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Time-Variant Radio Map Reconstruction with
Optimized Distributed Sensors in Dynamic Spectrum

Environments

Abstract—Radio environment maps (REMs) have been used to
visualize the information of invisible electromagnetic spectrum.
Although in the past there have been many research activities
dealing with the reconstruction of static REMs, they did not
consider the time variation of the dynamic spectrum operational
environment. In this paper, we present a novel time-variant REM
reconstruction methodology based on sparsely distributed sensors
which jointly considers sensor layout optimization, propagation
model improvement, and missing spectrum data recovery. To
improve the sampling efficiency, the positions of sensors are
first optimized based on a greedy-matching strategy and a
gradient descend method. Then, by using the sampled spectrum
data obtained from these sensors, the accuracy of commonly
employed propagation models is improved and subsequently
used to construct a channel dictionary for such time-varying
environments. By exploring the heterogeneity of dynamic spectrum
operational environments, an improved optimal reconstruction
method is designed to recover the spectrum data using their
spatial-temporal correlation. By considering a typical university
campus environment as a case study, simulation and measurement
data are obtained to reconstruct the time-variant REM. Through
the simulation data, the reconstruction performance results are
compared with those obtained from other state-of-the-art methods
showing that the proposed methodology outperforms the others
with respect to the sampling scheme and missing rate. Additionally,
field measurement results have demonstrated that the proposed
approach can effectively reconstruct time-variant REMs under
dynamic scenarios.

Index Terms—Time-variant radio environment map, distributed
sensor deployment, propagation model, REM reconstruction,
compression sensing.

I. INTRODUCTION

A. Background and Previous Works

W ITH the rapid increase in the massive use of electronic
devices for various broadcasting, radar, and navigation

system applications, the operation of wireless communication
systems in complex electromagnetic environments has become
increasingly perplex and challenging [1]–[3]. To deal with the
scarcity of spectrum resources, the Federal Communications
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Commission (FCC) has proposed the employment of cognitive
radio (CR) technology as a possible solution [4]. Meanwhile,
the Defense Advanced Research Projects Agency (DARPA)
has introduced the radio environment map (REM), also known
as the spectrum environment map (SEM), to provide a new
and convenient way of displaying the availability of spectrum
resources [5]. The REM can enable the visualization of
important spectrum usage data information on geographical
maps, such as spectrum usage in terms of time, frequency,
received signal strength (RSS), and radio emitter position.
Such visualization is very convenient and can be easily identify
abnormal spectral activity, radio emitter localization, spectrum
resource management, etc. [6]–[8]. A key challenge in the
development of accurate REM is to recover the necessary
data from the available sets of limited data obtained from
undersampled geographical positions. For this reason, the
reconstruction of accurate REMs under the constraint of limited
sensors and sampling time has been recognized as one of its
most challenging tasks [9], [10]. Meanwhile, as it will be
elaborated in the next subsection, most of the existing methods
have considered only the problem of static REM reconstruction
without considering the actual time-variation of the operating
dynamic spectrum environment.

In general terms, the research topic of REM reconstruction
has been thoroughly investigated in the past, e.g., see [11]–[30],
mainly using two kinds of approaches, namely data-driven and
model-driven methods. The former relies on the correlation of
spectrum data, while the latter utilizes the channel propagation
model and the hidden information of RF emitters to reconstruct
REMs.

For the data-driven methods, the spatial interpolation tech-
nique has been widely used to recovery missing data by
directly mining the spatial correlation of sampled data [11],
[12]. Two typical methods used in the past include inverse
distance weighting (IDW) and the Kriging based approach [13],
[14]. Further research efforts have dealt with multidimensional
correlation of spectrum data, known as low rank characteristics,
and have developed tensor/matrix completion techniques, e.g.,
see [15]–[18]. In particular, the concept of spectrum tensor to
depict the multi-dimensional spectrum data was presented in
[15] where a joint tensor completion scheme was developed. In
[16], the authors proposed a framework to recover the spectrum
occupancy matrix by minimizing the rank of sub-matrices. In
[17], an approach to minimize the tensor rank and enforce the
smoothness of spectrum map was introduced. The authors in
[18] proposed a coupled tensor decomposition-based method
for spectrum data completion.

Meanwhile, machine learning (ML) techniques have also
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been recently adopted for the data-driven REM reconstruction,
e.g., see [19]–[24]. These techniques typically treat the recovery
of recast spectrum data as a learning-based optimization prob-
lem. For example, in [19] a solution was proposed by employing
a network model which is trained with the available sampled
data. Since the data structure of REMs resembled images,
in [20] a propagation prediction model using convolutional
neural networks (CNN) was introduced to recover the radio
map. In another approach, the authors in [21] presented a
low-complexity deep-learning based approach based on long-
short term memory (LSTM) cells under urban and highway
scenarios. The combination of deep learning with nonnegative
matrix factorization methods to improve the reconstruction
effectiveness was proposed in [22]. In addition, the authors
in [23] introduced a power spectrum maps estimation method
based on graph neural network (GNN) while the authors in
[24] generated the radio map via a novel adversarial learning
method.

On the other hand, for the model-driven methods the usual
approach is to first estimate the information of radiation
sources by the sampled data and then complete the missing
data with the help of signal propagation models [25]. It is
noted that compressed sensing (CS) has been also used in
conjunction with model driven methods to recover the REM
with sparse sampling data, e.g. see [26]–[30]. In particular,
the authors in [26] proposed a CS-based wideband REM
cartography to reduce the resource consumption. In [27], a
CS-based multispectral cartography was proposed for spectrum
sensing while in [28] the authors proposed a compressed REM
mapping method based on the improved orthogonal matching
pursuit (OMP) algorithm. In addition, the authors in [29], [30]
proposed a sparse Bayesian learning based REM reconstruction
algorithm to reduce the required spectrum data and achieve
higher accuracy with low sampling rates.

It is underlined that the aforementioned works have mostly
assumed that the spectrum environment is static with a few
exceptions where it has been considered that it has quasi-
static characteristics. For the most realistic case where the
spectrum is time-variant only a few publications studying the
reconstruction of REMs exist. In particular, the authors in
[31] introduced a semi-supervised learning-based approach
to construct time-variant REM by jointly considering the
spatial and temporal trustworthiness. In [32], the authors
adopted diffusion method together with a distance metric and
introduced a correlation-based clustering to more accurately
interpolate missing data. It is noted that these two methods
can be viewed as an upgraded spatial interpolation approach.
In [33], although the hidden spatial-temporal-spectral struc-
tures of the spectrum data have been exploited, the authors
have modelled the time-variant REM as 3rd-order spectrum
tensor without considering the statistics of the propagation
model. The authors in [34] extracted the spatial propagation
properties from the spatial-temporal spectrum data based on
the proper orthogonal decomposition (POD) and proposed a
greedy sampling locations optimization. Although this approach
improves the REM reconstruction performance, it has serious
disadvantages as it requires large amounts of prior data and does
not consider the heterogeneity of space and time dimensions. In

another effort, the authors in [35] proposed an REM updating
mechanism based on siamese neural networks (SNN) and the
attention mechanism, which nevertheless requires massive data
to train the network model. Finally, [36] has presented an effort
to combine the optical flow vectors field with the radiation
sources movement vectors, and used the channel model driven
extrapolation method to predict the REMs. However, this
approach ignored the spatial characteristics of REM data and
required some prior data.

Based upon the previous discussion, and to the best of our
knowledge, we can conclude that there has been no paper
published in the open technical literature which addresses in a
systematic manner the challenging problem of optimizing the
performance of time-variant REM.

B. Contributions

Motivated by the previous observations, in this paper we
propose a novel time-variant REM reconstruction methodology
based on CS concepts, which holistically considers the optimiza-
tion of sensor layout, the impact of channel propagation models,
and the inherent spatial-temporal heterogeneity of spectrum
data. Within this framework, the main novel contributions of
this paper can be summarized as follows.

1) A greedy-matching based sensor layout optimization
algorithm is developed. The sensing matrix is first obtained
by a gradient descent method, and then the sensor position is
iteratively determined and optimized by an upgraded greedy
matching algorithm. The proposed model-driven method has
very high sampling efficiency and low reconstruction error.

2) An environment-dependent propagation model dictionary
is developed to improve the reconstruction accuracy. By using
the sampled data to iteratively optimize the close-in (CI) model
and/or other well-known channel models like the Hata and ITU
models, the proposed approach considers various environmental
factors including the effects of buildings, vegetation, and signal
shadowing. Such information combined with the estimated
information of sparse radio frequency (RF) emitters, naturally
leads to the accurate recovery of missing data in the spatial zone
which will improve the overall reconstruction performance.

3) By considering the heterogeneity of spectrum data in
dynamic operational environments, a novel data recovery
method based upon a spatial-temporal joint semi-variogram is
proposed to depict the inherent data correlation. The proposed
method overcomes the restrictive condition of homo-distribution
of spatial-temporal data required by traditional methods and
exhibits excellent spectrum data recovery performance.

The rest of this paper is organized as follows. After this
introduction, Section II presents the system model and by using
CS formulates the problem of REM reconstruction. In Section
III, the details of the proposed time-variant reconstruction
methodology are presented. Section IV presents performance
evaluation results by simulations and field measurement data.
The conclusions of the paper can be found in Section V.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, first the overall system and time-variant
REM models is presented. Then, appropriate mathematical
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Fig. 1: The considered system model and its time-variant
REM operation in a dynamic spectrum environment.

formulations related with the CS problem are introduced, which
would be used to recover the REM with sparse sampling data.

A. System and Time-variant REM Models

Fig. 1 illustrates the dynamic spectrum environment in which
the considered REM is assumed to operate. It consists of several
mobile RF emitters and some sensors, which are sparsely
distributed in the coverage area as well as various obstacles,
such as buildings and trees. The REM which will be studied
is a received signal strength (RSS) map, which is also referred
to as “spectrum map”.

By displaying typical measured data, Fig. 2 illustrates the
three operational steps of the proposed time-variant REM recon-
struction process, namely the “Sampling Position”, “Sampled
Data” and “Reconstructed REM”. In the “sampling position”
part, the region of interest (ROI), shown with squares, is first
discretized into a set of small grids. Then, in the “sampled
data” part, distributed sensors are arranged in the center of the
sensor layout scheme to obtain the RSS value of the entire
grid. In the “reconstructed REM” part, the RSS values of the
unsampled grid are estimated or recovered to reconstruct the
REM.

For this system model, it is assumed that the available RF
emitters are mobile, and due to the fading phenomenon, the
time-variant REM can be described within a time period as a
3rd-order tensor X ∈ ℜNx×Ny×Nt . As also shown in Fig. 2,
Nx and Ny represent the maximum number of grid index along
the x-y axis respectively, and Nt indicates the one along the
time index. The element of grid (nx, ny) at the ntth timeslot
can be denoted as x(nx, ny, nt). Note that X can also be
viewed as a sequence of 2D slice, which represents the space
REM for each timeslot as X = [X1,X2, ...,XNt

].
The sampling positions at the ntth timeslot can be mathe-

matically expressed by the following matrix

Cnt(nx, ny) =

{
1, if a sensor is at grid (nx, ny),
0, otherwise. (1)

Furthermore, the time-variant sampling positions can be
expressed by a tensor, C = [C1,C2, ...,CNt

], whereas the raw
spectrum data collected from these positions can be obtained
as

X̃ = X ⊗ C, (2)

Fig. 2: A typical illustration of the time-variant REM
reconstruction process based upon measured data.

where ⊗ represents the matrix Hadamard product.
The main challenge in REM reconstruction is to recover the

REM tensor X̂ , based on the sampled raw data X̃ . This can
be accomplished through the minimization of the difference
between X̂ and X as

min ||X̂ −X ||F
= ||(X̂1 −X1); (X̂2 −X2); ...; (X̂Nt

−XNt
)||F ,

s.t. X̂ ⊗ C = X̃ ,

(3)

where || · ||F denotes the Frobenius norm, which calculates
the square root of the sum of the absolute square of tensor’s
elements.

B. Compressed Sensing based REM Data Recovery

As the RF emitters shown in Fig. 2 are assumed to
be sparsely distributed in the ROI, CS can achieve high
reconstruction performance by exploiting sparsity. Therefore,
the reconstruction of the ntth REM, i.e., the spectrum matrix
Xnt , can be formulated as a CS problem which will be solved
next in order to recover the values of all Nxy = Nx × Ny

grids at the ntth timeslot.
Let us first consider a sparse signal vector ωnt

=
[ωnt,1, ωnt,2, ..., ωnt,nxy

, ..., ωnt,Nxy
] where

ωnt,nxy =

{
P t
nt,nxy

, if an emitter is at grid nxy,
0, else,

(4)

with P t
nt,nxy

being the transmitting power of the RF emitter
at grid nxy at time nt. Clearly, if there exist K RF emitters,
ωnt is a K-sparse signal vector. The RSS P r

nt,n′
xy,k

from the
kth RF emitter to the sensor at grid n′xy can be expressed as

P r
nt,n′

xy,k
= φn′

xy,k
P t
nt,k, (5)

where φn′
xy,k is the propagation gain from the kth emitter to

the n′xy
th grid, and P t

nt,k
denotes its transmitting power. Since

the RSS measured by each sensor may include the receiving
power of several RF transmitters, the total RSS at grid n′xy
can be obtained as

xn′
xy,nt

=

K∑
k=1

P r
nt,n′

xy,k
+ε, (6)

where ε is the measurement noise.
Equivalently, this can be written as

xnt
= φ · ωnt

+ε, (7)
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where xnt
∈ ℜNxy×1 is obtained by vectorizing the spectrum

matrix Xnt ∈ ℜNx×Ny ,ωnt ∈ ℜNxy×1 is the sparse signal
and φ ∈ ℜNxy×Nxy is the channel propagation dictionary
which is defined as the propagation channel characteristic
between the grids. For instant, the element φn′

xy,nxy
in the

n′xy
th row and the nxy th column can be expressed as

φn′
xy,nxy

= 10log10
(4πdn′

xy,nxy )
2

Gn′
xy
Gnxy

λ2

+10ξlog10(dn′
xy,nxy )+χ

CI
σ ,

(8)

where λ is the propagation signal wavelength, Gnxy
and Gn′

xy

are the antenna gains of the emitter at grid nxy and the
sensor at grid n′xy, respectively, d

n′
xy,nxy

=
∥∥∥L′

xy − Lxy

∥∥∥
2

is the distance between the grid nxy and the grid n′xy, ξ
is path loss exponent, and χCI

σ is a zero-mean Gaussian
random variable with a standard deviation σ. It is noted that
previously published papers, e.g., [26], have used simplified
channel models which do not consider various scattering
phenomena, such as reflection and diffraction. Thus, it is
necessary to enhance such propagation dictionaries to capture
propagation features in the spectrum environment so that the
REM reconstruction performance can be improved.

For this purpose, it is necessary to use a vectorized sampled
spectrum data set. At the time nt, the measurement matrix,
which identifies the position of the sensors, can be expressed
as

ψnt
= Σ⊗ [Ent

,Ent
, ...,Ent

]
T
, (9)

where Σ is an Nxy ×Nxy identity matrix. Each row of ψnt

has an element of 1 denoting the sampled position in the ROI
and Ent

can be expressed as

Ent
=

[
[1, 0, 0..., 0] ·Cnt

[0, 1, 0..., 0] ·Cnt
...

[0, 0, 0..., 1] ·Cnt

]T
.

(10)
Finally, the vectorized sampled spectrum data at time nt can

be obtained as
x̃nt = ψntφωnt+ε. (11)

III. REM RECONSTRUCTION METHODOLOGY

This section presents the details of the proposed methodology
for obtaining the new time-variant REM reconstruction scheme.
After discussing the operational details of the system model, a
greedy-matching based sensor layout optimization algorithm
which enhances the efficiency of spectrum data acquisition is
introduced. By considering the effects of buildings, shadowing,
and antenna pattern [37] on the received signal power, the
propagation channel and sampled data are combined to obtain
a realistic propagation model for the intra-slice recovery. For the
inter-slice recovery, a spatial-temporal semi-variance function
is introduced to more accurately model the spectrum data
correlation of different time instants in dynamic scenarios.

A. An Overview of Proposed REM Reconstruction Methodology

Fig. 3 illustrates the block diagram of the proposed REM
reconstruction methodology which consists of three main
modules: i) The sensor layout optimization (SLO); ii) The

Fig. 3: The detailed block diagram of the proposed
time-variant REM reconstruction methodology.

propagation dictionary improvement (PDI); and iii) The time-
variant REM reconstruction (TVR). Firstly, the gradient descent
method and the upgraded greedy matching algorithm are jointly
used to optimize the sensor position (measurement matrix)
to obtain a better spatial distribution. Secondly, based on
the previously described CS approach, the sparse signal is
recovered by the sampled data, which are then being used
to correct and update initial propagation model dictionary.
Through continuous iterations, the propagation dictionary can
be made more suitable for the under consideration environment.
Finally, by considering the heterogeneity of spectrum data, we
extend the semi-variance function to the time domain and
evaluate the spatial-temporal semi-variance to obtain spatial-
temporal correlation. Combining the optimized dictionary used
for intra-slice recovery with spatial-temporal correlation used
for inter-slice recovery, the time-variant REM is reconstructed.

B. Distributed Sensor Layout Optimization

It has been shown that by reducing the correlation be-
tween the propagation dictionary and the sensor position (or
measurement matrix), improved reconstruction performance
can be obtained [27]. Thus, by reducing this correlation the
measurement matrix will be optimized. This, in turn, will
make the compressed sensing process more consistent with
the restricted isometry property (RIP), thereby improving the
accuracy of reconstruction [28]. Let define the correlation
coefficient ρ(S) as

ρ(S) = max
i ̸=j

{ ∣∣sTi sj∣∣
∥si∥ ∥sj∥

}
, (12)

where S = ψφ is the sensing matrix, ψ denotes the position
of sensors, φ is the channel dictionary matrix, and sith is the
ith column of S.

Clearly, since Eq. (12) is the worst-case bound which is
difficult to solve, it’s convenient to be transformed into a
more trackable optimization model [4], In particular, letting
G = STS, the correlation coefficient can also be viewed as
the maximum absolute value of non-diagonal elements in G
which makes it an approximate identity matrix

G = STS = φTψTψφ ≈ I, (13)
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where I is an identity matrix.
Thus, the problem of sensor position optimization is now

transformed into an unconstraint optimization problem which
can be conveniently expressed as

ψ̂=argmin
ψ

∥∥φTψTψφ− I
∥∥2
F
, (14)

Its optimal solution can be conveniently obtained using the
gradient descent method. For this, let us first define the error
function as J(ψ) =

∥∥φTψTψφ− I
∥∥2
F

and take the derivative
of measurement matrix as
∂J(ψ)

∂ψ
=

∂

∂ψ

{
tr[(φTψTψφ− I)

T
(φTψTψφ− I)]

}
= 4ψφ(φTψTψφ− I)φT,

(15)
where tr(·) is the trace of the matrix.

Then, a gradient descent approach can be used to optimize
the measurement matrix as

ψiter+1 = ψiter − β
∂J(ψ)

∂ψ

= ψiter − ηψiterφ(φ
TψTψφ− I)φT,

(16)

where the iteration step is set as η = 4β (β > 0) and iter is
the iteration index.

Note that through the optimized measurement matrix alone
the sensor positions cannot be directly obtained. Thus, next
we propose a novel greedy matching based algorithm to select
proper positions. It is first noted that the layout process of sensor
is essentially a binary selection procedure, and by placing a new
sensor, a column is selected from the channel dictionary matrix.
In the proposed algorithm the position that is closest to the
optimized sensing matrix is selected as the new sensor position.
Furthermore, by imposing a distance constraint to avoid the
selection of adjacent positions, the optimization objective for
the ith sensor can be mathematically expressed as

min
ψ

∥∥∥ψ(l, :)φ− Ŝ(l, :)
∥∥∥2
F
,

s.t. ψlj ∈ {0, 1} , j = 1, 2, ..., n, Ŝ = ψ̂φ,
(17)

where ψ̂ is the final measurement matrix. The algorithmic im-
plementation of the proposed algorithm is shown in Algorithm
1. Finally, the optimized positions of distributed sensors can
be obtained from the measurement matrix.

C. Propagation Dictionary and Sparse RF emitters Estimation

The propagation models commonly adopted for REM re-
construction are the free-space propagation model and/or other
well-known channel models such as the Hata and ITU models.
Unfortunately, these models are not capable of accurately
considering specific characteristics of practical propagation
environments, and unavoidably their use will lead to inaccurate
REM reconstruction. To deal with this problem, in our paper
we improve the propagation modelling procedure by employing
measured sparse data, which clearly are more accurate as they
include the characteristics of ROI.

The initial propagation dictionary is built based on the CI
channel model and Eq. (8). The sparse signal ωnt

can be first

Algorithm 1 Greedy-matching based sensor position selection
algorithm

Input: Channel dictionary φ, Optimized sensing matrix Ŝ,
number of sensors m.

Output: Sensor set Ω, Measurement matrix ψ.
1: for i ∈ [1,m] do
2: Initialize temporary variable T = ∅, idx = 0.
3: for j ∈ [1, n] do
4: T = T ∪

∥∥∥φ(j, :)− Ŝ(i, :)
∥∥∥2
F

5: end for
6: idx = The index of the minimum in temporary variable

T.
7: Ω=Ω

⋃
idx.

8: Initialize Adjacency set A = ∅,obtain the index of
adjacent positions with idx.

9: for k ∈ [1, n] do
10: if Distance(k, idx) < 2 then
11: A = A

⋃
k, append k into adjacency set.

12: end if
13: end for
14: φ(A, :) = +∞
15: end for
16: Map the sensor set to measurement matrix Ω → ψ.
17: return Sensor set Ω, measurement matrix ψ.

estimated by the spectrum data sampled by the sensors. Then,
both the sparse signal ωnt

and the propagation dictionary φ
are iteratively improved by a matrix decomposition technique.

The sparse signal recovery can be equivalent to an l1
minimization problem as

ω̂nt
= argmin

ωnt

||ωnt
||1,

s.t. ||x̃nt
−ψnt

φωnt
|| ≤ ε,

(18)

where x̃nt
is the sampled spectrum data vector and ε is

the measurement error. Since Eq. (18) can be considered as
an l1 regularized linear regression problem, the objective of
optimization can be rewritten as

ω̂nt = argmin
ωnt

1

2
||x̃nt −ψntφωnt ||+ η||ωnt

||1, (19)

where η is a scalar regularization parameter.
The alternating direction method of multipliers (ADMM)

is used to transform the objective function into two separable
variables. This simplifies the l1 minimization problem which
can be rewritten as

min f(ωnt) + g(µ),
s.t. ωnt

− µ = 0,
(20)

where f(ωnt
) = 1

2 ||x̃nt
− ψnt

φωnt
|| and g(µ) = η||µ||1.

Thus, the variables can be updated as

ωnt

l+1 = (φTψnt

Tψnt
φ+ ρΣ)−1

(φTψnt

T x̃nt
+ ρ(µl − ul)),

µl+1 = Sη/ρ(ωnt

l+1 + ul),

ul+1 = ul + ωnt

l+1 − µl+1,

(21)
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where ρ > 0 and Sη/ρ(·) is the soft thresholding function.
Furthermore, instead of only considering the sparse solution

ωnt
, we jointly optimize φ and ωnt

in order to improve the
accuracy, which can be expressed as

||xnt − ψ̃ntφωnt ||

= ||xnt
−

Nxy∑
j=1

φ(·, j)ωnt
(j)||

= ||(xnt
−

∑
j ̸=i

φ(·, j)ωnt
(j))−φ(·, i)ωnt

(i)||,

(22)

where xnt
= φωnt

and ψ̃nt
is degenerated to the identity

matrix.
The optimization problem can then be conveniently expressed

as
φ̂, ω̂nt

= argmin
φ,ωnt

||(Hi −φ(·, k)ωnt
(k)||,

s.t. Hi = xnt
−

∑
j ̸=i

φ(·, j)ωnt
(j).

(23)

Finally, we can use singular value decomposition (SVD) to
solve the Eq. (23), which can be iterated as

Hi = UΩVT ,

φ(·, k) = U(·, 1),
ωnt(k) = Ω(1, 1)VT (1, ·),

(24)

where Ω is singular value diagonal matrix, and U and V are
unitary matrices.

D. Time-variant REM Reconstruction

Let us denote the sampled data as x̃i, i = 1, 2,M and
M = ||X̃ ||0 as the total number of the data. By representing
each element of spectrum tensor X̂ as x̂, they can be obtained
as

x̂ =

M∑
i=1

wix̃i, (25)

where wi denotes the contribution of ith observed data. For
the special case of recovering a unsampled position, the
optimization objective of Eq. (3) can be rewritten as

min
wi

[E(x̂− x)]2,

s.t. E(x̂− x) = 0.
(26)

To solve this unbiased estimation problem, the total space
is assumed to be homogeneous, and that each sensor position
has a different distance from RF emitters and thus is affected
by different propagation channels. Therefore, the statistical
expectation of each position varies as it gets influenced by the
different propagation path losses and spatial spectrum distri-
butions. This heterogeneity can be mathematically expressed
as

biE(x) = E(x̃i), (27)

where bi is the ratio between the sampled spectrum data and
recovered one. The expectation of the unknown spectrum data
can be obtained using Eq. (7) as

bi(x) =
x̃i

φ(x) · ωT
nt

, (28)

where φ(x) is the propagation dictionary row for the current
x, and ωnt is the estimated vector of the RF emitters.

It is underlined that, as compared to the static case, this
spatial-temporal heterogeneity makes the time-variant REM
reconstruction a much more challenging problem to solve.
Therefore, to recover the missing data, a spatial-temporal joint
semi-variogram will be introduced next to depict the inherent
correlation of spectrum data at different positions and time
instants. Noting that, since the covariance of two positions
relates to both distance and time domains, the time interval
∆ht and space interval ∆hs should be considered separately.
Thus, we use the following spatial-temporal covariance

Rst(∆hs,∆ht)
= Cov {[x(Lxy +∆hs, nt +∆ht), x(Lxy, nt)]}
= E{[x(Lxy +∆hs, nt +∆ht)− E[x(Lxy +∆hs, nt +∆ht)]
[x(Lxy, nt)− E[x(Lxy, nt)]},

(29)
where Lxy = (nx, ny) represents the spatial position with
respect to of the time index nt, ∆hs and ∆ht represent
the space and time intervals, respectively, and Cov[·] is the
correlation function.

Furthermore, as shown in Appendix A, the spatial-temporal
semi-variance function can be expressed as

γst(∆hs,∆ht)

= 1
2E[x(Lxy +∆hs, nt +∆ht)− x(Lxy, nt)]

2

= σst
2 −Rst(∆hs,∆ht),

(30)

where σst2 is the variance of spatial-temporal spectrum data.
To obtain the optimal weights, the following optimization

problem can be solved (see Appendix B for the derivation
details)

minL = −
M∑
i=1

M∑
j=1

wiwjγst(∆hsij ,∆htij)

+ 2

M∑
i=1

wiγ(∆hsi0,∆hti0),

s.t.
M∑
i=1

wibi = 1.

(31)

Based on the Lagrangian, the constrained optimization
problem can be rewritten as

L = −
M∑
i=1

M∑
j=1

wiwjγst(∆hsij ,∆htij)

+ 2

M∑
i=1

wiγ(∆hsi0,∆hti0)− 2ζ(

M∑
i=1

wibi − 1),

(32)

where ζ is the Lagrange multiplier. By taking the partial
derivatives of L, the weights can be obtained by Eq. (33)

IV. PERFORMANCE EVALUATION RESULTS AND
DISCUSSION

The section evaluates the performance of the proposed REM
reconstruction methodology by means of computer simulations



GAO et al.: TIME-VARIANT RADIO MAP RECONSTRUCTION WITH OPTIMIZED DISTRIBUTED SENSORS IN DYNAMIC SPECTRUM ENVIRONMENTS 7


w1

w2

...
wM

ζ

 =


γst(∆hs11,∆ht11) · · · γst(∆hs1M ,∆ht1M ) b1

...
. . .

...
...

γst(∆hsM1,∆htM1) · · · γst(∆hsMM ,∆htMM ) bM
b1 · · · bM 0


−1


γst(∆hs10,∆ht10)
γst(∆hs20,∆ht20)

...
γst(∆hsM0,∆htM0)

1

 (33)

TABLE I: SIMULATION PARAMETERS.

Parameter
Value

Type Number Height
(m)

Power
(dBm)

Speed
(m/s)

Antenna
type

Antenna
max gain (dBi)

RF
emitter
setting

Pedestrain 3
1.5 20 1 Isotropic 0
1.5 20 1 Isotropic 0
1.5 20 1 Isotropic 0

Vehicle 2 1 20 5 Isotropic 0
1 20 5 Isotropic 0

Micro base station 2 20 20 0 Isotropic 0
30 20 0 Directional 0

Mobile radio 1 2 20 3 Isotropic 0
Center frequency 2.45 GHz

Bandwidth 10 MHz
Cartography area 1 km x 1 km

Grid resolution 20 m x 20 m
Update time interval 1 s

and field measurement experiments. These have been carried
out in a certain part of the Nanjing University of Aeronautics
and Astronautics (NUAA) campus (see Fig. 4), which has been
selected since it include various propagation environments as
well as different types of buildings, roads, and unobstructed
areas. For the former, we adopt the ray tracing (RT) technology
to obtain computer simulated data. These data have been used
to compare the reconstruction performance of the proposed
scheme with that of other state-of-the-art schemes, so that its
superiority of proposed methodology can be demonstrated. For
the latter, we use the field measurement data to reconstruct the
time-variant REM, which proves the effectiveness of proposed
scheme for the spectrum cartography under dynamic scenarios.

A. RT-based simulation and comparison

In this section, the performance of proposed REM recon-
struction methodology is verified by extensive computer-based
simulations in the area of NUAA campus illustrated in Fig. 4.
The covered area is about 1 km x 1 km wide and as it can be
seen from the figure it includes different types of buildings, with
heights from 19-55 m (average height is about 30 m) various
trees, roads and empty spaces. The operation of the mobile
RF emitters is implemented by mobile radios carried out by
pedestrians and vehicles at different speeds following different
routes as these are also indicated in Fig. 4. On the other hand,
the operation of the fixed position RF emitters is implemented
by base stations (including directional and isotropic radiation
antennas). It is assumed that their transmitted power is 20 dBm
(at 2450 MHz), and they are placed at different heights above
the ground. The half-power beamwidth of the E and H planes
of the employed directional antenna is 15 degrees, whereas

Fig. 4: A satellite picture view of the NUAA campus area
where the experiments took place.

the first null beamwidth of the E and H planes is 60 degrees.
Table I summarizes all the important simulation parameters
used to obtain the computer simulated performance evaluation
results. RT technology is used to estimate the ideal RSS values
in each grid under this dynamic scenario and the simulated
data tensor is 50 x 50 x 5.

The performance of the newly proposed REM methodology
was compared with that of three baseline schemes, namely IDW
[13], HaLRTC (high accuracy low rank tensor completion)
[18], and Kriging [14], all of which have been extensively
used for REM reconstruction. In addition, to further expand
this comparison, we have used three data collection schemes,
namely regularly distributed, random distributed, and vehicle
mounted sensors.
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Fig. 5: Experimental spatial semi-variance values and fitted
semi-variance function at five different time instants.

Fig. 6: Spatial-temporal semi-variance with different spatial
distance and time intervals for time-variant REM.

Fig. 5 presents the experimental spatial semi-variance values
and the fitted semi-variance function obtained by using Eq. (30)
without considering the time domain at different time instant.
It is clear from these results that the semi-variance function
is slightly different at various time instant under the dynamic
environment. Moreover, if the space interval is relatively small,
i.e., d <250 m, γ(d) increases with increasing d. However,
when the interval reaches the correlation distance, which is
about 250-300 m for our simulation scenario, the semi-variance
remains constant. This means that the spatial correlation of
spectrum data become irrelevant when d >300 m. Fig. 6
shows the spatial-temporal semi-variance γ(t, d) as a function
of the distance d and time intervals t for the time-variant REM
by using Eq. (30). As it can be seen, when the values of d
and t increase, the spatial-temporal semi-variance γ(t, d) also
increases, which indicates that the correlation between the
spectrum data weakens with the increase of distance and time.
For the spatial dimension, γ(t, d) increases until d reaches 400
m and then it remain constant. While it exhibits a nearly linear

Fig. 7: Reconstruction performance comparisons of different
methods with different sampling schemes.

Fig. 8: Reconstruction performance about ablation study with
different missing rates.

progression for the temporal dimension.
To further evaluate the REM reconstruction performance,

the mean absolute error (MAE) [in dBm] criterion is adopted
to estimate the reconstruction error, i.e.

MAE(dBm) =
||X̂ −X ||1

N

=
||(X̂1 −X1); (X̂2 −X2); ...; (X̂T −XT )||1

N
,

(34)
where X is the simulated (also considered as ideal) REM, X̂
is the constructed REM, and N is the grid number.

In Fig. 7, the MAE performance of the four sampling
schemes under consideration with 50% (1250 sensors) missing
data rate is compared. These results have shown that the
MAE trends of different schemes are very similar for the
different reconstruction methods. However, the proposed sensor
layout optimization (SLO) scheme outperforms the other
three schemes for most reconstruction methods, followed by
the regularly layout scheme. Different from the other three



GAO et al.: TIME-VARIANT RADIO MAP RECONSTRUCTION WITH OPTIMIZED DISTRIBUTED SENSORS IN DYNAMIC SPECTRUM ENVIRONMENTS 9

Fig. 9: Visualization of reconstructed REMs with different methods at five time instants.

reconstruction methods, the influence of sensor layout on the
HaLRTC using the randomly layout scheme yields the best
performance.

In order to obtain meaningful comparison results, we have
obtained the performance of the proposed separate algorithms
including sensor layout optimization (SLO), propagation dictio-
nary improvement (PDI) and time-variant REM reconstruction
(TVR). Fig. 8 presents the average MAE performance of
different algorithms at different missing rate ranging from
10% (2250 sensors) to 90% (250 sensors). It is noted that
both the proposed algorithms can improve the reconstruction
performance compared to the basic TVR. The SLO-TVR
outperforms TVR by 0.2-0.5 dBm, which shows that the
sensor layout is vital for REM reconstruction, particularly when
dealing with limited spectrum data. The PDI-TVR has better
reconstruction performance due to the adopted propagation
model considering various environmental factors. The best
performance is achieved by the combination of the SLO
and the PDI, and the corresponding method (SLO-PDI-TVR)
outperforms the other algorithms by 0.2-1 dBm.

Fig. 9 presents the truth and reconstructed REMs at each
time instant with 50% (1250 sensors) missing data where the
dark blue regions represent areas obscured by buildings. The
obtained results clearly show that the proposed methodology
has the best performance compared with the other three
methods. On the other hand, the IDW method lacks a robust

Fig. 10: Reconstruction performance comparisons of different
methods with different missing rate.s

spatial-temporal distance metric and overly considers irrelevant
data which results in poor reconstruction. Furthermore, the
HaLRTC method addresses the completion problem by con-
sidering the correlation between rows and columns, which
results in a distinct linear character to the reconstruction
results. Finally, the Kriging method reconstructs REM based
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Fig. 11: Reconstruction performance comparisons of the four
methods under consideration versus measurement error.

on spatial semi-variance function ignoring the data correlation
of time dimension. Moreover, it fails to accurately model
the realistic propagation process. To quantitatively analyze
the reconstruction performance of these four methods, Fig.
10 presents their performance comparison by showing the
average MAE performance at different missing rate ranging
from 10% (2250 sensors) to 90% (250 sensors). These results
clearly show that, as expected, the MAE of all methods
increase as the missing rate increases. However, the proposed
methodology outperforms the others by about 0.1-1.7 dBm.
The Kriging method yields the second best performance, while
HaLRTC outperforms IDW at the low missing rate. When
the missing rate exceeds 50%, tensor completion shows a
noticeable performance decline.

Measurement error caused by the sensor noise, which is
assumed to be Gaussian with zero mean and variance between
2-10 dB, is another important factor affecting the reconstruction
performance. Fig. 11 presents the reconstruction performance
of the four methods with respect to different measurement error.
Consistent with previous results, it increases almost linearly,
with proposed method having the lowest reconstruction error,
followed by the Kriging method, while the IDW and HaLRTC
methods have similar performance.

B. B. Field Measurement Experiments

To experimentally validate the effectiveness of the proposed
reconstruction methodology we have chosen a relatively open
football field in the NUAA campus for field measurement
experiments. As illustrated in Fig. 12, the field is made of
artificial turf surrounded by a red rubber track, and four mobile
RF emitters with the transmitting power of 10 dBm at 1300
MHz equipped with an isotropic antenna and a mobile power
supply have been used. Taking the lower left corner as the
origin of the football field, each RF emitter is marked in the
figure where it is shown that RF 1 and RF 2 move to the right,
RF 3 moves down, and RF 4 moves up. All the values of the
important parameters used to carry out the field measurement
experiments are shown in Table II.

Fig. 12: A view of the football field where field measurement
experiments took place.

(a) nt=1 (b) nt=2

(c) nt=3 (d) nt=4 (e) nt=5

Fig. 13: Visualization of reconstructed REMs with field
obtained experimental data.

The spectrum data is collected with a sampling rate of 25%
via our own developed spectrum mapping system [38]. An
unmanned aerial vehicle (UAV) equipped with a monitoring
module was used to collect data, such as the RSS and GPS
locations of the target area, and then transmitted these data to
the ground station by the A2G communication module. The
ground station processed and stored the received data, and
subsequently the REM with missing data have been obtained.

Fig. 13 presents various experimentally reconstructed REMs
at different time instants. These results clearly show that there
are four red regions with high RSS values, which correspond
to four RF emitters. The shape of each red region is an
approximate circle due to the use of isotropic antennas. It
can be also observed that the RSS weakens as the distance
from the RF transmitter increases, which is consistent with
the characteristic of signal attenuation during propagation.
Furthermore, the obtained REMs clearly show the trend of
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TABLE II: FIELD MEASUREMENT PARAMETERS

Parameter
Value

Index Height (m) Power (dBm) Speed (m/s) Antenna
type

Antenna
max gain (dBi)

RF
emitter
setting

1 1 10 1 Isotropic 0

2 1 10 1 Isotropic 0

3 1 10 1 Isotropic 0

4 1 10 1 Isotropic 0

Center frequency 1.3 GHz

Bandwidth 10 MHz

Cartography area 110 m x 70 m

Grid resolution 1 m x 1 m

Update time interval 1 s

RF transmitter movement, namely, the two RF transmitters
above are moving to the right, while the two RF transmitters
below are getting closer from the up-down sides, validating
the effectiveness of the proposed methodology.

V. CONCLUSIONS

In this paper, we have proposed a time-variant REM
reconstruction methodology under dynamically changing spec-
trum environments. The proposed scheme has modeled the
reconstruction problem as a compressed sensing problem which
mainly involves data sampling and recovery. Firstly, we have
developed an optimization method to achieve a better spatial
layout of distributed sensors. Secondly, through sampled data,
the channel propagation model has been iteratively improved for
building a realistic channel dictionary. Finally, by exploring the
spatial-temporal correlation of spectrum data, a heterogeneous
recovery method has been proposed to reconstruct the time-
variant REM. The proposed method has been evaluated by
simulation and shown to be superior to the baseline methods.
The effectiveness has been also verified by field measurements
in the campus scenario. In the future work, we will extend this
scheme to the 4D REM reconstruction, i.e., 3D space domain
and 1D time domain, and optimize the UAV trajectory based
on the proposed sampling scheme.

APPENDIX A
PROOF OF THE EQUATION (30)

In practice, it can be addressed by applying the product sum
model, which assumes independent spatiotemporal variation
and reflect the heterogeneity of space and time domain. It is
defined as

Rst(∆hs,∆ht)
= k1Rs(∆hs)Rt(∆ht) + k2Rs(∆hs) + k3Rt(∆ht).

(35)

The spatial-temporal semi-variance can be derived as

γst(∆hs,∆ht)
= (k1Rt(0) + k2)γs(∆hs) + (k1Rs(0) + k3)γt(∆ht)
−k1γs(∆hs)γt(∆ht),

(36)

where Rs(∆hs) and Rt(∆ht) are the space and time co-
variance, respectively, and γs(∆hs) and γt(∆ht) are the
corresponding semi-variance functions.

The coefficients k1, k2 and k3 can be calculated by k1 = [Rs(0) +Rt(0)−Rst(0)]/Rs(0)Rt(0)
k2 = [Rst(0, 0)−Rt(0)]/Rs(0)
k3 = [Rst(0, 0)−Rs(0)]/Rt(0)

. (37)

APPENDIX B
PROOF OF THE EQUATION (31)

Since minimizing the prediction variance of an unbiased
predictor is equivalent to minimizing the mean squared error,
we have

E(x̂− x)2

=
M∑
i=1

M∑
j=1

wiwjE(x̃ix̃j)− 2E(
M∑
i=1

wix̃ix) + E(xx)

=− 1
2

M∑
i=1

M∑
j=1

wiwjE[(x̃i − x̃j)
2
] +

M∑
i=1

wiE[(x̃i − x)
2
]

= −
M∑
i=1

M∑
j=1

wiwjγst(∆hsij ,∆htij) + 2
M∑
i=1

wiγ(∆hsi0,∆hti0),

(38)
where γst(∆hs1M ,∆ht1M ) is the spatial-temporal semi-
variance between x̃1 and x̃M . γst(∆hs10,∆ht10) is the spatial-
temporal semi-variance between x̃1 and arbitrary unknown
position.

We obtain the constraints of coefficients as

E(x̂− x) = E(

M∑
i=1

wix̃i − x) = E(

M∑
i=1

wibixi − x)

= E(x)

M∑
i=1

wibi − E(x) = 0,

(39)

Then we have
M∑
i=1

wibi = 1. (40)
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[20] R. Levie, Ç. Yapar, G. Kutyniok, and G. Caire, “RadioUNet: Fast radio
map estimation with convolutional neural networks,” IEEE Transaction
on Wireless Communication, vol. 20, no. 6, pp. 4001–4015, 2021.

[21] S. Roger, M. Brambilla, B. C. Tedeschini, C. Botella-Mascarell, M.
Cobos, and M. Nicoli, “Deep-learning-based radio map reconstruction
for V2X communications,” IEEE Transactions on Vehicular Technology,
vol. 73, no. 3, pp. 3863–3871, 2023.

[22] S. Shrestha, X. Fu and M. Hong, “Deep Spectrum Cartography:
Completing radio map tensors using learned neural models,” IEEE
Transactions on Signal Processing, vol. 70, pp. 1170–1184, 2022.

[23] G. Chen, Y. Liu, T. Zhang, J. Zhang, X. Guo and J. Yang, “A Graph Neural
Network Based Radio Map Construction Method for Urban Environment,”
IEEE Communications Letters, vol. 27, no. 5, pp. 1327–1331, 2023.

[24] H. Zou, C. Chen, M. Li, J. Yang, Y. Zhou, L. Xie, and C. J.
Spanos, “Adversarial learning-enabled automatic WiFi indoor radio map
construction and adaptation with mobile robot,” IEEE Internet of Things
Journal, vol. 7, no. 8, pp. 6946–6954, 2020.

[25] M. Pesko, T. Javornik, L. Vidmar, A. Kosir, M. Stular, and M. Mohorcic,
“The indirect self-tuning method for constructing radio environment
map using omnidirectional or directional transmitter antenna,” EURASIP
Journal on Wireless Communications and Networking, vol. 2015, no. 1,
pp. 1–12, 2015.

[26] E. Yang, H. Yu, X. Mo and A. Gao, “Construction of wideband
radio environment map based on compressed sensing,” in International
Conference on Wireless Communications and Signal Processing (WCSP),
Nanjing, China, 2022, pp. 444–449.

[27] M. A. Jeison, M. T. Jose, A. F. Henry, and A. Leonardo, “Compressive
multispectral spectrum sensing for spectrum cartography,” Sensors, vol.
18, no. 2, p. 387, 2018.

[28] F. Shen, Z. Wang, G. Ding, K. Li and Q. Wu, “3D compressed spectrum
mapping with sampling locations optimization in spectrum-heterogeneous
environment,” IEEE Transactions on Wireless Communications, vol. 21,
no. 1, pp. 326–338, 2022.

[29] J. Wang, Q. Zhu, Z. Lin, Q. Wu, Y. Huang, X. Cai, W. Zhong, and
Y. Zhao, “Sparse bayesian learning-based 3D spectrum environment
map construction-sampling optimization, scenario-dependent dictionary
construction and sparse recovery,” IEEE Transactions on Cognitive
Communications and Networking, vol. 10, no. 1, pp. 80–93, 2024.

[30] J. Wang, Q. Zhu, Z. Lin, J. Chen, G. Ding, Q. Wu, G. Gu, and
Q. Gao, “Sparse bayesian learning-based hierarchical construction for
3D radio environment maps incorporating channel shadowing,” IEEE
Transactions on Wireless Communications, early access, 2024, doi:
10.1109/TWC.2024.3416447.

[31] Y. Hu and R. Zhang, “A spatial-temporal approach for secure crowd-
sourced radio environment map construction,” IEEE/ACM Transactions
on Networking, vol. 28, no. 4, pp. 1790–1803, 2020.

[32] M. S. Rahman, H. Gupta, A. Chakraborty, and S. Das, “Creating
spatial-temporal spectrum maps from sparse crowdsensed data,” in
IEEE Wireless Communications and Networking Conference (WCNC),
Marrakesh, Morocco, 2019, pp. 1–7.

[33] X. Li, X. Wang, T. Song and J. Hu, “Robust online prediction of spectrum
map with incomplete and corrupted observations,” IEEE Transactions
on Mobile Computing, vol. 21, no. 12, pp. 4583–4594, 2022.

[34] F. Shen, G. Ding, and Q. Wu. “Time-variant spectrum mapping via
reduced basis representation and greedy sampling locations optimization,”
IEEE Communications Letters, vol. 27, no. 3, pp. 991–995, 2023.

[35] P, Zhen, B. Zhang, C. Xie, and D. Guo, “A radio environment map
updating mechanism based on an attention mechanism and siamese
neural networks,” Sensors, vol. 22, no. 18, p. 6797, 2022.

[36] Y. Zhao, Q. Zhu, Z. Lin, L. Guo, Q. Wu, J. Wang, and W. Zhong,
“Temporal prediction for spectrum environment maps with moving
radiation sources,” IET Communications, vol. 17, no. 5, pp. 538–548,
2022.

[37] H. Ni, Q. Zhu, B. Hua, K. Mao, Y. Pan, F. Ali, W. Zhong, and X. Chen,
“Path loss and shadowing for UAV-to-Ground UWB channels incorporat-
ing the effects of built-up areas and airframe,” IEEE Transactions on In-
telligent Transportation Systems, 2024, doi: 10.1109/TITS.2024.3418952.

[38] Q. Zhu, Y. Zhao, Y. Huang, Z. Lin, L. H. Wang, Y. Bai, T. Lan, F. Zhou,
and Q. Wu, “DEMO Abstract: An UAV-based 3D spectrum real-time
mapping system,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), New York, NY, USA, 2020. pp. 1–2.

Qinhao Gao rreceived the B.S. degree in commu-
nication engineering from the School of Internet
of Things Engineering, Jiangnan University, Wuxi,
China, in 2023. He is currently pursuing the Ph.D. de-
gree in communications and information systems with
College of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astronautics.
His current research direction is related to spectrum
mapping.



GAO et al.: TIME-VARIANT RADIO MAP RECONSTRUCTION WITH OPTIMIZED DISTRIBUTED SENSORS IN DYNAMIC SPECTRUM ENVIRONMENTS 13

Qiuming Zhu received his BS in electronic engi-
neering from Nanjing University of Aeronautics and
Astronautics (NUAA), Nanjing, China, in 2002 and
his MS and PhD in communication and information
system from NUAA in 2005 and 2012, respectively.
Since 2021, he has been a professor in the Depart-
ment of Electronic Information Engineering, NUAA.
From Oct. 2016 to Oct. 2017, June 2018 to Aug. 2018
and June 2018 to Aug. 2018, he was also an academic
visitor at Heriot-Watt University, Edinburgh, U. K. He
has authored or coauthored more than 160 articles

in refereed journals and conference proceedings. He holds over 50 China
and international patents. His current research interests include channel
sounding, modeling, and emulation for the fifth/sixth generation (5G/6G)
mobile communication and unmanned aerial vehicles (UAV) communication
systems, 3D spectrum mapping and environment awareness.

Zhipeng Lin received the Ph.D. degrees from the
School of Information and Communication Engineer-
ing, Beijing University of Posts and Telecommuni-
cations, Beijing, China, and the School of Electrical
and Data Engineering, University of Technology
of Sydney, NSW, Australia, in 2021. Currently,
He is an Associate Researcher in the College of
Electronic and Information Engineering, Nanjing
University of Aeronautics and Astronautics, Nanjing,
China. His current research interests include signal
processing, massive MIMO, spectrum sensing, and

UAV communications.

P. Takis Mathiopoulos is a professor of telecommuni-
cations at the Department of Informatics and Telecom-
munications, National and Kapodistrian University of
Athens, 15784 Athens, Greece. He received his Ph.D.
degree from the University of Ottawa, Canada. His
current research interests include wireless terrestrial
and satellite communication systems/networks as well
as remote sensing, lidar systems, and information
technology, including blockchain systems. He is a
Life Senior Member of IEEE.

Yi Zhao received the B.S. degree in information
engineering from Nanjing University of Aeronautics
and Astronautics (NUAA) in 2021. He is currently
working towards the master degree in electronic
information engineering, NUAA. His current research
is temporal and spatial prediction and reconstruction
of spectrum situation.

Yang Huang received the B.S. and M. S. degrees
from Northeastern University, China, in 2011 and
2013, respectively, and the Ph.D. degree from Im-
perial College London in 2017. He is currently
an Associate Professor with College of Electronic
and Information Engineering, Nanjing University of
Aeronautics and Astronautics, Nanjing, China. His
research interests include wireless communications,
MIMO systems, convex optimization, machine learn-
ing and signal processing for communications. He
has served as Technical Program Committee (TPC)

members for many International conferences, such as IEEE GLOBECOM, etc.

Jie Wang received the B.S. degree in internet of
things engineering from the College of Information
Science and Technology, Nanjing Forestry University
of China, Nanjing, China, in 2021. She is currently
pursuing the Ph.D. degree in communications and
information systems with the College of Electronic
and Information Engineering, Nanjing University of
Aeronautics and Astronautics. Her current research
interests conclude spectrum mapping.

Qihui Wu received the B.S. degree in communica-
tions engineering and the M.S. and Ph.D. degrees
in communications and information system from the
PLA University of Science and Technology, Nanjing,
China, in 1994, 1997, and 2000, respectively. He is
currently a Professor with the College of Electronic
and Information Engineering, Nanjing University of
Aeronautics and Astronautics. His current research
interests include algorithms and optimization for
cognitive wireless networks, soft-defined radio, and
wireless communication systems.


