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Abstract

This study introduces a compact, autonomous mobile weed management robot designed to promote sustainable agricultural

practices and enhance crop protection through effective early-stage weed management. Equipped with a laser-based system,

the robot enables precise weed removal tailored to specific agricultural contexts. It employs an AI-driven image classification

approach for weed detection, achieving a mean average precision (mAP) of 0.32 and a detection rate of 118 ms on a Raspberry Pi

5 platform. The robot features a two-degree-of-freedom arm for accurate laser positioning, with exposure duration dynamically

adjusted based on identified weed species to minimize energy consumption and protect neighboring crops and soil. Field trials

in Vancouver, Canada, and Arusha, Tanzania, demonstrated the robot’s effectiveness, achieving weed removal success rates

of 97% and 96%, respectively, in a maximum of 60 seconds targeting pigweed, purslane, and nutsedge. Designed to be cost-

efficient and scalable, this innovative system offers an environmentally sustainable solution for effective weed management,

significantly reducing herbicide use and enhancing weed targeting precision. This research underscores the dual benefits of

integrating autonomous technology into agriculture, improving productivity and sustainability while protecting crop health and

ecosystems.
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Abstracts

This study introduces a compact, autonomous mobile weed management robot designed to
promote sustainable agricultural practices and enhance crop protection through effective early-
stage weed management. Equipped with a laser-based system, the robot enables precise weed
removal tailored to specific agricultural contexts. It employs an AI-driven image classification
approach for weed detection, achieving a mean average precision (mAP) of 0.32 and a detection
rate of 118 ms on a Raspberry Pi 5 platform. The robot features a two-degree-of-freedom
arm for accurate laser positioning, with exposure duration dynamically adjusted based on
identified weed species to minimize energy consumption and protect neighboring crops and
soil. Field trials in Vancouver, Canada, and Arusha, Tanzania, demonstrated the robot’s
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effectiveness, achieving weed removal success rates of 97% and 96%, respectively, in a maximum
of 60 seconds targeting pigweed, purslane, and nutsedge. Designed to be cost-efficient and
scalable, this innovative system offers an environmentally sustainable solution for effective weed
management, significantly reducing herbicide use and enhancing weed targeting precision. This
research underscores the dual benefits of integrating autonomous technology into agriculture,
improving productivity and sustainability while protecting crop health and ecosystems.Bottom
of Form

1. Introduction

1.1. Recent Strategies for Weed Control

The global demand for organic food production is rising rapidly, placing pressure on agri-
cultural systems to increase yields sustainably. Weed control remains a critical aspect of
achieving this goal, as weeds compete with crops for essential resources like water, nutrients,
and sunlight [1]. Traditional methods, such as manual weeding and herbicide application, are
often labor-intensive, environmentally damaging, and contribute to the growing problem of
herbicide resistance [2, 5]. Modern techniques enhance traditional weed management by using
cover crops to suppress weeds through resource competition [6] and applying integrated weed
management (IWM) for long-term control [7]. Strategies for managing herbicide resistance
aim to curb the development of resistant weeds [8], while seed destructors, remote sensing,
bioherbicides, and drones improve efficiency and sustainability in current practices [9-12].

1.2. Smart Agriculture Opportunities

Recent studies have driven the development of innovative technologies, including smart agricul-
ture and robotics, to optimize weed management practices. Precision agriculture, for example,
leverages GPS technology and data analytics to target weed infestations with high accuracy,
reducing chemical usage and mitigating harm to non-target plants [13]. Additionally, robotic
weeders equipped with cameras and AI algorithms can autonomously identify and remove
weeds, decreasing the need for manual labor and herbicides [14]. Smart laser weed control
uses laser beams to selectively destroy weeds by heating their tissues, offering a chemical-free
and highly precise alternative [15]. Recent advancements in autonomous weeding technolo-
gies have shown significant potential for enhancing agricultural efficiency. McCool et al. [16]
introduced AgBot II, a system that integrates a camera and lighting module to differentiate
between crops and weeds, using either a tine or an arrow hoe for precise, low-impact mechan-
ical weeding. Building on this, Quan et al. [17] developed an intra-row mechanical system
with a rotating disk knife, driven by a convolutional neural network (CNN) for accurate weed
detection in maize crops. Additionally, Francesco et al. [18] advanced the field by proposing a
two-camera system mounted on a four-wheel gantry robot, which refines plant detection and
classification. Collectively, these innovations underscore the considerable progress and po-
tential of autonomous systems in agricultural applications. Nonetheless, selectively removing
early-stage weeds with laser in small farm fields remains challenging. Additionally, real-time
weed detection and species classification using limited computational resources pose further
barriers.

This study presents the development of a cost-efficient autonomous robot specifically designed
for laser weed control. This robot integrates a low-power laser system with a computer vi-
sion platform for real-time weed detection and a two-degree-of-freedom (DoF) robotic arm for
precise laser targeting. This approach addresses key challenges in autonomous laser weeding,
including accurate weed detection [19], real-time targeting [20], and minimizing energy con-
sumption while ensuring safety [21, 23]. By optimizing laser exposure duration based on weed
species and size, we aim to prevent overburn and address potential environmental concerns
associated with conventional laser weed control techniques [21].

2
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The operational workflow of the developed compact autonomous weed removal robot is illus-
trated in Figure 1. To evaluate its effectiveness across diverse invasive species environments,
experiments were conducted in both Vancouver, Canada, and Arusha, Tanzania. These loca-
tions represent distinct agricultural settings, allowing to assess the robot’s adaptability and
performance under varying conditions.

Figure 1. Operational workflow of the compact autonomous weed removal robot. (a) Autonomous navigation
and image acquisition along farm pathways. (b) Weed detection and robotic arm repositioning for laser
targeting. (c) Precision alignment of the laser through angular mount adjustment. (d) AI-determined laser
exposure duration for optimal weed removal.

Materials and methods

2.1. Autonomous mobile robot platform

The weed laser system was integrated onto a goBilda Recon mobile robot chassis, providing
a robust foundation for autonomous operation. A custom-designed, 3D-printed PLA frame
was fabricated to ensure structural integrity and stability during operation. An adjustable
two-degree-of-freedom (DoF) robotic arm, responsible for manipulating the laser, was incor-
porated into the chassis assembly (Figure 2a, b). The laser and camera were co-mounted
on a shared bracket, maintaining a fixed relative position and orientation to facilitate precise
synchronization during weed detection and removal processes (Figure 2c).

The mobile robot platform is driven by four brushed DC motors (312 RPM) with 537.7 PPR
encoder resolution, enabling accurate locomotion control. Two stepper motors (12V, 0.33A,
0.23Nm, NEMA17 standard) were employed for actuating the weed removal robotic arm. The
STM32F439 Nucleo-144 board, featuring an STM32F4 ARM® Cortex®-M4 32-bit MCU,
served as the microcontroller, handling the locomotion control of the mobile robot. Adafruit
4007 ultrasonic sensors were positioned on the sides of the robot for collision avoidance. Ad-
ditionally, an ICM-20948 9DOF IMU Breakout Board was used to measure the speed, accele-
ration, and orientation of the mobile platform (Figure S1).

A 12V 30Ah Lithium Iron Phosphate (LiFePO4) battery with a 30A Battery Management
System (BMS) powers the robot, providing an operational duration exceeding three hours.
To maintain the battery temperature within its optimal operating range, two 80mm x 80mm

3
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12VDC fans were installed at the front and rear of the chassis to facilitate airflow within the
battery compartment. A 12V blue diode laser engraver with a wavelength of 450 nm and a 4
Watt optical laser output was utilized for weed removal, chosen for its compact, portable design
and its capability to deliver precise thermal energy to targeted weeds. The distance between
the laser lens and the target was maintained at 5-10 cm to ensure optimal optical performance.
The duration of laser exposure is modulated based on the identified weed species and its size,
using empirical data from preliminary trials on the time required to induce complete necrosis.

The autonomous robot initiates its operation by traversing the field at a controlled speed of 5
cm/s along a straight path. This designated speed facilitates comprehensive terrain scanning
and allows sufficient time for real-time weed detection. To optimize computational resources,
the robotic arm is activated for precise weed targeting and removal only after a weed is
detected. Upon positive identification of a weed within the camera’s field of view, the robot
attempts to realign itself by referencing the history of wheel encoder values before pausing
its locomotion. This ensures that the robot moves back to the encoder value recorded at the
time the image was captured before stopping. The integrated linear actuator then positions
the laser arm, aligning it with the centroid of the detected weed’s bounding box (Figure 3b).

Figure 2. Autonomous weed removal robot platform. (a) Assembled robot with labeled components.
(b) Illustration of the robot operating in a farm field environment. (c) Close-up view of the adjustable
robotic arm used for weed detection and laser targeting.

2.2. Real-time weed detection and removal

Real-time video recording was achieved using a Sony IMX708 camera, configured with a
resolution of 11.9 megapixels, a 102-degree horizontal field of view, and a 67-degree vertical
field of view. Video processing was subsequently performed on a Raspberry Pi 5, equipped with
a 2.4 GHz quad-core 64-bit Arm Cortex-A76 CPU, 512 KB per-core L2 cache, a 2 MB shared
L3 cache, and 8 GB of memory. This configuration provided a cost-effective computational
solution for real-time weed detection. To reduce processing time, a preprocessing stage was
implemented to filter video frames based on green pixel density. This approach prioritized
frames likely containing vegetation (i.e., those with more than 50% green pixels), thus focusing
computational resources on potential weed regions and reducing unnecessary processing of

4
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bare ground areas (Figure 3a). For weed detection and classification, the You Only Look
Once X (YOLOX) architecture was used. This anchor-free architecture employs a backbone,
neck, and head structure to perform feature extraction, feature aggregation, and bounding
box prediction, respectively [25]. The YOLOX architecture was chosen over YOLO models
for improved speed and accuracy. Two versions of the YOLOX object detection architecture,
YOLOX-s and YOLOX-nano were used for training and comparison.

A dataset of approximately 10,000 weed images was created for training by augmenting 541
raw images of three weed types—pigweed, purslane, and nutsedge—using the OpenCV library
(Figure S3a). Roboflow software was used for image annotation and data preparation (Figure
S3b). The dataset was split into 70% training, 20% validation, and 10% test data in VOC
Pascal format prior to training. The image input size was set to 640 x 640 for YOLOX-s and
416 x 416 for YOLOX-nano.

The training process was performed on a computer with a 13th Gen Intel Core i9-13900k
3.00 GHz processor, augmented by an NVIDIA GeForce RTX 3080 and 128 GB RAM, taking
approximately two days to complete. The trained YOLOX model detects, classifies, and creates
a bounding box around the detected weed. The center of the predicted bounding box is then
calculated for precise positioning and targeting by the robot’s laser arm (Figure 3b).

Figure 3. Weed detection and laser targeting. (a) Flowchart of the algorithm for weed detection and
automated laser targeting. (b) Visualization of the weed detection and laser targeting process. The YOLOX
model generates a bounding box around the identified weed, and the laser is automatically directed to the
center of this box.

Results and discussion

Thermal laser performance on weed removal

Field trials were conducted to evaluate the efficacy of the laser weed removal system. Three
distinct size groups of Nutsedge and Pigweed, and two size groups of Purslane—common weed
species in the Arusha and Vancouver areas—were included in the trials (Table 1).

Table 1: Weed Species and Size Classifications

Weed Type Group Size dimensions (cm x cm) Group Size dimensions (cm x cm) Group Size dimensions (cm x cm)

Pigweed Small 1.5 x 1.5 Medium 3 x 3 Large 4.5 x 4.5

5
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Weed Type Group Size dimensions (cm x cm) Group Size dimensions (cm x cm) Group Size dimensions (cm x cm)

Nutsedge Small 1.5 x 1.5 Medium 3 x 3 Large 4.5 x 4.5
Purslane Small 1.5 x 1.5 Medium 3 x 3 N/A N/A

The laser weed removal process involves two distinct stages:

Smoking: Visible emission of smoke from the targeted plant tissue, indicating the initial effects
of laser energy.

Perishing: Complete death of the weed, signifying successful removal.

Successful weed removal was defined as the weed exhibiting both stages—smoking and
perishing—within a 60-second timeframe. This temporal constraint enhances the speed, safety,
and energy efficiency of the autonomous weed removal robot. The laser exposure duration
required for effective weed removal was found to depend on both the weed species and its size.
To determine optimal exposure times, field experiments were conducted in Arusha, Tanzania,
and Vancouver, Canada, during sunny summer conditions, as both locations have comparable
average relative humidity levels (approximately 70%).

The resulting data, detailing the time to smoking and time to perishing for various weed
species and size groups, are presented in Figure 4. A one-way analysis of variance (ANOVA)
was performed to examine the influence of weed species on these observed durations. The
ANOVA results revealed significant differences (p < 0.05) in smoking and perishing times with
respect to weed species, except for the smoking time of large-sized Nutsedge and Pigweed (p =
0.40). As expected, larger weeds required longer exposure times to achieve both smoking and
perishing. The average perishing time remained under 30 seconds in all experiments, except
for large Pigweeds, which had an average perishing time of 44.5 seconds. These findings
underscore the system’s robustness to environmental variations and its effectiveness across a
diverse range of weed species, supporting the strategy of tuning laser exposure times based
on weed species and size (Figure S2).

Figure 4. Laser exposure duration required for weed removal. (a) Time required to initiate smoking
in three weed species across different size classes. (b) Time required to achieve complete perishing in three
weed species across different size classes.

Object detection and classification

To optimize the balance between real-time performance and detection precision, the open-
sourced AI machine learning tool, YOLOXs: YOLOX-s and YOLOX-nano, were trained and

6
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evaluated. The Intersection over Union (IoU) and confidence threshold parameters were tuned
within a range of 0.4 to 0.7 to maximize the mean average precision (mAP) of the YOLOX
models (see Figure S4).

The performance of the YOLOX models was evaluated in two scenarios: object detection
and classification. Confusion matrices for weed detection using YOLOX-nano and YOLOX-
s are shown in Figures 5a and 5d, respectively. A comparison of weed true labels against
None-predicted labels highlights the enhanced capability of the YOLOX-s model in detecting
weeds that YOLOX-nano fails to detect. Furthermore, YOLOX-s achieved 13% and 16%
higher accuracy in correctly detecting Nutsedge and Pigweed, respectively, albeit with a 7%
reduction in accuracy for Purslane detection. Both models demonstrated high accuracy in
classifying weed species, with YOLOX-nano showing a slight advantage over YOLOX-s in
classifying Purslane (Figures 5b and 5e).

YOLOX model weights were saved every 10 epochs during training to enable resumption in
case of interruptions. The convergence of total training loss for each model, shown in Figures
5c and 5f, indicates that YOLOX-nano and YOLOX-s reach loss values of 1 and 2.5 after
50,000 and 28,000 training iterations, respectively (Figures 5 c and f). The sudden increase in
total loss observed in the YOLOX-s training process at step 15,000 (Figure 5f) resulted from
resuming training with saved weights after an interruption.

Figure 5: Performance Evaluation of YOLOX Models. (a) Confusion matrix for object detection using
YOLOX-nano (b) Confusion matrix for classification using YOLOX-nano (c) Total training loss for YOLOX-
nano (d) Confusion matrix for object detection using YOLOX-s (e) Confusion matrix for classification using
YOLOX-s (f) Total training loss for YOLOX-s (g) Comparative analysis of YOLOX-s and YOLOX-nano
performance in weed detection and classification.

Conclusion

The integration of an AI-driven weed management robot presents a compelling solution for sustainable
agriculture, particularly in early-stage weed removal and crop protection. By employing a low-power thermal

7



P
os

te
d

on
30

N
ov

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
73

29
72

11
.1

19
59

19
3/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

laser system, this innovative robot can effectively target and eliminate major weeds such as nutsedge, pigweed,
and purslane, which significantly contribute to crop yield losses. Field trials in diverse environments like
Vancouver, Canada, and Arusha, Tanzania, have showcased the robot’s remarkable effectiveness, achieving
weed removal success rates of 97% and 96%, respectively. This high level of efficiency not only underscores
the robot’s capability to adapt to various agronomic conditions but also highlights its potential for reducing
reliance on chemical herbicides, thereby promoting a more sustainable farming approach.

The implementation of a preprocessing step that filters video frames based on green pixel density is critical
for enhancing computational efficiency. By concentrating processing power on areas with a higher likelihood
of weed presence, the system can operate more swiftly and focus on significant tasks, minimizing resource
use and processing time. For the task of weed detection and classification, two advanced AI algorithms
were evaluated. One algorithm demonstrated higher accuracy in identifying weeds, while the other offered
superior real-time performance, making it more suitable for integration into the robot’s operational algorithm.
This strategic choice ensured an effective balance between detection accuracy and processing speed, which
is crucial for timely weed intervention in dynamic field conditions. YOLOX-s provided a higher mean
Average Precision (mAP) of 0.44, indicating its accuracy in identifying weeds. However, the selection
of YOLOX-nano for integration into the robot’s operational algorithm was strategic; its superior real-time
performance—achieving a processing time of just 118.02 ms on the Raspberry Pi 5 platform—ensures that the
robot can respond promptly in dynamic field conditions. This speed is crucial for timely weed intervention,
which can significantly influence the overall success of crop management efforts. Thus, the deployment of
this AI-driven weed management robot is not only a step towards enhanced weed control but also supports
sustainable agricultural practices. By minimizing the need for chemical applications and leveraging advanced
detection and response technologies, farmers can achieve effective weed management while enhancing the
health of ecosystems and promoting biodiversity. Thermal lasers we used here can effectively manage pests
and weeds, but they may also harm food crops and soil by causing crop damage, altering the soil microbiome,
and affecting nutrient availability. To mitigate these risks, careful calibration of laser intensity is essential.
Engaging agricultural experts and future investigations ensure the safe and sustainable use of thermal lasers
in agriculture.

Table 2: Comparison between the performance of YOLOX-s and YOLOX-nano models on
Raspberry pi

Model Mean Average Precision (mAP) Speed (ms) Model size (MB)

YOLOX-nano 0.32 118.02 3.62
YOLOX-s 0.44 1540.08 35.75
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