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Abstract

Globally, the increasing frequency of heatwaves and droughts are impacting tropical forests, which are vital
for maintaining biodiversity, carbon sequestration and climate regulation. But vulnerability to warming
may vary between and within species due to phenotypic divergence. Leaf functional trait variation is known
to affect leaf operating temperatures – a phenomenon termed ‘limited homeothermy’ when it helps avoid
lethal temperatures in warmer conditions. Yet, evidence of this purported thermoregulatory ability and the
relative roles of acclimation or adaptation remain limited.

Here we measured photosynthetic heat tolerance and leaf thermal traits of three, co-occurring tropical
rainforest trees across a wide thermal gradient in the Australian Wet Tropics. We used observed leaf traits
to predict leaf-to-air temperature differences ([?]Ttrait) and combined this with genotypic and environmental
data from field collections and glasshouse experiments to assess evidence for intraspecific adaptive selection
across the landscape.

Intraspecific trait variation led to enhanced leaf cooling (lower or more negative [?]Ttrait) and partial mainte-
nance of modelled thermal safety margins in warmer sites for Darlingia darlingiana and Elaeocarpus grandis,
but not Cardwellia sublimis. Genomic signals of selection were detected in all three species, with adaptive
genomic variation associated with climate for D. darlingiana and E. grandis, but edaphic factors for C. sub-
limis. Additionally, E. grandis seedlings from different provenances grown under contrasting temperature
and humidity regimes showed clines in [?]Ttrait variation related to mean annual temperature of origin but
not treatment environment, despite individual traits acclimating to treatments.

Our work implicates local adaptation to climate as a driver of intraspecific variation in leaf thermoregulatory
traits, supporting limited homeothermy in these key tropical rainforest tree species. Our results highlight how
leaf energy balance modelling can be combined with ecological genomics to better understand the strategies
plants use to cope with rising temperatures.

Introduction

Global warming is rapidly increasing temperatures, raising concerns about the ability of species to persist
(IPCC, 2022). Tropical forest trees, vital for maintaining biodiversity, carbon sequestration and water
cycling (Mitchard, 2018), may be particularly vulnerable due to their evolution under relatively stable
thermal environments (Trew & Maclean, 2021). However, populations from across climate gradients in the
landscape may be found to respond differently to environmental change due to plasticity or local adaptation
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(Barton et al., 2020; Halbritter et al., 2018; Leites & Garzón, 2023; Matesanz & Ramirez-Valiente, 2019;
Muehleisen et al., 2020). While local adaptation can enhance fitness under stable conditions, it may inhibit
future persistence if climate change creates a mismatch between the historic conditions a population is
adapted to and the new environment (Jordan et al., 2024). Therefore, understanding how tropical trees have
adapted to temperature is crucial for evaluating their resilience to global warming and informing effective
management strategies.

Plants have evolved various mechanisms to cope with heat stress and maintain physiological function, such as
altering leaf-level biochemistry to increase their photosynthetic heat tolerance (Geange et al., 2021; Middleby,
Cheesman, & Cernusak, 2024). Such adjustments help prevent leaf senescence and maintain carbon uptake
during heatwaves (Drake et al., 2018). However, recent studies indicate that this may be insufficient to
preserve thermal safety margins in warmer environments (Kullberg et al., 2023; Perez & Feeley, 2020). As
such, species or populations near their thermal limits, such as those found in lowland tropical forests, may
be particularly vulnerable to even small temperature increases in the coming decades (Araujo et al., 2021;
Doughty et al., 2023; Pau et al., 2018).

Plants can also cope with thermal stress by avoiding high temperatures through morphological and phy-
siological trait variations that influence leaf energy balance (Michaletz et al., 2015). Traits like leaf width,
absorptance, leaf angle, and stomatal conductance interact with the canopy microclimate to influence the
fluxes of sensible and latent heat and the interception of radiation (Campbell & Norman, 1998; Jones, 2013).
This leads to significant differences between leaf and air temperatures ([?]T = Tleaf-Tair), with variations
+-20degC observed due to differences in water use (Fauset et al., 2018), leaf morphology (Leigh et al.,
2017), and canopy architecture (Leuzinger & Korner, 2007; Woods et al., 2018). Given the importance of
maintaining Tleaf within safe operating limits, it is hypothesised that traits influencing [?]T may undergo
selection for enhanced leaf cooling in warmer environments (Mahan & Upchurch, 1988; Michaletz et al.,
2015). While such thermoregulation has been noted across different ecosystems (Guo et al., 2023; Kitudom
et al., 2022), studies within species are limited (Kullberg et al., 2023), and few have explored the relative
roles of phenotypic plasticity and ecotypic variation (Middleby, Cheesman, Hopkinson, et al., 2024).

Across species distributions, temperature often varies with other environmental factors such as precipitation,
humidity, and soil nutrients, which can impact trait trade-offs (Rolhauser et al., 2021) and [?]T. For instance,
a common garden trial comparing Tleaf in upland and lowland provenances of tropical rainforest species
showed varying provenance effects on Tleaf (Middleby, Cheesman, Hopkinson, et al., 2024). This variation
might result from competing pressures such as vapour pressure deficit (VPD) and temperature on stomatal
conductance (Middleby, Cheesman, & Cernusak, 2024). While plant gas exchange must balance carbon
uptake and water use, leaf cooling is also crucial (Blonder et al., 2023). If temperature strongly drives
selection, traits that keep Tleaf within safe limits may be favoured in warmer regions.

Understanding local adaptation to temperature in tropical trees is essential for predicting their future vulner-
ability, and guiding revegetation efforts to match provenance with future site conditions (Breed et al., 2013;
Jordan et al., 2024). While common garden and reciprocal transplant experiments are ideal for studying
local adaptation, they are resource-intensive (Sork et al., 2013), especially in remote areas. Population and
ecological genomic methods, such as genotype-environment (GEA) and genotype-phenotype (GPA) associa-
tions, offer complementary insights into adaptative potential without extensive field trials (Arab et al., 2020;
Breed et al., 2019; Shryock et al., 2021; Steane et al., 2014; Weigand & Leese, 2018).

Here we investigated climate adaptation in three tropical tree species by examining intraspecific variation
in leaf thermoregulation. We hypothesized that traits associated with leaf cooling are under selection. This
hypothesis predicts that:

1. Within species, individuals exposed to warmer temperatures show coordination of leaf thermal traits
that enhance leaf cooling.

2. Adaptive genetic variation associated with leaf thermal traits is positively correlated with mean annual
temperature.

2
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3. Patterns of leaf thermoregulation will be a result of both plasticity and ecotypic differentiation.

Methods

To test these predictions, we measured photosynthetic heat tolerance and leaf traits in populations across
a thermal gradient and predicted leaf temperatures with a leaf energy balance model. We defined leaf
thermoregulation as intraspecific trait variation that led to a change in modelled [?]T ([?]Ttrait) with an
increase in mean annual temperature (MAT) or MAT of origin, with limited homeothermy present if the
slope of [?]Ttrait vs MAT is negative. We also examined genome-wide single nucleotide polymorphisms
(SNP) and ran GEA and GPA analyses to explore genome-wide signals of selection and identified the
environmental drivers of adaptive variation in thermoregulation using generalized dissimilarity modelling.
Finally, we validated this approach in one species using a climate-controlled genotype-environment trial in
a common garden glasshouse experiment.

Study system: Rainforest tree species in the Wet Tropics of Queensland, Aus-
tralia

The Wet Tropics of Queensland World Heritage Area comprises 8,940 km2 of mostly rainforest vegetation
in northeastern Queensland, Australia. Its mountainous terrain creates geographic and spatial variation in
climatic conditions across elevation within small distances that is ideal for exploring patterns of intraspecific
trait variation and local adaptation. The Wet Tropics of Queensland experiences warm temperatures year-
round, with high but seasonal rainfall and periodic cyclone disturbance (UNESCO World Heritage Centre
1988). We selected three tropical rainforest species - Elaeocarpus grandis F.Muell. (Elaeocarpaceae), Card-
wellia sublimis F.Muell. (Proteaceae) and Darlingia darlingiana F.Muell. L.A.S.Johnson (Proteaceae) - that
are relatively abundant, upper canopy species occurring across a wide elevational range (0-1300m). Both C.
sublimis and D. darlingiana are endemic to the Wet Tropics of Queensland, and have wind dispersed seeds,
whereas E. grandis has a wider distribution extending into Southeast Asia and the Australian subtropics
and has large fleshy fruits dispersed primarily by birds.

Field sampling

During October 2021 to May 2022, we sampled trees from 16 mature remnant forest sites from across the
Wet Tropics of Queensland, spanning an elevation range of 1299 m a.s.l (5 to 1304 m a.s.l), a mean annual
temperature range of 7.1degC (18.6 to 25.8degC) and a mean annual precipitation range of 2940 mm (1355 to
4295 mm). At each site 3-10 individuals per population (median 6), spaced >100 m apart to avoid sampling
closely related individuals (e.g. half- or full- siblings) were selected. Sun-exposed branches from the upper
canopy were sampled using a pole pruner or big shot, placed in large opaque, water-sprayed bags, and kept
shaded during transport to the field lab (up to 4 hours). At the lab, branches were recut underwater in
buckets and rehydrated in the dark for trait measurements (c. 3 hours for functional traits and 12 hours for
chlorophyll fluorescence). Leaf samples for genomic analysis were dried on silica. In total we measured leaf
traits on 105 C. sublimis , 96 D. darlingiana, and 104E. grandis individuals, and generated genomic data for
98C. sublimis , 96 D. darlingiana and 89 E. grandis individuals (Table 1). Additionally, seeds were collected
from 11E. grandis individuals from six sites for the glasshouse experiment (Figure 1, Table 1).

Leaf traits

We measured leaf traits known to reflect trade-offs between resource acquisition and conservation strategies
(Wright et al., 2004) as well as those impacting leaf energy balance. These included leaf mass per area
(LMA, g m-2), leaf dry matter content (LDMC, mg g-1), leaf thickness (μm), leaf width (cm), leaf reflectance
spectra including absorptance (Abs, %) and reflectance (Ref, %) to shortwave radiation, leaf carbon isotope

3
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composition (δ13C), leaf nitrogen (%), and the mass ratio of carbon to nitrogen. We also measured stomatal
density (stoma mm-2) and size (μm2), to calculate theoretical maximum conductance (g max, mol m-2s-1).
Leaf traits were measured according to standard techniques on fully expanded sun-exposed leaves from each
tree (Perez-Harguindeguy et al., 2013), with 10 leaf replicates for leaf functional traits and 3 for absorptance
and stomatal traits (for detailed measurement protocols, see Supplementary Material, Methods S1).

Figure 1. Map of study region. Map colour shows the mean annual temperature from 1981 to 2010 retrieved
from CHELSA database at 1 km resolution (Karger et al., 2017). Dashed black line indicates position of
the Black Mountain Corridor, a putative geographic barrier during glacial maxima (Schneider et al., 1998).
Grey points labelled with numbers indicate the populations where genetic and trait samples were collected
for each of the three species shown to the right (see Table 1 for further information on populations). Green
points highlight populations where E. grandis seedlings were collected and used in the subsequent glasshouse

4
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experiment.

Table 1. Site coordinates and means for environmental variables. Sites are ordered by decreasing latitude,
and numbers correspond to those in Figure 1. Sample size per population is given for trait measurements,
and, where this differs, for the genetic dataset in brackets.

Population Lat. Long. Elev MAT MAP Sample size per population

(°) (°) (m) (°C) (mm) CS DD EG
1. Cedar Bay* -15.79 145.3 172 23.8 2348 6 6 6
2. Daintree -16.16 145.44 43 24.1 3296 6(5) 6 6(5)
3. Mt Windsor* -16.26 145.05 1098 19.2 1651 6 6 6(5)
4. Mt Lewis -16.55 145.28 1028 19.3 1790 9(8) 6 6
5. Kuranda* -16.66 145.49 450 22.1 1957 6 6 6
6. Dinden -16.96 145.64 493 21.7 1830 6 4 6
7. Mt Edith -17.09 145.62 977 19.2 1907 6 6 3
8. Danbulla* -17.19 145.65 770 20.0 2332 10(8) 9 10(6)
9. Goldsborough -17.26 145.79 149 23.0 3072 0 6 6
10. Mt Baldy* -17.3 145.42 1162 18.4 1555 7 6 5(4)
11. Topaz -17.37 145.75 743 19.8 3680 6 0 6
12. South Johnstone -17.64 145.73 540 20.6 3556 8(7) 8 8(6)
13. Tully Falls -17.72 145.53 870 19.3 2123 6 6 6
14. Mission Beach* -17.88 146.07 28 23.6 3545 10(7) 7 10(6)
15. Kirrama -18.21 145.8 677 20.1 2548 6 6 6
16. Paluma Range -18.98 146.17 832 19.2 1839 8 8 8(6)

Note: Lat = latitude, Long = longitude, Elev = elevation (m a.s.l), MAT = mean annual temperature (Bio1,
°C), MAP = mean annual precipitation (Bio12, mm). CS = Cardwellia sublimis , DD = Darlingia darlingiana
, and EG = Elaeocarpus grandis . Sites with an * had E. grandis seedings included in the glasshouse trial.

Leaf temperature (Tleaf) modelling

We tested how covariation of leaf traits affects predicted leaf-to-air temperature differences ([?]T) across a
thermal gradient and whether this helps maintain Tleaf within safe margins. Tleaf was predicted using a
steady-state leaf energy balance model based on the Penman-Monteith equation (Jones, 2013; Monteith &
Unsworth, 2013), requiring plant trait-based inputs (leaf width, absorptance to shortwave radiation, stomatal
ratio, and conductance), and microclimate inputs (air temperature, vapour pressure deficit, radiation, and
wind speed).

Microclimate inputs were paramaterised using the micro global function in ‘NicheMapr’ v.3.2.0 (Kearney &
Porter, 2020) which uses the New et al. (2002) global monthly climate database at 10x10km grid centred
on 1960 to 1990. Hourly estimates of Tair, VPD, and solar radiation (converted to photosynthetic photon
flux density, PPFD) were obtained for the 15th of each month, using tree coordinates and elevation, with
solar radiation adjusted for terrain using the ‘microclima’ setting (Maclean et al., 2019). From this typical
monthly diel-data daytime means (09:00 to 15:00) were calculated for each individual tree as well as on
overall mean across all individuals and species.

To separate changes in [?]T due to microclimate from those due to leaf trait covariation, we used two
microclimate parameterisations when running the leaf energy balance model. For [?]T based solely on leaf
traits (hereafter [?]Ttrait), microclimate inputs were set to the overall daytime means described above, with
Tair= 24.8degC, VPD = 1.4 kPa, PPFD = 1403 μmol m2s-1, and assuming calm conditions with wind speed

5
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of 0.5 m s-1. For [?]T based on both traits and climate ([?]Tclim), we used observed tree-level microclimate
means.

We implemented the leaf energy balance model using the PhotosynEB function in ‘plantecophys’ v.1.4-
6 (Duursma, 2015), which couples an energy balance model to the Farquhar, von Caemmerer and Berry
photosynthesis model (Farquhar et al., 1980) and the optimality-based unified g s (USO) model (Medlyn et
al., 2011), with Tleaf solved iteratively. For methodological comparison we also calculated g s from stomatal
anatomy, however this was not used for downstream genetic analysis. For details on how parameters were
obtained for both stomatal conductance models see Supplementary Material, Methods S1.

To convert estimated Tleaf to [?]T, we used the same Tair values used as inputs for each respective model
(i.e. a common Tair = 24.8°C for [?]Ttraitand a tree-level Tair for [?]Tclim).

Photosynthetic heat tolerance

Photosynthetic heat tolerance was assessed by examining the decline in maximum photosynthetic efficiency
of photosystem II with increasing incubation temperature. To do so, the ratio of variable fluorescence (Fv)
to maximum fluorescence (Fm) was measured following an established protocol (Leon-Garcia & Lasso, 2019)
modified from Krause et al. (2013). For each tree, 15-20 rehydrated leaves were sampled, and six 9 mm leaf
discs per leaf were pooled and randomly assigned to heat treatments. Discs were incubated for 30 minutes in
water baths at 36, 40, 42, 44, 46, 48, 50, 52, 54, and 58degC, with an untreated control at ˜24degC. After a
24-hour dark incubation, chlorophyll fluorescence was measured using a PAM-2000 chlorophyll fluorometer
(PAM-2000, Heinz Walz GmbH, Effeltrich, Germany). Five sites (six for E. grandis ) at varying elevations
were measured during October-November 2021. Individuals showing photoinhibition (control Fv/Fm < 0.6)
were excluded from analysis. A 4-parameter log-logistic curve was fitted using ‘drc’ v.3.0-1 (Ritz et al.,
2015), with the lower asymptote set to 0. Thermal tolerance metrics including Tcrit (Tleafat 5% decline in
Fv/Fm) and T50 (Tleaf at 50% decline in Fv/Fm), were obtained from the curves.

Quantification of thermal safety margins

To determine how intraspecific trait variation influences thermal safety margins (TSM) across species dis-
tributions, TSMs were calculated by subtracting modelled Tleaf (=[?]T + Tair) from the thermal tolerance
metric T50. We calculated TSMs using both [?]Ttrait and [?]Tclim, where [?]Ttrait assesses the contribution
of trait variation to TSMs, and [?]Tclim evaluates if this variation can counteract environmental changes.
Our estimated TSM values likely overestimate those from direct Tleafmeasurements, partly due to using T50

as the upper threshold instead of Tcrit. Canopy leaves of tropical forests already surpass Tcrit (Doughty et
al., 2023), and while some photosynthetic function can recover after a single Tcrit exposure, recovery is less
likely after T50 exposure (Cook et al., 2024; Tarvainen et al., 2022). Additionally, microclimate inputs (e.g.
Tair) used for modelling Tleaf are daytime averages (09:00 to 15:00). Although selection is often driven by
climate extremes rather than means (Zimmermann et al., 2009), our conservative approach is suitable for
modelling relative [?]Ttrait across a species distribution.

Climate and Environmental Variables

To explore environmental drivers of trait and genomic variation, we retrieved gridded maps of bioclimatic
variables, as well as wind speed and relative humidity for the Wet Tropics of Queensland from the CHELSA
database at 1km resolution, averaged for 1981-2010 (Brun et al., 2022; Karger et al., 2017). Gridded soil
data products at 5-15 cm depth, 30m resolution, for the period 1950–2013 were obtained from the Soil and
Landscape Grid of Australia and resampled to 1 km resolution using ‘raster’ v.3.6-11 (Hijmans, 2022) to
match the bioclimatic data. To avoid multicollinearity and ensure interpretability, we selected uncorrelated
variables (r < 0.7, calculated using values for the sampled sites) relevant to tropical tree functioning: mean

6
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annual temperature (Bio1,degC), precipitation of the driest month (Bio14, mm), minimum relative humidity
(RHmin, %), mean wind speed (Windmean, m s-1), soil pH (pH), and total soil phosphorus (P).

Genotyping

Dried leaf tissue samples were sent to Diversity Arrays Technology Australia Pty Ltd, Canberra, Australia for
DNA extraction and genotyped using DArTseq, a reduced representation sequencing method (Sansaloni et
al., 2010). Data quality and SNP filtering were performed using ‘RRtools’ v.0.1 (Bragg et al., 2020; Rossetto
et al., 2019). SNPs with a reproducibility score below 0.96, over 20% missing data, or redundant loci were
excluded. Individuals with 80% missing loci were also removed and a minor allele frequency threshold of
0.05 was applied. The cleaned dataset comprised 8884 SNPs across 98 individuals from 15 populations for
C. sublimis (6.48 % missing data), 8009 SNPs across 96 individuals from 15 populations for D. darlingiana
(8.15 % missing data), and 4935 SNPs across 89 individuals from 16 populations for E. grandis (6.65 %
missing data).

Population genetic diversity and structure

We assessed population genetic diversity by estimating allelic richness, expected heterozygosity (He), ob-
served heterozygosity (Ho) and the inbreeding coefficient (FIS) using ‘diveRsity’ v1.9.90 (Keenan et al.,
2013), with 1000 bootstrap replicates for confidence intervals. Genetic similarity was evaluated through
Principal Component Analysis (PCA) using ‘adegenet’ v2.1.8 (Jombart, 2008). Overall FST for each species
was estimated from analysis of molecular variance on all SNPs using the ‘poppr’ package and was converted
into χ2 distribution. This was compared with PST estimates and 95% confidence intervals for each trait.
Ancestry coefficients were estimated via discriminant analysis of principal components (DAPC) and sparse
non-negative matrix factorization (sNMF). For both methods, we tested genetic clusters (K) ranging from 1
to 16. DAPC was performed with K-means clustering on PCA-transformed genotypes, selecting the optimal
K via the Bayesian information criterion and retaining 10 principal component axes using cross-validation.
For sNMF, ‘LEA’ v.3.8.0 (Frichot & François, 2015) was used, selecting the optimal K based on the stabili-
zation of cross-entropy values and choosing the best replicate with the lowest cross-entropy.

Signals of selection

To detect potentially adaptive loci, we used FST outlier analysis, genotype-environment associations (GEA),
and genotype-phenotype associations (GPA). Association analyses were performed using latent factor mixed
modelling (LFMM) and partial redundancy analysis (pRDA). This approach combined univariate and mul-
tivariate methods to detect both single-locus and multi-locus signatures of selection with high power and
low false-positive rates (Forester et al., 2018). For GPA, we tested two trait sets: 1) [?]Ttrait as an integra-
tive trait, and 2) a suite of uncorrelated (r < 0.7) leaf traits influencing leaf temperature including LMA,
thickness, width, Absorptance,V cmax, and g 1.

To ensure complete SNP datasets, missing values were imputed with the most common allele across individ-
uals. Given the multiple potential values of K identified in prior population structure analyses, we conducted
analyses for K = 1, 2, and 3, treating all significant SNPs as putatively adaptive. FST outlier analysis was
done using ‘pcadapt’ v.4.3.3 (Luu et al., 2017) using default parameters, with SNPs considered putatively
adaptive if the qvalue was < 0.05. LFMM was run for both GPA and GEA analyses with a lasso penalty
using ‘lfmm’ v.1.1 (Caye et al., 2019) testing multiple latent factors. Z scores were calibrated for genomic
inflation before being converted into p-values. Candidate SNPs were identified using a false discovery thresh-
old of q < 0.1. The pRDA analyses in both GPA and GEA were conducted using ‘vegan’ v.2.6-4 (Oksanen
et al., 2022), with two principal components for genetic structure (see previous section) as conditional vari-
ables. For GPA, elevation was also included as a conditional variable to account for non-genetic variation
in leaf traits. SNPs associated with phenotypes (GPA), or environments (GEA) were identified by extreme
loadings, defined as 3 standard deviations along pRDA axes.
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Generalised dissimilarity modelling

We employed generalised dissimilarity modelling (GDM) to further investigate non-linear genotype-
environment and phenotype-environment associations and identify potential environmental drivers of varia-
tion. In contrast to LFMM and pRDA, this approach assesses multivariate, nonlinear patterns of genomic or
trait turnover along environmental gradients, while accounting for isolation by distance (Ferrier et al., 2007;
Mokany et al., 2022). GDM is useful for evaluating the relative importance of environmental predictors (via
the sum of I-spline coefficients) and for identifying where steepest gradients of change occur (by observing
the change in slope).

For the genomic data, we ran GDMs on three SNP datasets. First, we used the putatively adaptive SNPs
identified through trait associations (GPA analysis), including all those identified by LFMM and pRDA
with leaf traits or estimated [?]Ttrait. The second dataset included SNPs identified as genomic outliers
(FST outlier analysis) and through association with environment (GEA analysis). We explored both GEA
and GPA datasets because GPA was not measured in a common garden; thus, GEA helps determine if
the environmental variables linked to trait variation also drive adaptive variation. While the environmental
drivers of genomic variation are already inherently assessed within the LFMM and pRDA analyses in GEA, we
performed GDM on this SNP set to allow direct comparison of driver relative importance across the different
genomic GDMs. The third dataset investigated whole genome variation across environmental space, using
the original cleaned SNP set that includes both adaptive and neutral SNPs. For all three analyses, we used
a population-level pairwise FST distance matrix generated with ‘SNPRelate’ v.1.30.1 (Zheng et al., 2012)
using the relative beta estimator in Weir & Hill (2002).

Additionally, we conducted two trait GDMs to assess environmental drivers of [?]Ttrait and leaf trait varia-
tion. We calculated population-level means for [?]Ttrait and other leaf traits (uncorrelated suite described
above). For the leaf trait GDM, we reduced variables to two principal component axes using the princomp
function. Euclidean distance matrices were computed for each dataset using the dist function. All five GDMs
were fit using ‘gdm’ v.1.5.9-9.1 (Ferrier et al., 2007; Mokany et al., 2022). Predictor significance was tested
with matrix permutation (n = 50 permutations) using the gdm.varImp function, with predictor significance
defined by increases in explained deviance. Variables with the highest sum of I-Spline Coefficients were con-
sidered most important. We estimated model sensitivity with bootstrapping (n = 1,000 iterations), retaining
90% of populations (Shryock et al., 2015).

Glasshouse experiment

We collected 59 naturally germinated E. grandis seedlings from the base of 11 likely mother trees across six
sites and grew these in pots at James Cook University’s Environmental Research Complex in Cairns (Figure
1). The number of mother trees per site ranged from one to three, and seedlings per mother tree ranged
from one to two. Seedlings originated from sites with mean annual temperatures between 18.8degC and
24.9degC.

To assess genotype x environment effects on leaf thermal traits while controlling for temperature and vapor
pressure deficit (VPD) variations, we conducted a glasshouse experiment with three treatments: a cool-humid
chamber (26degC, 1 kPa VPD), a warm-humid chamber (32degC, 1 kPa VPD), and a warm-dry chamber
(32degC, 2 kPa VPD). These treatments simulated typical upland summer conditions (cool-humid) and
lowland conditions (warm-dry), with the warm-humid chamber used to isolate VPD effects from temperature
effects (Table S 1).

In August 2022, seedlings were allocated to their respective chambers, with at least one seedling from each
mother tree in each chamber. After two months, leaf-level gas exchange and functional traits were measured
on new, fully expanded sun leaves. Two seedlings in the cool-humid treatment died, leaving 57 seedlings
but maintaining the total number of mother trees in that treatment. Detailed measurement protocols are
described in Supplementary Material, Methods S2.
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Our goal was to assess how genotype and environment contribute to intraspecific variation in leaf thermoreg-
ulation and to determine if plants acclimated or adapted to warmer conditions have lower predicted [?]Ttrait

compared to those acclimated or adapted to cooler conditions.

We first quantified intraspecific variation, population differentiation, and the association of trait variation
with thermal gradients. This involved using the quartile coefficient of variation to account for issues with
standard CV (Botta-Dukat, 2023). Linear regressions assessed the relationship between leaf functional traits
(e.g., LMA, LDMC, leaf thickness, δ13C) and thermal parameters (e.g., Tcrit, T50, [?]Ttrait, TSM) with
population identity or mean annual temperature (MAT) as dependent variables. Population differentiation
was measured using R2, which is analogous to PST but does not assume trait heritability. A negative slope
in [?]Ttrait with increasing MAT was interpreted as evidence of limited homeothermy.

To examine if trait variation was an adaptation to temperature across species distributions, we identified sig-
nals of selection using association analysis and compared the relative importance of environmental predictors
in genomic vs trait generalized dissimilarity modelling. To complement association analyses and explicitly
test the contribution of genotype and environment to intraspecific variation in leaf traits and [?]Ttrait for
E. grandis saplings grown in a glasshouse, we used mixed effects models to test the influence of MAT of
origin (continuous) and treatment (cool-humid, warm-humid, warm-dry) on leaf traits and [?]Ttrait, includ-
ing ‘mother tree’ as a random effect nested within ‘site’. We then removed non-significant variables and
presented estimated marginal means for the final models.

Results

Extent of intraspecific leaf trait variation in natural populations

In most cases, the extent of intraspecific trait variation (defined as the quartile coefficient of variation, CV)
for each trait was similar across the three species (Figure 2a). Traits with the lowest quartile CV (< 0.05)
included LDMC, Absorptance, Reflectance, δ13C, Tcrit, and T50. The trait g 1, which is calculated from
δ
13C (but accounts for some influence of the environment) had the highest levels of variation and showed

the greatest differences in CV across species, with CV = 0.14, 0.28, and 0.21 inC. sublimis , D. darlingiana
, and E. grandis respectively. For most traits, population effects on trait variation were significant (P <
0.05), except for leaf C/N ratio, δ13C, g 1, and T50 in C. sublimis ; stomatal density, Tcrit and T50 in D.
darlingiana ; and stomatal density, theoretical g max, and Tcrit in E. grandis (Figure 2a, Table S2). Where
significant effects of population on trait variation were observed, the proportion of trait variation explained
by population ranged from 23% to 85% across all species and traits, with the strongest effects observed for
leaf thickness (Figure 2a, Table S2). Population differentiation for most traits was stronger than expected
due to genetic drift (P ST >F ST), except for leaf elemental concentrations or thermal tolerance metrics in
C. sublimis (Figure S1).

Patterns of leaf trait variation with mean annual temperature

We observed differences in the relationship between traits and mean annual temperature (MAT) across the
three target species (Figures 2b & S2, Table S3). In C. sublimis , g 1 was the only trait associated with
MAT despite other traits having levels of CV similar to the other species and significant population effects
on trait variation (Figures 2b & S2, Table S3). For D. darlingiana , as MAT increased, LMA, leaf thickness,
Absorptance, and δ13C all decreased, whereas leaf width andg 1 increased (Figure 2b, Figure S2, Table S3).
However, the effect of MAT on leaf thickness, absorptance, and anatomical thermal safety margin was weak
(R² < 0.1). InE. grandis , as MAT increased, LMA, leaf width, δ13C, and stomatal size decreased, whereas
LDMC,g 1 and stomatal density increased (Figure 2b, Figure S2, Table S3), but this association was weak
for LMA, LDMC, and δ13C. For D. darlingiana and E. grandis , the covariation between stomatal density
and size resulted in no change in theoretical g max with MAT (Figure 2b, Figure S2, Table S3).
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Figure 2. Comparison of regression results for the effect of population or mean annual temperature on trait
variation for each species. Tiles are coloured by R 2, with transparent tiles indicating non-significant (P >
0.05) results. Values within tiles for panel a) show the quartile coefficient of variation, and symbols in panel
b) show the sign of the slope estimate for the linear regression. For more information on model results see
Table S 2 and Table S 3.

Implications of intraspecific trait variation on leaf thermoregulation and thermal
safety margins

The consequences of intraspecific trait trade-offs for leaf thermoregulation were investigated through the
prediction of trait-based leaf-to-air temperature differences ([?]Ttrait) and how these vary with MAT. Note
that [?]Ttrait is calculated using a single set of microclimate parameters and thus represents the influence of
traits only. Mean [?]Ttrait was 6.0, 5.1, and 4.2°C in C. sublimis , D. darlingiana , and E. grandis respectively
(Table S2). Levels of intraspecific variation in [?]Ttrait were similar across the three species, with quartile
CV = 0.06 to 0.08 (Figure 2a). Population was a significant predictor of [?]Ttrait for all species, although
the proportion explained was slightly higher for D. darlingiana andE. grandis than C. sublimis (Figure 2a,
Table S2). We found evidence of leaf thermoregulation for two of the three species, with [?]Ttrait decreasing
with increasing MAT for D. darlingiana (R 2 = 0.39, P < 0.001) and E. grandis (R 2 = 0.39,P < 0.001)
but not C. sublimis (Figure 2b, Figure 3, Table S3). This represented a 0.21degC (95thC.I. 0.15, 0.26) and
a 0.16degC (95th C.I. 0.12, 0.20) decrease in [?]Ttrait per 1degC increase in MAT for D. darlingiana and E.
grandis respectively (Table S3).

Unsurprisingly, using theoretical g max from stomatal anatomy to calculate trait-based leaf-to-air temperature
differences (anatomical [?]Ttrait) led to substantially lower values of [?]Ttrait (Figure S3). Mean anatomical
[?]Ttrait was equal to -0.6degC for D. darlingiana and -1.8degC for E. grandis (with negative values indicating
Tleaf cooler than Tair). Levels of intraspecific variation for anatomical [?]Ttrait inD. darlingiana and E.

10
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grandis were different, with a quartile CV = -0.31 for D. darlingiana and -0.07 for E. grandis (Figure 2a).
Population was only a significant predictor of anatomical [?]Ttrait for E. grandis , withR2 = 0.45, P = 0.014
(Figure 2a, Table S2). This time we found evidence of thermoregulation only for E. grandis (R 2 = 0.33,
P < 0.001) where anatomical [?]Ttrait decreased 0.06degC (95th C.I. 0.03, 0.09) per 1degC increase in MAT
(Figures 2b & S3, Table S3).

Thermal tolerance metrics were similar for all three species, with species-mean Tcrit ranging from 44.3 to
45.1degC and species-mean T50 ranging from 49.5, to 49.8degC (Table S2). Levels of intraspecific variation
were low relative to other traits, and population differences were only significant in C. sublimis for Tcrit and
E. grandis for T50 (Figure 2a, Table S2). We observed significant positive relationships between T50 and
MAT for bothD. darlingiana and E. grandis , but not C. sublimis , and no relationship between MAT and
Tcrit for any species (Figures 2b & 3, Table S3). T50 increased by 0.22degC per 1degC rise in MAT for D.
darlingiana (R 2 = 0.19, P = 0.044), and 0.28 degC per 1degC rise in MAT for E. grandis (R 2 = 0.28, P
< 0.001, Figure 3).

The combined variation in T50 and [?]Ttrait were assessed through calculation of trait-based thermal safety
margins (TSMtrait = T50 - Tleaf degC). We observed a significant increase in TSMtrait with MAT for D.
darlingiana and E. grandis , but not C. sublimis , representing an increase in TSMtrait of 0.52degC (95th

C.I. 0.32, 0.72) and 0.42degC (95th C.I. 0.26, 0.58) per 1degC increase in MAT for D. darlingiana and E.
grandis respectively (Figures 2b & 3, Table S3). In contrast, when calculating trait-based thermal safety
margins using stomatal anatomical traits (anatomical TSMtrait), we only observed a relationship with MAT
in E. grandis (R2 = 0.62,P < 0.0001), representing an increase in TSMtrait of 0.4degC (95th C.I. 0.22, 0.58
per 1degC increase in MAT (Figures 2b & S3, Table S3).

To evaluate how effective intraspecific trait variation was at avoiding heat stress in-situ, we compare the above
results with [?]T (and TSMs) calculated using tree-level variation in both traits and microclimate ([?]Tclim

and TSMclim) (Figure 3). A comparison of slope estimates for the linear regression of [?]Ttrait and [?]Tclim

with MAT indicated that our approach of excluding the passive effects of site microclimate in [?]Ttrait leads
to a 0.08 and 0.09degC shallower decrease in [?]Ttrait with MAT compared to [?]Tclimfor D. darlingiana
and E. grandis respectively, and no change for C. sublimis (Figure 3, Table S3). Comparing slopes for
the linear regression of TSMclim with MAT across species that exhibited [?]Ttrait variation consistent with
limited homeothermy (D. darlingiana and E. grandis ) with that which did not (C. sublimis ) highlights
how effective thermoregulation could be at offsetting increasing air temperatures in TSMclim. We found that
the TSMclimdecline with MAT was significantly shallower for D. darlingiana (Slope = -0.55, R2 = 0.59, P
< 0.001) and E. grandis (Slope = -0.63, R2 = 0.66, P < 0.001) compared to C. sublimis (Slope = -1.11, R2

= 0.85, P < 0.001) (Figure 3, Table S3).
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Figure 3. Variation in leaf-to-air temperature differences ([?]T; a-b), thermal tolerance metrics (Tcrit & T50;
c, d) and thermal safety margins (TSM; e, f) with mean annual temperature across the distribution of three
tropical tree species. Note in a, b, and e [?]T is based on leaf trait variation with the same microclimate inputs
for all trees ([?]Ttrait), whereas in f, microclimate inputs also vary with each individual tree ([?]Tclim). Each
point represents an individual-tree level average. Significant correlations with mean annual temperature are
denoted by solid regression lines whereas non-significant correlations are dotted. Shaded region represents
standard errors.

Genetic diversity and population structure

Genetic diversity was relatively low in our study species. Expected heterozygosity across all populations was
0.19 (±0.012 SD) in C. sublimis , 0.19 (±0.011 SD) in D. darlingiana , and 0.23 (±0.013 SD) in E. grandis
(Table S 4). Observed heterozygosity was less than expected heterozygosity for all populations of all species
and was 0.15 (±0.014 SD) in C. sublimis , 0.12 (±0.010 SD) in D. darlingiana , and 0.18 (±0.016 SD) in
E. grandis (Table S 4). All three species showed strong isolation by distance, with mantel tests showing R
2 of 0.86 (P = 0.001) inC. sublimis (Figure S 4), R 2 of 0.77 (P = 0.001) in D. darlingiana (Figure S 5),
andR 2 of 0.51 (P = 0.011) in E. grandis (Figure S 6). Ancestry analysis indicated the presence of 1, 2, or
3 genetic clusters across the sampled range, supported by PCA analysis, with the main break for all species
corresponding to the Black Mountain Corridor, a biogeographic barrier for multiple taxa coinciding with a
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break in the Great Dividing Range (Figures S4-6) (Schneider et al., 1998).

Signals of Selection

We identified signals of selection in all three species through the detection of candidate SNPs that were
associated with either environmental (GEA) or phenotypic (GPA) variables or were identified FST outliers.

For C. sublimis , the genotype-phenotype association (GPA) analyses identified 118 candidate SNPs associa-
ted with [?]Ttrait or leaf traits themselves (Figure 4, Table S5). LFMM identified 1 SNP associated with leaf
thickness and no SNPS associated with predicted [?]Ttrait. The leaf trait pRDA had an adjR2 = 0.0031 and
identified 66 SNPs with the highest contributing variables including leaf thickness, LMA, Absorptance, and
Vcmax25 (Figure S7a). The [?]Ttrait pRDA had an adjR2 of 0.0006 and identified 63 candidate SNPs. The
combined FSToutlier and GEA analyses identified 321 unique candidate SNPs, including 243 SNPs identified
by FST outlier analysis and 85 SNPs identified by GEA (Figure 4, Table S5). For the GEA SNPs, LFMM
identified 13 SNPs including 1 associated with Bio1, 4 with RHmin, 3 with Windmean, 1 with Bio14, 2 with
Soil P and 2 with Soil pH. The environment pRDA had an adjR2 = 0.0173 and identified 72 candidate SNPs,
with highest contributing variables including Bio1, Bio14, RHmin and Windmean (Figure S7b). InC. sublimis
, 1 candidate SNP was identified by GPA, GEA, and outlier analyses, 4 candidate SNPs were identified both
by GPA and GEA analyses, and 4 SNPs were identified by both GPA and outlier analyses (Figure 4).

For D. darlingiana , the GPA analyses identified 151 candidate SNPs associated with [?]Ttrait or leaf traits
themselves (Figure 4, Table S5). LFMM identified 43 SNPs associated with one or more leaf traits including
2 SNPs associated with leaf width, 11 withg 1, 25 with Vcmax25, 2 with LMA and 3 with modeled [?]Ttrait.
The trait pRDA had an adjR2 = 0.0022 and identified 63 SNPs with the highest contributing variable being
Absorptance, g 1, and LMA (Figure S7c). The [?]Ttrait pRDA had an adjR2 of 0.0006 and identified 69
candidate SNPs. The combined FST outlier and GEA analyses identified a total of 140 unique candidate
SNPs, including 60 SNPs identified by FST outlier analysis and 87 SNPs identified by GEA (Figure 4, Table
S5). For the GEA SNPs, LFMM identified 24 SNPs, including 3 SNPs associated with Bio1, 3 with RHmin,
1 with Windmean, 3 with Bio14, 13 with Soil P, and 2 with Soil pH. The environment pRDA had an adjR2

= 0.0083 and identified 63 candidate SNPs, with highest contributing variables including MAT and soil pH,
followed by Bio14, RHmin, and Windmean (Figure S 7d). In D. darlingiana , 2 candidate SNPs were identified
both by GPA and GEA analyses, and 1 SNP was identified by both GPA and outlier analyses (Figure 4).

For E. grandis , the GPA analyses identified 73 candidate SNPs associated with [?]Ttrait or leaf traits
themselves (Figure 4, Table S5). LFMM identified 4 SNPs including 1 SNP associated with leaf width, 2
with LMA, and 1 with [?]Ttrait. The trait pRDA, had an adjR2 = 0.0019 and identified 28 candidate SNPs,
with the highest contributing variables includingV cmax25, leaf thickness, and LMA, followed by Absorptance
and leaf width (Figure S7e). The [?]TtraitpRDA had an adjR2 of 0.0006 and identified 45 candidate SNPs.
The combined FST outlier and GEA analyses identified 156 unique candidate SNPs, including 126 SNPs
identified by FST outlier analysis and 30 SNPs identified by GEA (Figure 4, Table S5). For the GEA SNPs,
LFMM identified 1 SNP associated with Bio1. The environment pRDA had an adjR2 of 0.0064 and identified
29 SNPs, with the highest contributing environmental variables including Bio14, RHmin, soil P, and MAT
(Figure S7f). In E. grandis , no candidate SNPs were identified both by GPA and GEA analyses, however
1 SNP was identified by both GPA and outlier analyses (Figure 4, Table S5).
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Figure 4. Overlap of candidate SNPs identified using FSToutlier analysis, and genotype phenotype (GPA) and
genotype environment (GEA) association analyses for three tropical tree species. Numbers indicate the total
number of overlapping SNPs with each analysis. Candidate SNPs identified using GPA or GEA association
analyses include all identified by either latent factor mixed modelling (LFMM) or partial redundancy analysis
(pRDA). For GPA analyses, candidate SNPs include those identified from two sets of response variables;
‘[?]Ttrait’, based on modelled leaf-to-air temperature differences with individual tree level traits and common
microclimate inputs, and ‘Trait PCA’, based on the principal component axes of a suite of leaf traits.
Intersections are coloured by total number of SNPs and with grey panels = no shared SNPs detected.

Generalised dissimilarity modelling

We used generalized dissimilarity modelling to investigate the relative importance of environmental predictors
in explaining deviance in the genotypic turnover across the landscape based on GPA SNPs, GEA and outlier
SNPs, and all SNPs, as well as trait turnover in [?]Ttrait, and in the principal components of leaf functional
traits as the response matrices. Across all three species, the GDMs based on SNP datasets had generally
high explained deviance (27.47–76.89%) and low intercepts (0–0.07), indicating the included predictors had
good explanatory power. In contrast, the GDMs based on [?]Ttrait or the leaf trait PCA values explained
less variance in the response variables (explained deviance 20.93–44.07%, intercepts 0.07–0.44) (Table S6).

In C. sublimis , geographic distance was the top predictor of allele frequency turnover for all three SNP-
based GDMs, followed by soil pH and precipitation of the driest month (Bio14) for the GPA-SNPs, Bio14
and RHmin for the GEA and outlier SNPs, and Bio14 and Windmean for the All SNPs GDMs (Figure 5,
Table S6). For the trait GDMs, Soil pH was the most important predictor of [?]Ttrait variation, whereas
Bio14, followed by soil P were the most important predictors of variation in the Trait PCA (Figure 5, Table
S6).

For D. darlingiana , Geographic distance, followed by MAT and Bio14 were the top environmental predictors
for all three SNP-based GDMs (Figure 5, Table S6). For the trait GDMs, variation in [?]Ttrait was best
explained by MAT, whereas both MAT and Bio14 were importance predictors in the Trait PCA GDM
(Figure 5, Table S6).

In E. grandis , geographic distance and Bio14 were the top two predictors for all SNP-based GDMs, with the
third most explanatory variable switching between MAT and RHmin (Figure 5). In the trait GDMs, MAT
was the single most important predictor for variation in both [?]Ttrait and the trait PCA (Figure 5, Table
S6).
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Figure 5. Relative importance of predictors in generalised dissimilarity models (GDM) for three tropical
tree species. Relative importance is calculated as the sum of I-Spline coefficients for that predictor in the
model. For each species there are five separate analyses presented, with the response variable a population-
level pairwise FST matrix on SNPs identified by GPA analyses (GPA SNPs), the SNPs identified from
GEA or FST outlier analyses (GEA and Outlier SNPs), or the entire suite of neutral and non-neutral SNPs
(All SNPs). For the last two columns, the response variable was a Euclidean distance matrix based on
either population-mean [?]Ttrait or principal component axes on a suite of leaf traits (Trait PCA). Model
performance metrics can be found in Table S 6. For the predictor variables, Geographic = geographic
distance, MAT = mean annual temperature, RHmin = minimum relative humidity, Bio14 = precipitation
of the driest month, Windmean = mean wind speed.

Elaeocarpus grandis – Genotype × Environment glasshouse trial thermoregula-
tory traits

In the climate-controlled glasshouse experiment, E. grandis showed trait variation resulting from both pla-
stic responses to treatment conditions, and adaptation to mean annual temperature of origin, but not their
interaction (Figure 6, Table S7). Leaf width had a negative correlation with MAT of origin and had signi-
ficant effects of treatment, exhibiting narrower leaves when grown under warmer conditions. We observed
a significant positive correlation between g 1 and MAT of origin, but no effect of treatment. Variation in
Vcmax25 was not associated with MAT of origin, but was influenced by treatment, with plants grown under
cool-humid conditions having a higher Vcmax25 than plants grown under both warm-humid and warm-dry
conditions (Figure 6, Table S7). When these traits were input into a leaf energy balance model paramaterised
with standard microclimate to determine [?]Ttrait we found evidence for adaptation to MAT of origin but no
effect of treatment (Figure 6, Table S7). Seedlings from warm-origin provenances had lower [?]Ttrait than
seedlings from cool-origin provenances (Figure 6, Table S7). These patterns were driven by intraspecific
variation in both leaf width and g 1. The decline in [?]Ttrait with an increase in MAT of origin is likely
due to the combined effects of narrower leaves, and a higher g 1 (so lower water use efficiency), which both
result in cooler Tleaf under common conditions and thus a decrease [?]Ttrait. The lack of a treatment effect
on [?]Ttrait is likely due to the treatment effects on Vcmax25 and leaf width cancelling each other out. i.e.
for leaves with common g 1, a higher Vcmax25 will result in a higher modelled conductance which will cool
leaves.
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Figure 6. Results from the glasshouse experiment showing significant effects of both treatment conditions
and mean annual temperature of origin in E. grandis . Panels show a) response of predicted leaf-to-air
temperature differences based on leaf traits ([?]Ttrait), b) g 1 calculated from leaf δ13C plotted as log10
transformed values, c) leaf width, and d) Vcmax25 estimated from leaf Nmass. Points represent observed plant
level averages, and lines and shaded regions show the estimated margin means and 95% confidence intervals.
Letters in panel d) show significant differences.

Discussion

Globally increasing temperatures threaten to push tropical rainforest plants beyond their physiological lim-
its. However, populations adapted to contrasting climates may exhibit phenotypic divergence due to local
adaptation that affects their capacity to cope with warming. Intraspecific variation of leaf traits across
species distributions can enhance leaf cooling, thereby avoiding lethal temperatures in warmer regions. Yet,
evidence of this thermoregulatory ability and the roles of acclimation or adaptation remain limited despite
it being key information to assess population resilience to global warming impacts. Here we show how leaf
energy balance modelling combined with population/ecological genomics can be used to assess the patterns
and drivers of local adaptation of thermoregulatory traits in mature tropical rainforest trees. We found
intraspecific variation of field-measured leaf traits was associated with enhanced leaf cooling and partial
maintenance of modelled thermal safety margins in warmer sites for two of the three species, providing
partial support for our first hypothesis. Signals of selection were detected in all species, however contrary to
our second hypothesis, adaptive genomic variation associated with predicted [?]Ttrait was best explained by
geographic distance and precipitation of the driest month rather than temperature. Finally, our genotype
× environment trial of E. grandis seedlings supported our third hypothesis: clines in [?]Ttrait with MAT of
origin were a result of both phenotypic plasticity and adaptation.
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Intraspecific trait variation leads to enhanced leaf cooling in warmer climates.

Our expectation that leaf trait variation would enhance leaf cooling in plants from warmer sites was observed
in two of the three species. This is consistent with the limited homeothermy hypothesis (Mahan & Upchurch,
1988; Michaletz et al., 2015) which suggests that trait-based regulation of leaf temperatures may help
maintain carbon uptake in suboptimal environments. Although evidence for this phenomenon varies across
biomes and species (Blonder et al., 2020; Drake et al., 2020; Fauset et al., 2018; Guo et al., 2023; Guo et
al., 2022; Helliker & Richter, 2008; Helliker et al., 2018; Liancourt et al., 2020; Song et al., 2011; Still et al.,
2022; Zhou et al., 2023), the theory is debated due to inconsistencies in its definition and testing (Still et al.,
2023). By using a leaf energy balance model parameterized with observed leaf trait variations and common
microclimate inputs, we isolate [?]T variations resulting from leaf trait covariation, excluding passive changes
due to radiation, humidity, wind speed, and air temperature. This approach avoids the flawed assumption
that limited homeothermy requires Tleaf to decrease below Tair.

We found that traits varied significantly with MAT in E. grandis and D. darlingiana, but their responses
differed: leaf width increased with MAT for D. darlingiana and decreased for E. grandis . Wider leaves
have lower boundary layer conductance leading to higher leaf temperatures (Leigh et al., 2017; Wright et al.,
2017). Despite this, both species showed similar declines in [?]Ttrait with increasing MAT. This suggests
that variables associated with stomatal conductance (g s) played crucial roles in offsetting the heating effect
of wider leaves in D. darlingiana . When comparing predicted [?]Ttrait using the coupled photosynthesis-
stomatal conductance model with predictions based on theoretical maximum conductance (which itself did
not change with MAT), the [?]Ttrait trends aligned for E. grandis but not for D. darlingiana . Differences
between the methods may partly explain the lack of thermoregulation observed by Kullberg et al. (2023)
who used stomatal anatomical traits to calculate g s. The primary model we used assumes g s is coupled
with photosynthesis (Medlyn et al., 2011), but this may not be true under high temperatures (De Kauwe et
al., 2019; Diao et al., 2024; Drake et al., 2018; Marchin et al., 2023; Urban et al., 2017), particularly in high
humidity conditions typical of tropical rainforests. Given the impact of g s modelling on our results, it is
crucial to develop approaches that accurately account for how g s varies with temperature.

We examined whether variation in leaf traits and thermal tolerance help maintain thermal safety margins
across a wide thermal gradient. Thermal tolerance increased with MAT while predicted [?]Ttrait decreased
for two of the three species. These adjustments worked together to increase both heat tolerance and avoidance
in mature trees at warmer sites. This supports other studies showing that trait variation (both intra- and
inter- specific) increases thermal safety margins in plants grown under warm environments compared to
cooler environments (Kitudom et al., 2022; Kullberg et al., 2023; Perez & Feeley, 2020). When accounting
for observed microclimate, this trait variation was not sufficient to perfectly maintain thermal safety margins
but did lead to a shallower decrease in thermal safety margin with MAT than for C. sublimis which showed
no variation in either [?]Ttrait or thermal tolerance. Failure to consider intraspecific trait variation in
trait-based thermal safety margins may bias assessment of species vulnerability to heat stress.

Genome-wide signals of selection and genetic diversity

We hypothesised that intraspecific variation in [?]Ttrait could be explained by selection across thermal
gradients. Population differentiation for most traits was stronger than expected due to genetic drift (P ST >
F ST), indicating either phenotypic plasticity or divergent selection in natural populations. Genetic diversity
in these species was found to be relatively low across the Wet Tropics of Queensland, with moderate-high
inbreeding depression evident particularly for D. darlingiana . Although this could indicate directional
selection causing the fixation of beneficial alleles or genotypes, we cannot rule out other causes such as
small effective population sizes, self-pollination, or genetic drift. Our analysis revealed putative signals of
selection in all species, linked to either climatic or edaphic factors. Precipitation of the driest month (Bio14)
was a strong predictor of genomic variation across all species, particularly D. darlingiana and E. grandis .
For these species, MAT was another key explanatory variable in the SNP-based GDMs, while soil pH was
significant for C. sublimis . These species-specific differences in environmental drivers of adaptive genomic
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variation were also reflected in GDMs assessing population mean leaf trait values. Climate, particularly
MAT, was most influential for D. darlingiana and E. grandis, while both edaphic factors (soil pH and total
soil Phosphorus) and climate were important for C. sublimis . Moisture availability and temperature are
well-established drivers of mortality (Aleixo et al., 2019; Bauman, Fortunel, Delhaye, et al., 2022), growth
(Bauman, Fortunel, Cernusak, et al., 2022), regeneration (Comita & Engelbrecht, 2017) and thereby species
distributions (Gaviria et al., 2017) in tropical trees. The importance of edaphic variables for C. sublimis may
be related to its proteoid roots (Cheesman et al., 2018), an adaptation of Proteaceae species that enhances
phosphorus availability in nutrient-poor soils (Lamont, 2003). Interestingly, similar edaphic factors were not
significant for D. darlingiana , also a non-mycorrhizal Proteaceae species that forms cluster roots, suggesting
species-specific responses to soil conditions despite common adaptations.

Geographic distance emerged as a stronger driver of genomic variation than any single environmental variable
across all species. This correlation highlights the need for caution in interpreting our results, as the adaptive
signal may in part reflect neutral population structure. This aligns with evidence that functional genetic
variation might be influenced by neutral processes rather than selection alone (Kardos et al., 2021; Mathur
et al., 2023). Alternatively, it could indicate that loci under selection, which contribute to trait clines, may
be associated with other environmental variables not explored here that correlate with geographic distance,
or they may not form monotonic allele frequency clines in response to environmental gradients (Lotterhos,
2023). This does not negate the presence of adaptive signals but highlights the complexity of adaptation,
driven by intricate genetic systems. Thus, our findings, while pointing to potential adaptive significance,
also reflect the challenges in distinguishing selection and drift in natural populations. To address this, we
complemented our field-based analyses with a genotype x environment study using climate-controlled growth
chambers.

Local adaptation drives leaf thermoregulation in E. grandis

The implications of local adaptation from the genomic analysis were supported by the climate-controlled
experiment for E. grandis seedlings. We found that local adaptation to MAT of origin was likely responsible
for the decline in predicted [?]Ttrait with MAT across the species distribution. This was despite acclimation
of some traits to temperature or VPD. Essentially, while Vcmax25 (predicted from leaf Nmass) and leaf width
showed plasticity to growth conditions, the net effect of this trait variation on predicted [?]Ttrait cancelled
out. As a result, the variation in predicted [?]Ttrait was primarily driven through ecotypic variation in leaf
width and water use efficiency. This does not mean that plasticity is unlikely to contribute to patterns of
[?]Ttrait with MAT as sensitivities to covarying environmental factors may differ across species and lead to
different plastic and adaptive responses (Middleby, Cheesman, Hopkinson, et al., 2024).

Across the Wet Tropics of Queensland, warmer areas are usually also wetter due to the lowlands being located
along the coast and the tablelands being in a rain shadow. Trees located in warm-wet sites may benefit more
from having less conservative water use strategies that maintain carbon uptake and thermal cooling compared
to trees located in warm-dry sites. While our seedling provenance collection for the glasshouse experiment
was guided by contrasting MAT of origin, we tested how genotype x environment effects of different growth
temperatures were impacted by vapour pressure deficit. Moreover, the generalized dissimilarity modelling
on outlier SNPs identified using GPA indicated that precipitation of the driest month was a more important
explanatory variable than MAT. It is possible then that ecotypic variation observed in the glasshouse was
driven by changes in precipitation rather than temperature, however the included provenances did not cover
as even a distribution of precipitation of origin as they did for MAT of origin.

Conclusions and recommendations for future research

Our study supports growing evidence that while some tropical tree species exhibit acclimation and/or adap-
tation in leaf thermal traits, patterns of intraspecific variation differ across species (Blonder et al., 2020;
Middleby, Cheesman, Hopkinson, et al., 2024; Tarvainen et al., 2022). Our findings indicate that limited
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homeothermy is present in some, but not all, tropical tree species, and that local adaptation to climate
significantly influences variation in leaf thermoregulatory traits for certain species. This underscores the
importance of considering intraspecific variation in leaf thermal traits when evaluating plant responses to
climate change, as it may affect the adaptive capacity and resilience of tropical rainforest trees. However,
it remains unclear whether observed ecotypic variation is a response to thermal or moisture gradients, and
whether leaf thermoregulation itself is under selection or if this is just a byproduct of adaptive variation to
maintain carbon uptake or avoid water stress. Future research should focus on expanding studies of plant
thermoregulation by leveraging existing trait- and genetic datasets to better understand vulnerability and
resilience of tropical rainforest trees in the face of climate change.
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Supplementary Materials

Method S1: Extended method descriptions from field measurements

Leaf spectra

Reflectance and transmittance spectra from wavelengths 390-1100 nm were collected for the adaxial side of
leaves using a spectrometer (Jaz Spectrometer, Ocean Optics, Ocean Insight, Orlando, FL, US) and external
type integrating sphere with a halogen light source ‘illuminator’ (LI-1800-12, LI-COR Biosciences, Lincoln,
NE, US). Spectra were obtained using the ‘OceanView’ software (Ocean Optics, Ocean Insight, Orlando, FL,
US). The scanning parameters were set to average 40 scans with a boxcar width of 5, nonlinearity correction
enabled, and default settings for integrating time. Barium sulphate was used as reference material. For each
leaf, reflectance and transmittance sample and reference measurements were taken, with a dark reference
collected every 10-15 minutes. Absorptance was then calculated using the formula: Absorptance = 1 –
Reflectance – Transmittance.

Stomatal anatomy

Leaf stomatal imprints were obtained on 3 leaves per plant using nail varnish and tape on the abaxial mid-
lamina. Stomatal imprints forC. sublimis were impacted by leaf hairs so stomatal anatomical traits are
only presented for E. grandis and D. darlingiana . Microscope images were obtained at x20 magnification
and were processed using imageJ to obtain stomatal density (d , pores mm-2), as well as stomatal length
(μm) on 10 stomata per leaf. Stomatal length was converted to size (s , μm2) assuming stomatal width is
0.5×stomatal length. Maximum theoretical conductance (g max, mol m-2 s-1) was calculated as a function of
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stomatal size and density as per (Franks & Beerling, 2009; Mcelwain et al., 2016; Sack & Buckley, 2016);

gmax = bmds0.5

where b is a biophysical constant equal to D (diffusivity of water vapour in air, m2 s-1) /v (molar volume of
air, m3mol-1) and m is a morphological constant that represents the allometric relationships between pore
length and depth, and stomatal length and width. Here we used scaling factors assuming kidney bean-shaped
guard cells, and as such m = 0.432. Forb factors were calculated assuming an air temperature of 25°C so
that D = 0.0000249 m2 s-1 andv = 0.0224 m3 mol-1. Thereby g max accounts for variation in stomatal
anatomy, and not in the increase in diffusivity of water as temperature increases.

Stomatal conductance modelling

To obtain g s, traits that impact gas exchange are required, such as the maximum rate of carboxylation
(Vcmax25) and light-saturated rate of electron transport (Jmax25), as well as the slope parameter (g 1) that
describes the relationship between photosynthesis and stomatal conductance and responses to changes in
VPD (Medlyn et al., 2011). Since characterizing Vcmax25, Jmax25 and g 1 in the field for each tree was
not feasible, we varied these according to observed relationships with leaf Nmass (Vcmax25), and as a ratio
of Vcmax25 (Jmax) (Figure S 8) and used thermal sensitivity of Vcmax and Jmax parameters determined in
Australian tropical trees (Kelly, 2014). The parameter g 1 was calculated using the following equation
(Medlyn et al., 2011):

g1 =
( Ci

Ca

√
VPD)

(1− Ci

Ca
)

where VPD is the tree-level mean daytime vapour pressure deficit (kPa), and C i/C a is the ratio of
intercellular to ambient CO2 concentrations, estimated from leaf δ13C using the ‘isocalcr’ package in R
(Mathias & Hudiburg, 2022).

An assumption of the USO model used to predict g sis that plants maximize carbon gain while minimizing
water loss. This model effectively captures dynamic gas exchange and produces realistic leaf temperatures
under non-stressful conditions (Guo et al., 2022). However, evidence suggests that at higher temperatures,g

s and photosynthesis decouple, withg s maintained or even increasing (De Kauwe et al., 2019; Diao et al.,
2024; Drake et al., 2018; Marchin et al., 2023; Urban et al., 2017). This decoupling may reflect a strategy
to enhance transpirational cooling rather than optimizing carbon gain, especially under heat stress. Relying
solely on the USO model could thus overlook plant responses aimed at maintaining Tleaf within a viable range.
In addition, our parameterisation relies on a within-species correlation between Vcmax25 and leaf Nmass that
was only determined in E. grandis . To address these assumptions, we also calculated [?]Ttraitand [?]Tclim

using theoretical g maxdetermined from stomatal anatomy, via the findTleaf function, which estimates Tleaf

independently of photosynthesis. By incorporating g max, we aim to account for the upper limits of stomatal
conductance that plants may employ in response to heat stress.

Method S2: Extended method descriptions from climate-controlled glasshouse
trial

Gas exchange measurements Photosynthesis-CO2 response curves (A-Ci) were conducted using a portable
gas exchange system (LiCor 6400xt; LiCor Inc., Lincoln, NE, USA) to determine Vcmax25 and Jmax25 for
comparison with leaf Nitrogen content (described below). Measurements were conducted on 6 plants per
chamber (8 for the warm-humid) representing one unique mother tree per plant. The cuvette conditions
were conducted under ambient midday treatment temperatures (32°C for the two warm chambers, and 29°C
for the cool chamber), with a flow rate of 500 μmol s-1, a PAR of 1000 μmol m-2 s-1, and an RH in the
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reference air stream of 73%. The Photosyn function in the ‘plantecophys’ package was used to fit Vcmax
and Jmax standardized to 25°C using temperature response parameters from Kelly (2014).

Leaf traits Upon completion, leaf traits (leaf width, leaf area, and fresh and dry leaf mass) were measured on
10 healthy, new, full expanded leaves per plant, including those measured for gas exchange, using standard
techniques (Perez-Harguindeguy et al., 2013). The leaf material was oven-dried at 70°C for 3 days and ground
for analysis of leaf δ13C and % Nitrogen. These traits were compared with observed measurements of g 1
and Vcmax25 to assess assumptions used for leaf energy balance modelling in the field campaign data. To
convert δ13C values to estimates of g 1 in the glasshouse, we assumed a value of -10δ13C of CO2 in air in
the glasshouse chambers.

Tleaf parameterisation

We estimated [?]Ttrait for plants in the glasshouse experiment using the same leaf energy balance modelling
approach as for the field campaign, with leaf traits varying by individual, and microclimate inputs standard-
ised across all individuals to isolate the effect of trait variation on [?]Ttrait. Microclimate inputs were Tair

= 25°C, VPD = 1.4 kPa, PPFD = 1400 μmol m-2 s-1 and Wind = 0.5 m s-1. Leaf trait inputs included leaf
width, Vcmax25 calculated from the observed relationship between Leaf N %, and g 1 calculated from leaf
δ
13C.

Table S1. Glasshouse conditions and licor set points. Values are means ± 1 SD. Mean glasshouse conditions
are based on data from 9:00 to 15:00, whereas means for gas exchange survey are from licor measurements.
Licor set points represent Tleaf, VPDleaf and RHsample.

Tair (°C) VPD (kPa) RH (%)

Mean SD Mean SD Mean SD
Daytime mean glasshouse conditions
Cool-humid 25.7 1.67 1.0 0.21 71.1 4.76
Warm-humid 31.6 1.68 1.1 0.20 76.2 3.21
Warm-dry 31.7 1.70 2.0 0.45 58.7 7.02
Total 24 hour mean glasshouse conditions
Cool-humid 21.5 3.63 0.6 0.27 76.5 5.51
Warm-humid 27.3 3.69 0.8 0.29 78.7 3.99
Warm-dry 27.4 3.70 1.2 0.67 70.4 11.31
Set points for gas exchange survey
Cool-humid 28.9 1.69 1.2 0.19 75.7 3.98
Warm-humid 32.1 1.27 1.5 0.28 75.3 4.75
Warm-dry 32.7 1.51 1.5 0.50 77.6 4.52

Table S2. Population effects on trait variation. For each species we report the overall trait mean, along with
the model results for the linear regression with population as the independent variable. Tests with P < 0.05
are bolded.

Trait Cardwellia Sublimis Darlingia Darlingiana Elaeocarpus Grandis

Mean R2 df F P Mean R2 df F P Mean R2 df F P
LMA 137 0.36 14, 91 3.6 < 0.0001 169 0.54 14, 81 6.73 < 0.0001 116 0.47 15, 88 5.2 < 0.0001
LDMC 410 0.43 14, 91 4.98 < 0.0001 456 0.48 14, 81 5.34 < 0.0001 433 0.58 15, 88 8.15 < 0.0001
Thickness 26.34 0.8 14, 91 26.37 < 0.0001 34.5 0.65 14, 81 10.85 < 0.0001 22.49 0.81 15, 88 24.43 < 0.0001
Width 5.66 0.39 14, 91 4.16 < 0.0001 5.55 0.47 14, 81 5.17 < 0.0001 3.33 0.43 15, 88 4.41 < 0.0001
Abs 0.56 0.41 14, 90 4.42 < 0.0001 0.55 0.43 14, 81 4.41 < 0.0001 0.56 0.31 15, 88 2.65 0.0024
Ref 0.25 0.5 14, 90 6.46 < 0.0001 0.27 0.3 14, 81 2.45 0.0062 0.26 0.56 15, 88 7.53 < 0.0001
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Trait Cardwellia Sublimis Darlingia Darlingiana Elaeocarpus Grandis

N % 0.95 0.23 14, 91 1.94 0.0324 0.98 0.35 14, 81 3.07 0.0008 1.55 0.49 15, 88 5.73 < 0.0001
C/N ratio 47.4 0.15 14, 91 1.14 0.339 48.91 0.3 14, 81 2.43 0.0066 28.85 0.49 15, 88 5.61 < 0.0001
δ
13
῝ -28.9 0.1 14, 91 0.72 0.752 -30.7 0.44 14, 81 4.63 < 0.0001 -29.3 0.31 15, 88 2.65 0.0024

g1 3.18 0.21 14, 91 1.68 0.0731 5.71 0.62 14, 81 9.29 < 0.0001 3.75 0.37 15, 88 3.38 0.0002
Stomatal density NA NA NA NA NA 335 0.4 8, 26 2.13 0.0694 816 0.35 10, 33 1.78 0.104
Stomatal size NA NA NA NA NA 429 0.56 8, 26 4.15 0.0027 188 0.45 10, 33 2.67 0.0164
gmax NA NA NA NA NA 3.3 0.47 8, 26 2.9 0.0189 5.31 0.36 10, 33 1.86 0.0883
Tcrit 44.26 0.4 3, 17 3.83 0.0291 45.12 0.33 3, 18 2.95 0.0603 44.73 0.33 4, 22 2.74 0.0546
T50 49.46 0.3 3, 17 2.38 0.105 49.68 0.34 3, 18 3.04 0.056 49.82 0.6 4, 22 8.33 0.0003
[?]Ttrait 5.95 0.37 14, 90 3.83 < 0.0001 5.06 0.54 14, 81 6.79 < 0.0001 4.25 0.56 15, 88 7.34 < 0.0001
Anatomical [?]Ttrait NA NA NA NA NA -0.63 0.41 8, 26 2.23 0.0579 -1.84 0.45 10, 33 2.75 0.0139
TSMtrait 18.71 0.31 3, 17 2.56 0.0893 19.75 0.63 3, 18 10.16 0.0004 20.72 0.71 4, 22 13.7 < 0.0001
Anatomical TSMtrait NA NA NA NA NA 25.88 0.09 2, 8 0.39 0.692 26.81 0.85 3, 12 21.99 < 0.0001

Figure S1. Comparison of observed trait differentiation (PST ) and expected neutral divergence (FST) across
species and traits. The black points represent PST values for individual traits, with error bars showing the
95% confidence intervals from 1000 bootstrapped replicates. Dark grey shading represents the χ2 distribution
of FST estimates for each species and red vertical lines indicate the 5% upper limit of the FST estimates
(empirical 95% cut-off) to test for significant differentiation beyond neutral expectations. Overall FST
estimated from analysis of molecular variance on all SNPs using the ‘poppr’ package.

Table S3. Mean annual temperature effects on trait variation. For each species we report the slope estimate,
along with model results for the linear regression with mean annual temperature as the independent variable.
Tests with P < 0.05 are bolded.

Trait Cardwellia sublimis Darlingia darlingiana Elaeocarpus grandis

Slope df F P Slope df F P Slope df F P
LMA 0.6 1, 104 0.292 0.59 -6.84 1, 94 45.639 < 0.0001 -2.09 1, 102 8.459 0.0045
LDMC 3.23 1, 104 3.228 0.0753 -1.44 1, 94 0.78 0.379 3.65 1, 102 4.988 0.0277
Thickness -0.04 1, 104 0.031 0.86 -0.7 1, 94 6.535 0.0122 -0.2 1, 102 1.168 0.282
Width 0.05 1, 104 1.069 0.303 0.14 1, 94 10.011 0.0021 -0.12 1, 102 34.996 < 0.0001
Abs 0 1, 103 0.205 0.652 0 1, 94 4.787 0.0312 0 1, 102 1.369 0.245
Ref 0 1, 103 3.761 0.0552 0 1, 94 0.136 0.713 0 1, 102 2.393 0.125
N % -0.01 1, 104 3.26 0.0739 0 1, 94 0.172 0.679 0 1, 102 0.159 0.691
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Trait Cardwellia sublimis Darlingia darlingiana Elaeocarpus grandis

C/N ratio 0.46 1, 104 1.417 0.237 0.03 1, 94 0.006 0.939 0.18 1, 102 0.803 0.372
δ
13
῝ -0.01 1, 104 0.042 0.837 -0.31 1, 94 41.853 < 0.0001 -0.15 1, 102 7.831 0.0061

g1 0.13 1, 104 15.619 0.0001 0.86 1, 94 77.146 < 0.0001 0.27 1, 102 28.743 < 0.0001
Stomatal density NA NA NA NA 2.65 1, 33 0.64 0.43 23.48 1, 42 9.692 0.0033
Stomatal size NA NA NA NA -4.86 1, 33 0.382 0.541 -9.01 1, 42 22.931 < 0.0001
gmax NA NA NA NA 0.02 1, 33 0.178 0.676 0.02 1, 42 0.285 0.596
Tcrit 0.14 1, 19 0.172 0.683 0.27 1, 20 0.753 0.396 0.33 1, 25 2.853 0.104
T50 0.01 1, 19 0.005 0.945 0.22 1, 20 4.614 0.0441 0.28 1, 25 14.275 0.0009
[?]Ttrait -0.02 1, 103 0.559 0.457 -0.21 1, 94 59.238 < 0.0001 -0.16 1, 102 65.164 < 0.0001
Anatomical [?]Ttrait NA NA NA NA 0.02 1, 33 0.494 0.487 -0.06 1, 42 20.598 < 0.0001
TSMtrait 0.03 1, 19 0.092 0.765 0.52 1, 20 30.153 < 0.0001 0.42 1, 25 29.943 < 0.0001
Anatomical TSMtrait NA NA NA NA 0.09 1, 9 0.609 0.455 0.4 1, 14 22.618 0.0003

Note: LMA = leaf mass per area, LDMC = leaf dry matter content, Abs = Absorptance, Ref = Reflectance,
N % = % leaf Nitrogen, C/N ratio = Carbon/Nitrogen ratio, g 1 = stomatal slope parameter, g max =
theoretical maximum conductance, [?]Ttrait = leaf-air temperature calculated using tree-level traits, and
TSMtrait = thermal safety margin.
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Figure S 2. Leaf trait relationships with mean annual temperature across the Wet Tropics for three tropical
tree species. Each point represents an individual tree average of 10 leaves (or 3 for Abs and stomatal
anatomy). Significant correlations (P < 0.05) are denoted by solid lines whereas nonsignificant relationships
are denoted by dashed lines. Shaded regions represent standard error.
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Figure S3. Variation in anatomical trait-based leaf-to-air temperature differences (anatomical [?]T; a-b), and
thermal safety margins (anatomical TSM; c, d) with mean annual temperature across the distribution ofD.
darlingiana and E. grandis . Note in a and c [?]T is based on leaf trait variation with the same microclimate
inputs for all trees, whereas in b and d, microclimate inputs also vary with each individual tree. Each
point represents an individual-tree level average. Significant correlations with mean annual temperature are
denoted by solid regression lines whereas non-significant correlations are dotted. Shaded region represents
standard errors.
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Figure S4. Population structure results for Cardwellia sublimis. Map with pie charts (top left) representing
proportion of ancestry contribution corresponding to bar plot, ordered by latitude (bottom) with dark and
light green colours representing the two different ancestry groups. Principal component plot (top right)
shows the genetic similarity of individuals with point colours corresponding to latitude, and isolation by
distance plot (centre, right)
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Figure S5. Population structure results for Darlingia darlingiana. Map with pie charts (top left) representing
proportion of ancestry contribution corresponding to bar plot, ordered by latitude (bottom) with dark and
light green colours representing the two different ancestry groups. Principal component plot (top right)
shows the genetic similarity of individuals with point colours corresponding to latitude, and isolation by
distance plot (centre, right).
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Figure S6. Population structure results for Elaeocarpus grandis. Map with pie charts (top left) representing
proportion of ancestry contribution corresponding to bar plot, ordered by latitude (bottom) with dark and
light green colours representing the two different ancestry groups. Principal component plot (top right)
shows the genetic similarity of individuals with point colours corresponding to latitude, and isolation by
distance plot (centre, right).

Table S4. Population genetic diversity metrics for each species. AR = Allelic richness, Hobs = observed
Heterozygosity, Hexp = expected Heterozygosity, Fis = inbreeding coefficient.

Population Cardwellia sublimis Darlingia darlingiana Elaeocarpus grandis

AR (C.I.) Hobs Hexp FIS (C.I.) AR Hobs Hexp FIS (C.I.) AR Hobs Hexp FIS (C.I.)
1. Cedar Bay 1.41 (1.28, 1.49) 0.13 0.17 0.19 (0.18, 0.20) 1.36 (1.22, 1.44) 0.11 0.17 0.28 (0.27, 0.30) 1.42 (1.14, 1.53) 0.17 0.23 0.21 (0.20, 0.23)
2. Daintree 1.40 (1.24, 1.49) 0.13 0.17 0.21 (0.19, 0.22) 1.37 (1.24, 1.45) 0.11 0.17 0.26 (0.24, 0.27) 1.49 (1.19, 1.57) 0.21 0.23 0.04 (0.03, 0.06)
3. Mt Windsor 1.41 (1.26, 1.49) 0.12 0.18 0.24 (0.22, 0.25) 1.37 (1.25, 1.45) 0.12 0.17 0.24 (0.22, 0.25) 1.38 (1.13, 1.48) 0.16 0.20 0.15 (0.14, 0.17)
4. Mt Lewis 1.46 (1.38, 1.52) 0.14 0.18 0.18 (0.17, 0.19) 1.38 (1.25, 1.46) 0.12 0.17 0.25 (0.24, 0.26) 1.45 (1.18, 1.54) 0.18 0.23 0.16 (0.15, 0.18)
5. Kuranda 1.48 (1.33, 1.58) 0.16 0.19 0.13 (0.12, 0.14) 1.41 (1.26, 1.5) 0.13 0.19 0.23 (0.22, 0.25) 1.47 (1.19, 1.56) 0.19 0.24 0.16 (0.15, 0.18)
6. Dinden 1.50 (1.34, 1.59) 0.16 0.20 0.11 (0.10, 0.13) 1.37 (1.28, 1.5) 0.13 0.18 0.22 (0.20, 0.23) 1.46 (1.34, 1.55) 0.18 0.24 0.19 (0.17, 0.20)
7. Mt Edith 1.50 (1.34, 1.6) 0.16 0.20 0.15 (0.13, 0.16) 1.42 (1.24, 1.52) 0.12 0.19 0.27 (0.26, 0.29) 1.35 (0.87, 1.49) 0.16 0.19 0.11 (0.08, 0.13)
8. Danbulla 1.50 (1.39, 1.59) 0.14 0.21 0.24 (0.22, 0.25) 1.47 (1.31, 1.53) 0.14 0.20 0.25 (0.24, 0.26) 1.44 (1.21, 1.55) 0.18 0.24 0.19 (0.17, 0.20)
9. Goldsborough NA NA NA NA 1.43 (1.28, 1.52) 0.13 0.19 0.22 (0.21, 0.23) 1.49 (1.2, 1.55) 0.21 0.23 0.06 (0.04, 0.07)
10. Mt Baldy 1.48 (1.32, 1.57) 0.14 0.20 0.21 (0.20, 0.22) 1.43 (1.29, 1.52) 0.14 0.19 0.21 (0.20, 0.22) 1.39 (1.04, 1.5) 0.17 0.21 0.13 (0.11, 0.15)
11. Topaz 1.48 (1.32, 1.58) 0.15 0.20 0.20 (0.18, 0.21) NA NA NA NA 1.43 (1.26, 1.53) 0.17 0.23 0.20 (0.19, 0.22)
12. South Johnstone 1.51 (1.43, 1.59) 0.15 0.20 0.19 (0.18, 0.20) 1.46 (1.3, 1.54) 0.14 0.20 0.25 (0.24, 0.26) 1.46 (1.17, 1.54) 0.19 0.23 0.16 (0.14, 0.17)
13. Tully Falls 1.46 (1.31, 1.56) 0.14 0.19 0.19 (0.18, 0.20) 1.40 (1.27, 1.49) 0.12 0.19 0.26 (0.25, 0.28) 1.43 (1.18, 1.54) 0.16 0.23 0.22 (0.20, 0.23)
14. Mission Beach 1.49 (1.35, 1.58) 0.15 0.20 0.19 (0.17, 0.20) 1.43 (1.28, 1.51) 0.12 0.20 0.29 (0.28, 0.30) 1.47 (1.37, 1.57) 0.19 0.24 0.15 (0.13, 0.16)
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Population Cardwellia sublimis Darlingia darlingiana Elaeocarpus grandis

15. Kirrama 1.51 (1.32, 1.62) 0.17 0.21 0.13 (0.12, 0.14) 1.38 (1.21, 1.47) 0.11 0.19 0.32 (0.30, 0.33) 1.42 (1.11, 1.52) 0.16 0.23 0.25 (0.23, 0.26)
16. Paluma Range 1.42 (1.3, 1.49) 0.13 0.18 0.20 (0.19, 0.21) 1.41 (1.22, 1.49) 0.13 0.19 0.26 (0.25, 0.27) 1.44 (1.32, 1.53) 0.17 0.23 0.19 (0.17, 0.20)

Figure S7. Partial redundancy analysis (pRDA) of genotype variation for each species. The plot displays the
relationship between the SNPs with traits (a, c, e) or environment (b, d, f) along the first two RDA axes.

Table S5. Number of candidate SNPs identified by each method.
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Number of Candidate SNPs

Analysis Method C. sublimis D. darlingiana E. grandis
GPA [?]Ttrait LFMM 0 3 1
GPA [?]Ttrait pRDA 63 69 45
GPA Leaf trait LFMM 1 40 3
GPA Leaf trait pRDA 66 63 28
GEA Environment LFMM 13 24 1
GEA Environment pRDA 72 63 29
Outlier PCADAPT 243 60 126

Table S6. Generalised dissimilarity modelling results

Species Response variable Deviance explained (%) Intercept Top 6 significant predictors (ordered by % deviance explained)

Cardwellia sublimis All SNPs 76.89 0.04 Geographic, Bio14, Windmean, MAT, RHmin, Soil pH
GEA & Outlier SNPs 61.93 0.07 Geographic, Bio14, RHmin, Soil pH, Windmean, Soil P
GPA SNPs 66.6 0.05 Geographic, Soil pH, Bio14, Windmean, RHmin

[?]Ttrait 36.45 0.16 Soil pH, RHmin, MAT, Geographic
Trait PCA 34.1 0.22 Bio14, Soil P, MAT, Soil pH, Windmean, RHmin

Darlingia darlingiana All SNPs 68.08 0.03 Geographic, Bio14, Bio1, Windmean, Soil pH
GEA & Outlier SNPs 61.9 0 Geographic, MAT, Bio14, Soil pH, Windmean, RHmin

GPA SNPs 49.05 0.04 Geographic, MAT, Bio14, RHmin, Soil pH, Windmean

[?]Ttrait 44.07 0.07 MAT, Bio14, Soil pH, Geographic, RHmin

Trait PCA 21.69 0.44 Bio14, MAT, Geographic, RHmin

Elaeocarpus grandis All SNPs 65.8 0.04 Geographic, Bio14, RHmin, MAT, Soil P
GEA & Outlier SNPs 58.98 0.01 Geographic, Bio14, MAT, RHmin, Soil P, Windmean

GPA SNPs 27.47 0.07 Geographic, Bio14, MAT
[?]Ttrait 37.27 0.07 MAT, Soil pH, RHmin, Geographic
Trait PCA 20.93 0.32 MAT, RHmin, Geographic

Figure S8. Correlation between photosynthetic parameters and leaf nitrogen determined in the glasshouse
trial. Vcmax25 = maximum carboxylation rate and Jmax25 = maximum rate of electron transport. Each
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point represents a plant level mean. Coefficients from linear regressions used to predict Vcmax25 and Jmax25

in the field.

Table S7. ANOVA results from E. grandis glasshouse trial.

Trait Variable Chisq Df P value Sig

[?]Ttrait MAT 11.26 1 0.0008 ***
Treatment 1.94 2 0.3793 ns
MAT × Treatment 1.66 2 0.4362 ns

Leaf width MAT 6.78 1 0.0092 **
Treatment 13.55 2 0.0011 **
MAT × Treatment 1.33 2 0.5155 ns

Log10(g1) MAT 5.82 1 0.0158 *
Treatment 4.01 2 0.1347 ns
MAT × Treatment 2.13 2 0.3451 ns

V cmax.leafN MAT 0.09 1 0.7617 ns
Treatment 8.12 2 0.0173 *
MAT × Treatment 0.77 2 0.6799 ns
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