
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From R > 1 and the boundedness of solutions we have

µ42µV – Nµ42βT3
41 > µ42µV – Nµ42β

Λ

µ41
> 0,

hence △2 > 0.

△3 =

∣∣∣∣∣∣∣∣
µ42 + µV – B2 –µ42µVB2 + Nµ42βT3

41B2 0

1 µ42µV – µ42B2 – µVB2 – Nµ42βT3
41 0

0 µ42 + µV – B2 –µ42µVB2 + Nµ42βT3
41B2

∣∣∣∣∣∣∣∣
= (–µ42µV + Nµ42βT3

41)B2△2 < 0.

According to the Hurwitz criterion34, the mixed chimerism infection-free equilibrium E3 is unstable when R > 1. This
completes the proof.

Remark 5. After HSCT, the CD4+T cell-mediated immune exclusion would occur, it is difficult for the two types of CD4+T
cells to co-exist. Therefore, the result of Theorem 6 is much consistent with the biological significance.

3.4 Transplantation failure infection equilibrium

After HSCT, the infected cells and viruses may not be depleted while the donor CD4+T cells are cleared due to immune exclusion
by the host CD4+T cell, i.e., the transplantation failure infection equilibrium E4 = (T4

41, T4
42, V4, 0) would occur.

For simplicity of discussion, we further introduce the following assumption

(H4)
α2

µ2
–
α1

µ41
<

k2Λα1 – 2α1µ41µ2

µ2
41µ2

.

Theorem 7. If R > 1 model (4) has a unique transplantation failure infection equilibrium E4 = (T4
41, T4

42, V4, 0).

Proof. From model (4), we have 
Λ – µ41T4

41 – βV4T4
41 = 0,

βV4T4
41 – µ42T4

42 = 0,

Nµ42T4
42 – µVV4 = 0.

(13)

By solving the equations (13) we have

T4
41 =

µV

βN
, T4

42 =
Λ

µ42
–
µ41µV

βNµ42
, V4 =

ΛN
µV

–
µ41

β
.

It is easy to see that the equilibrium E4 exists and is unique if the basic reproduction number R > 1.

Theorem 8. If R > 1 and (H4) hold, the transplant failure infections equilibrium E4 of model (4) is locally asymptotically stable.

Proof. The characteristic equation at the equilibrium E4 of model (4) is as follows

∣∣λE – J
(
E4)∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

λ +
(
µ41 + βV4

)
0 βT4

41
α2Λ
α1T4

41
+ k1T4

41

–βV4 λ + µ42 –βT4
41 0

0 –Nµ42 λ + µV 0

0 0 0 λ –
(

α2Λ
α1T4

41
– µ2 – k2T4

41

)

∣∣∣∣∣∣∣∣∣∣∣∣
=
[
λ –
(

α2Λ

α1T4
41

– µ2 – k2T4
41

)] ∣∣∣∣∣∣∣∣
λ + µ41 + βV4 0 βT4

41

–βV4 λ + µ42 –βT4
41

0 –Nµ42 λ + µV

∣∣∣∣∣∣∣∣
=
[
λ –
(

α2Λ

α1T4
41

– µ2 – k2T4
41

)] [
λ3 +

(
µV + µ41 + µ42 + βV4)λ2 + (µ41µV +

(
µ41 + βV4)µV
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+
(
µ41 + βV4)µ42 – βNµ42T4

41)λ +
(
µ41 + βV4) (µ42µV – βNµ42T4

41

)
+ β2Nµ42V4T4

41

]
.

Similar to the discussion of Theorem 2, it is easy to obtain the locally asymptotical stability of the transplantation failure
infection equilibrium E4 of model (4) according to the Hurwitz criterion34. This completes proof.

Remark 6. We observe that there exists partial overlap between the condition of Theorem 3 and Theorem 8 at E4 and E2 of
model (4). That is, when R > 1, –k1Λα2

µ41µ2
2

< α2
µ2

– α1
µ41

< k2Λα1–2α1µ41µ2
µ2

41µ2
, both types of equilibrium could be locally asymptotically

stable, which means that there could exists bi-stability phenomenon of model (4) .

3.5 Mixed chimerism infection equilibrium

On the mixed chimerism infection equilibrium, E0, i.e., coexistent equilibrium of T41 and T2 as well as T42 and V after HSCT of
model (4), we have the following result.

Theorem 9. If the following assumptions are satisfied
(H5) α2Λβ

2N2 – α1µVµ2βN – α1k2µ
2
V > 0,

(H6)
α2Λβ

2N2 – α1µVµ2βN – α1k2µ
2
V

α2µ2β2N2 + k2µVβN
–

βNΛ – µ41µV

µ2βN + k1µV + k2µV
< 0,

the mixed chimerism infection equilibrium E0 = (T0
41, T0

42, V0, T0
2 ) of model (4) exists uniquely.

Proof. Let 

α1T0
41

α1T0
41 + α2T0

2
Λ – µ41T0

41 – βVT0
41 – k1T0

41T0
2 = 0,

βVT0
41 – µ42T0

42 = 0,

Nµ42T0
42 – µVV0 = 0,

α2T0
2

α1T0
41 + α2T0

2
Λ – µ2T0

2 – k2T0
41T0

2 = 0.

Then by calculations, we have

T0
41 =

µV

βN
, T0

2 =
α2Λβ

2N2 – α1µVµ2βN – α1k2µ
2
V

α2µ2β2N2 + k2µVβN
,

V0 =
NΛ

µV
–
µ41

β
–
(

µ2N
µV

+
k1

β
+

k2

β

)
T0

2 , T0
42 =

µV

Nµ42
V0.

So the equilibrium E0 exists uniquely if (H5), (H6) hold. This completes the proof.

Theorem 10. If (H5), (H6) hold and the following assumptions are satisfied
(H7) A5 > 0, A6 > 0, A7 > 0, A8 > 0,

(H8) (A5A6 – A7)A7 > (A5)2A8.
The mixed chimerism infection equilibrium E0 of model (4) is locally asymptotically stable. Here Ai(i = 5, 6, 7, 8) is defined in

the following proof.

Proof. The Jacobi matrix of model (4) at E0 is as follows.

J =



α1α2T0
2Λ(

α1T0
41 + α2T0

2

)2 – µ41 – k1T0
2 0 –βT0

41
–α1α2T0

41Λ(
α1T0

41 + α2T0
2

)2 – k1T0
41

0 –µ42 βT0
41 0

0 Nµ42 –µV 0

–α1α2T0
2Λ(

α1T0
41 + α2T0

2

)2 – k2T0
2 0 0

α1α2T0
41Λ(

α1T0
41 + α2T0

2

)2 – µ2 – k2T0
41


.
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The characteristic equation of model (4) at E0 is as follows

∣∣λE – J
(
E0)∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

λ – A4 0 βT0
41 A1

βV0 –µ42 βT0
41 0

0 Nµ42 –µV 0

A2 0 0 λ – A3

∣∣∣∣∣∣∣∣∣∣∣
= –A1

[
(λ + µ42)(λ + µV )A2 – βNµ42T0

41A2

]
+ (λ – A3)

[
(λ – A4)(λ + µ42)

(λ + µV ) + β2V0T0
41Nµ42 – Nβµ42T0

41(λ – A4)
]

= λ4 + A5λ
3 + A6λ

2 + A7λ + A8.

Where

A1 =
α1α2T0

41Λ

(a1T0
41 + a2T0

2 )2
+ k1T0

41, A2 =
α1α2T0

2Λ

(α1T0
41 + α2T0

2 )2
+ k2T0

2 , A5 = µV + µ42 – A3 – A4,

A3 =
α1α2T0

41Λ

(α1T0
41 + α2T0

2 )2
– µ2 – k2T0

41, A4 =
α1α2T0

2Λ

(α1T0
41 + α2T0

2 )2
– µ41 – βV – k1T0

2 ,

A6 = µVµ42 – µVA4 – A4µ42 – Nβµ42T0
41 – A3µV – A3µ42 + A3A4 – A1A2,

A7 = –(A3 + A4)µ42µV + β2Nµ42V0T0
41 + (A3 + A4)Nβµ42T0

41 + (µ42 + µV )(A3A4 – A1A2),

A8 = (A1A2 – A3A4)Nβµ42T0
41 – A3Nβ2µ42V0T0

41 + (A3A4 – A1A2)µ42µV .

In order to establish the stability at the equilibrium E0 of model (4), the following conditions should be satisfied

A5 > 0, A6 > 0, A7 > 0, A8 > 0, (A5A6 – A7)A7 > (A5)2A8.

Therefore, by Routh-Hurwitz criterion34, we can see that if (H5) – (H8) hold, the E0 of model (4) is locally asymptotically
stable. This completes the proof.

4 BIFURCATION ANALYSIS

In this section we analyse the local bifurcation of model (4) with some specical parameters.

4.1 Forward bifurcation

We see that when R = 1, the characteristic equation of model (4) at E1 has zero eigenvalue. So when R = 1, the model (4) may
undergo a transcritical bifurcation at the transplantation failure infection-free equilibrium E1. In this subsection, we use the
bifurcation theorem of Castillo-Chavez and Song36 to study the forward bifurcation of the model (4) at E1.

Theorem 11. If α2µ41
α1

– µ2 + k2Λ
µ41

< 0, R = 1, the model (4) undergoes a forward bifurcation near the equilibrium E1.

Proof. To simplify the notation, we take x1 = T41, x2 = T42, x3 = V , x4 = T2, x = (x1, x2, x3, x4)T . The model (4) can be rewritten
by dx

dt = f (x) as follows, where f (x) = (f1, f2, f3, f4)T .

ẋ1 = f1(x) = α1x1
α1x1+α2x4

Λ – µ41x1 – βx3x1 – k1x1x4,

ẋ2 = f2(x) = βx3x1 – µ42x2,

ẋ3 = f3(x) = Nµ42x2 – µVx3,

ẋ4 = f4 (x) = α2x4
α1x1+α2x4

Λ – µ2x4 – k2x1x4.
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Take R = 1, choose β as a bifurcation parameter. Then β∗ = µVµ41
ΛN . The Jacobi matrix at E1 of model (4) is

A =


–µ41 0 –β∗Λ

µ41

–α2µ41
α1

0 –µ42
β∗Λ
µ41

0

0 Nµ42 –µV 0

0 0 0 α2µ41
α1

– µ2 – k2Λ
µ41

 .

The characteristic equation at the equilibrium E1 is as follows

∣∣λE – A
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

λ + µ41 0 β∗Λ
µ41

α2µ41
α1

0 λ + µ42
–β∗Λ
µ41

0

0 –Nµ42 λ + µV 0

0 0 0 λ – α2µ41
α1

+ µ2 + k2Λ
µ41

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ + µ41)

(
λ –

α2µ41

α1
+ µ2 +

k2Λ

µ41

)
λ(λ + µV + µ42).

When
α2µ41

α1
– µ2 +

k2Λ

µ41
< 0,

then
λ1 = –µ41 < 0,λ2 =

α2µ41

α1
– µ2 +

k2Λ

µ41
< 0,λ3 = 0,λ4 = –µV – µ42 < 0.

Therefore, only λ3 is zero eigenvalue, and the rest all have negative real parts.
Let the right eigenvector of A be W = (w1, w2, w3, w4)T , the left eigenvector be U = (u1, u2, u3, u4), we have W =

(– 1
µ41N , 1

Nµ42
, 1
µV

, 0)T , U = (0, 1, 1
N , 0).

By calculation, we have

a =
4∑

k=1

4∑
i=1

4∑
j=1

ukwiwj
∂2fk
∂xi∂xj

(E0,β∗)

= u2w1w3
∂2f2

∂x1∂x3
(E0,β∗) + u2w3w1

∂2f2
∂x3∂x1

(E0,β∗)

= u2w1w3β
∗ + u2w1w3β

∗ = –
2

ΛN2 < 0,

b =
4∑

k=1

4∑
i=1

ukwi
∂2fk

∂xi∂β∗ (E0,β∗) = u2w3
∂2f2

∂x3∂β∗ =
Λ

µVµ41
> 0.

According to the literature36, the direction of the bifurcation of model (4) at β = β∗ is forward. This completes the proof.

4.2 Hopf bifurcation

This section focuses on the existence of Hopf bifurcation at the mixed chimerism infections equilibrium E0 of model (4) by
choosing α2 as the bifurcation parameter, which reflects the replacement rate of two types of CD4+T cells after HSCT. We
denote the threshold value of Hopf bifurcation point as α2 = α∗

2 .

Lemma 2 (Liu et al.37). If the following assumptions hold, there will exist a Hopf bifurcation for model (4).
(i)B8(α∗

2 ) > 0, Q1(α∗
2 ) > 0, Q2(α∗

2 ) > 0, Q3(α∗
2 ) = 0,

(ii)
d

dα2
(Q3(α∗

2 )) ̸= 0,

where Q1(α∗
2 ) > 0, Q2(α∗

2 ) > 0, Q3(α∗
2 ) > 0 are the Hurwitz determinants at the bifurcation parameter α∗

2 .
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We assume that there is a smooth curve of equilibrium (E(α2),α∗
2 ) for the model (4), satisfying E(α2) = α∗

2 and (E0,α∗
2 ) being

the positive equilibrium. C(λ,α∗
2 ) = λ4 + A5(α∗

2 )λ3 + A6(α∗
2 )λ2 + A7(α∗

2 ) + A8(α∗
2 ) is the characteristic equation at (E0,α∗

2 )
By the proof of Theorem 10, (i) clearly holds, then the characteristic polynomial must have a pair of purely imaginary roots.

In the following, to prove the existence of Hopf bifurcation, we derive the transversality condition (ii). We assume that ±iw is a
pair of purely imaginary eigenvalues, the derivative of the characteristic equation C(λ,α∗

2 ) with respect to α2 yields

(4λ3 + 3A5λ
2 + 2A6λ + A7)

dλ
dα2

+ λ3 dA5

dα2
+ λ2 dA6

dα2
+ λ

dA7

dα2
+

dA8

dα2
= 0.

So (
dλ
dα2

)–1

= –
4λ3 + 3A5λ

2 + 2A6λ + A7

λ3 dA5

dα2
+ λ2 dA6

dα2
+ λ

dA7

dα2
+

dA8

dα2

.

sign
[

d(Re(λ))
dα2

]
λ=iw,Q3=0

= sign

[
Re
(

dλ
dα2

)–1
]
λ=iw,Q3=0

= sign
[
γ
]
.

γ = Re

–
–4w3i – 3A5w2 + 2A6wi + A7

–w3i
dA5

dα2
–

dA6

dα2
w2 +

dA7

dα2
iw +

dA8

dα2



= Re

 (3A5w2 – A7) + i(4w3 – 2A6w)(
–

dA6

dα2
w2 +

dA8

dα2

)
+ i
(

dA7

dα2
w –

dA5

dα2
w3
)


=
M1M3 + M2M4

M2
3 + M2

4
.

Where
M1 = 3A5w2 – A7, M2 = 4w3 – 2A6w, M3 = –

dA6

dα2
w2 +

dA8

dα2
, M4 = –

dA7

dα2
w –

dA5

dα2
w3.

Ai(i = 5, . . . , 8) is defined in Theorem 10.
If M1M3 + M2M4 > 0, then sign[ d(Re(λ))

dα2
]α2=α∗

2
> 0, and the transversality condition (ii) holds. We have the following result.

Theorem 12. If M1M3 + M2M4 > 0, model (4) exists a Hopf bifurcation near E0 when α2 crosses α∗
2 .

5 NUMERICAL SIMULATION

In this section, we first perform numerical simulation to demonstrate the stability of model (4) at equilibria E0, E2, E4. Then we
illustrate the complex dynamics of model (4) at the mixed chimerism infection equilibrium E0 with the change of α1,α2.

5.1 Numerical simulation of stability

We numerically simulate the stability of equilibria E0, E2, E4 of model (4). Fig. 1, 2, 3 show the simulation result at the equilibria
E0, E2, E4, respectively.

The values of parameters in Fig. 1 are taken as Λ = 30,α1 = 0.86,α2 = 0.14,β = 0.03, N = 0.76,µ41 = 0.7,µ42 = 0.65,µV =
0.2,µ2 = 0.3, k1 = 0.0002, k2 = 0.0003. By calculations, we have R = 4.89. It is verified that assumptions (H5) – (H8) hold,
which means that E0 = (9, 16, 38, 45) is locally asymptotically stable, therefore, the Theorem 10 is ture.

The values of parameters in Fig. 2, 3 are taken as Λ = 20,α1 = 0.2,α2 = 0.8,β = 0.01, N = 0.36,µ41 = 0.2,µ42 = 0.24,µV =
0.22,µ2 = 0.28, k1 = 0.0002, k2 = 0.002. By calculation, we have R = 1.64. It is verified that assumption (H1) holds. According
to Fig. 2, we find that the disease in model (4) is persistent. But from Fig. 3, even if the basic reproduction number R ≥ 1, the
viruses would be extinct. The equilibrium E2 = (0, 0, 0, 70) is globally asymptotically stable, which means that the Theorem 4 is
true.



14 TAYLOR ET AL.

The values of parameters in Fig. 4 are taken as Λ = 10,α1 = 0.65,α2 = 0.35,β = 0.03, N = 0.3,µ41 = 0.2,µ42 = 0.21,µV =
0.22,µ2 = 0.6, k1 = 0.02, k2 = 0.03. By calculation, we have R = 2.05. It is verified that all the assumptions of Theorem 8 hold.
The equilibrium E4 = (24, 24, 7, 0) is locally asymptotically stable, which means the Theorem 8 is true.

According to Remark 6, the model (4) may have more than one stable equilibrium, and we choose a set of parameters to
validate it by numerical simulation.

The values of parameters in Fig. 5, Fig. 6(a) are taken as Λ = 30,α1 = 0.635,α2 = 0.365,β = 0.03, N = 0.3,µ41 = 0.205,µ42 =
0.21,µV = 0.22,µ2 = 0.23, k1 = 0.02, k2 = 0.03. By calculation, we have R = 5.99. It is verified that the equilibria E2, E4 are
both locally asymptotically stable.

From Fig. 5(a), we can find that there is a bi-stability phenomenon in model (4), according to Fig. 5(b), 6(a) we can find that
the two equilibria of model (4) are E21 = (0, 0, 0, 130), E41 = (24, 119, 34, 0). This means that two types of equilibria could stably
coexist under certain conditions after HSCT.

5.2 Numerical simulation of bifurcation

Chimerism is an important threshold that could affect the dynamics of stability of equilibrium, in this subsection we focus on
model (4) with the change of α2. First we give the values and sources of the parameters.

T A B L E 2 Parameter values and sources.

Variables/parameters value Source Variables/parameters value Source

Λ 30 36 α1(α2) varied -
µ41 0.1 25 µ42 0.5 25

µV 0.5 25 µ2 0.6 Assumed
β 0.03 Assumed k1 0.00002 38

k2 0.003 Assumed N 0.36 Assumed

We fix the initial values (T41, T42, V , T2) = (60, 20, 40, 10). First, we analyse the effect of value change with α1,α2 on the
dynamical of model (4). From Fig. 6(b) it is clear that with α2 = 0.8, the number of infected cells eventually tends to a positive
equilibrium. When α2 increases to 0.817, there is a periodic solution of infected cells. When α2 increases further, the number
of infected cells tends to 0. According to Fig. 7(a), it can be seen that the value of α2 has a great influence on the number of
infected cells.

As shown in Fig. 7(b), we obtain the forward branching graph at E1 with β as the branching parameter.
As shown in Fig. 8, we choose α2 as the bifurcation parameter, which is verified that all the assumptions of Theorem 12 are

satisfied. According to Fig. 8(a) and 8(b), we can see that the Hopf bifurcation occurs at the equilibrium E0. From Fig. 8, we can
see that the stability of the equilibrium changes around α2 = 0.813. Then we take α1 = 0.187,α2 = 0.813, and then a limit loop
would appear as shown in Fig. 9.

As known in Fig. 9, we find that when the degree of chimerism reaches about 81.3%, there would be a Hopf bifurcation. It is
easy to see that when the degree of chimerism exceeds 81.3%, the HIV can be well controlled even to disappear, which is much
consistent to the results in the literature28.

As shown in Fig. 10, we change the values of Λ, µ42 to 20, 0.8, respectively, then we find that bifurcation diagrams display
the phenomenon of endemic bubble.

6 CONCLUSION

Involving the degree of chimerism with the donor CD4+T cells in body, we propose a class of HSCT model with HIV virus-to-cell
infection, with saturation recruitment rates functions of donor and host CD4+T cells and immune exclusion.

Considering the real background of HIV infection, we assume that the basic reproduction number R ≥ 1 in model (4). We
find that there are five types of equilibrium in model (4). The existence and stability of all kinds of feasible equilibria are much
associated with the values of α1,α2, which is much consistent with the fact that chimerism is an important threshold value to
determine the success rate of transplantation of HSCT.
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For the mixed chimerism infection equilibrium E0, we find that there would be more assumptions for the existence and
stability. According to Theorem 12, model (4) has Hopf bifurcation at E0, which is confirmed by numerical simulation as well.
The presence of Hopf bifurcation implies that there would exist some complex dynamical behaviour of model (4). When the
value of α2 changes and crosses a certain critical value, the stability of the system suddenly changes. We find that model (4) also
has two bi-stable equilibria under some certain conditions.

Currently, there is no complete cure for HIV infection with various treatment methods except few of AIDS patients with
HSCT. We find that in model (4) with HSCT, the HIV would tend to extinction under the same set of parameters even R > 1.
Therefore, HSCT is an essentially method for curing AIDS. In addition, the most important factor that could greatly affect the
stability of model (4) is the degree of chimerism rate α2 of donor CD4+T cells. When α2 changes, the stability of equilibria of
model (4) changes as well. When the chimerism is not low enough to reach the stable condition of the complete donor chimerism
infection-free equilibrium, timely re-infusion of hematopoietic stem cells should be carried out to ensure the effectiveness of
transplantation. Our results also provide a theoretical guideline for the size of chimerism, which would be a core issue in curing
AIDS by HSCT in the future.

(a) (b)
F I G U R E 1 Locally asymptotical stability of mixed chimerism infection equilibrium E0 of model (4).

(a) (b)
F I G U R E 2 Globally asymptotical stability of endemic equilibrium E∗ of models (1).
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(a) (b)
F I G U R E 3 Globally asymptotical stability of complete donor chimerism infection-free equilibrium E2 of model (4).

(a) (b)

F I G U R E 4 Locally asymptotical stability of transplantation failure infection equilibrium E4 of model (4).

(a) (b)

F I G U R E 5 (c) Time series diagram of the solution of model (4). (d) The 3D phase of bi-stability behavior of T41, T42, V of model (4).
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(b)

F I G U R E 6 (a) The 3D phase of bi-stability behavior of T2, T42, T41 of model (4). (b) Time series diagram of infected cells
at different value of α1,α2 of model (4).
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(b)
F I G U R E 7 (a) Three-dimensional phase diagram of the number of infected cells over time with α2 change of model (4). (b)
Forward bifurcation of model (4) with respect to R.
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(b)
F I G U R E 8 (a) Hopf bifurcation of T2 with α2 at E0 of model (4). (b) Hopf bifurcation of T42 with α2 at E0 of model (4).
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(b)
F I G U R E 9 (a) The equilibrium E0 of model (4) is unstable. (b) Three-dimensional phase diagrams of periodic solution of model (4).

(a) (b)
F I G U R E 10 Bifurcation diagrams of model (4) at E1 with α2.
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