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Abstract

Water contamination through ECs is increasingly troublesome because of enhanced urbanization, indus-
trialization, and agricultural practices. ECs are uncontrolled anthropogenic chemicals found primarily in
airborne contaminants, soil, water, food, and human/animal tissues. This category includes a wide range
of pollutants, consisting of pesticides, pharmaceuticals, pills, cosmetics, personal care products, surfactants,
industrial chemical compounds, cleaning agents, food packaging substances, metalloids, food additives, nano-
materials, microplastics, rare earth elements and pathogens. The number one resources of ECs include
household discharges, industrial wastewater, agricultural runoff, cattle and aquaculture operations, hospital
effluents and landfill leachates. These contaminants can persist in the environment for prolonged intervals,
inflicting adverse consequences to human health, flora and fauna and ecosystems. To cope with the chal-
lenges posed via ECs, numerous degradation and removal strategies have been investigated, such as physical,
chemical, and organic methods. This review paper gives a comprehensive assessment of ECs, detailing their
sources, regulatory status, and identity technologies. It also evaluates latest improvements in treatment
technologies for EC elimination, highlighting the effectiveness and barriers of different physical, chemical,
and biological strategies. By means of consolidating cutting-edge research, this paper objectives to enhance
knowledge of EC management and offer insights into future studies to improve treatment tactics and mitigate
the dangerous effects of these contaminants.
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6.2.3 Clay Minerals Assisted Adsorption

Due to varying levels of nitrogen, magnesium, iron and other minerals, clay minerals, which are composed
of hydrated aluminium phyllosilicates and cations like iron, magnesium, alkali, and alkaline earth metals,
show different removal efficiencies (Shahid et al., 2021). Studies conducted by Paolo et al. (2012) and Zhao
et al. (2012) have demonstrated that modifying their cation exchange capacity and specific surface area
can enhance their efficiency. Maraschi et al. (2014) showed that modified zeolites are able to achieve up to
99% removal of fluoroquinolones from water. Natural clay has shown to remove ECs such as amoxicillin and
trimethoprim. Additionally, enrofloxacin and fluoroquinolone were also removed using zeolites (Maraschi et
al. 2014). Wu et al. (2012) and Wu et al. (2010) used montmorillonite to adsorb ciprofloxacin and found
removal efficiencies of 35% and 100% under various conditions. Fischer et al. (2020) demonstrated effective
adsorption of 21 different ECs on the surfaces of several zeolite-based adsorbents. Other studies reported
high ciprofloxacin and ampicillin removal efficiencies using zeolite and alum-based adsorbents (Rahardjo et
al., 2011; El-Shafey et al., 2012). Their low cost and abundance in nature make them a desirable option for
large-scale water treatment.

6.2.4 Hydrothermal carbonization (HTC) of biomass

Hydrothermal carbonisation (HTC) is a thermochemical conversion process without redrying, converting wet
biomass into hydrochar, a solid material rich in carbon rich (Babeker &amp; Chen, 2021). This process re-
duces the oxygen and hydrogen content of the biomass while doing so in an aqueous environment at 180–250
°C under autogenous pressure (Wang et al., 2018). Hydrochar gained attention because of its potential as a
precursor for activated carbon, which is widely used in wastewater management, soil remediation, and as fuel.
In addition to the commonly used lignocellulose biomass, HTC can be applied to an array of derived waste,
such as solid municipal waste, algae, and sewage sludge (Kambo & Dutta, 2015). The degree of coalification
and reaction severity of the raw biomass are controlled by hydrothermal parameters, notably temperature
and residence time (Wiedner et al., 2013). According to Azzaz et al. (2020), the oxygen functional groups

2
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in hydrochar react with organic molecules and heavy metals. Ma et al. (2021) demonstrated hydrochar
had an adsorption amount of 145 mg/g for tetracycline and 74.2 mg/g for ciprofloxacin. In order to remo-
ve tetracycline, copper, and Zinc, Deng et al. (2020) produced hydrochar which demonstrated adsorption
amounts of 361.7, 214.7, and 227.3 mg/g, respectively. In a recent study, Qin et al. (2023) reported PO4³-
modified hydrochar had an adsorption capacity of 119.61 mg/g for lead and 98.38 mg/g for ciprofloxacin.
Based on the feed stock, pyrolysis and carbonisation parameters, as well as activation/modification methods,
hydrochar’s phosphate adsorption capacities range from 14 to 386 mg g-1 (Shyam et al., 2022). A recent
review (Jalilian et al., 2024) goes into further detail about the application hydrochar and modified hydrochar
in treating wastewater, CO2adsorption, removing pharmaceuticals, heavy metals, and organic dyes (both
cationic and anionic). The biggest advantage of HTC is the conservation of energy that would have been
spend in predrying, as well as the utilization of organic waste to produce hydrochar which is useful for
bioremediation.

6.2.5 Coagulation-flocculation

Coagulation flocculation, one of the conventional ways used for treating wastewater, destabilizes the colloidal
particles and then aggregates them to form clumps, making them easier to remove (Teh et al., 2016). Huerta-
Fontela et al. (2011) reported using aluminium sulfate [Al2(SO4)3], a coagulant, along with sand filtration
removed medicated compounds like warfarin, betaxolol, and hydrochlorothiazide by 80%. This method has
also shown to be potent in eliminating some hydrophobic pharmaceuticals like doxazosin and chlordiazepoxide
but its efficiency drops to less than 5% for compounds like estrone and estradiol (Bundy et al., 2007; Le-Minh
et al., 2010). It also demonstrated to remove musky compounds, commonly found in skincare products and
cosmetics. Suarez et al. (2009) reported this process could achieve removal rates of 78%, 79%, and 83% for
tonalide, galaxolide, and celestolide, respectively, in hospital wastewater. Nyström et al. (2020) demonstrated
the effectiveness of this process in treating stormwater, it was effective in lowering oil, polycyclic aromatic
hydrocarbons (PAHs) and total metals (90% reduction). Coagulation-flocculation is an efficient technique
for removing a variety of ECs from water and therefore is widely applied attributing to its simplicity and
ease.

6.2.6 Advanced oxidation processes

Advanced oxidation processes (AOP) facilitate the conversion of contaminants into into less toxic and mo-
re easily degradable substances by generating free radicals, specifically hydroxyl radicals (Ikehata et al.,
2008).UV radiation is typically the first step in the production of hydroxyl radicals, which can be produced
using a variety of techniques, including ozone (O3), hydrogen peroxide (H2O2), photolysis with ultraviolet
light, homogeneous Fenton reagent, heterogeneous semiconductors, electrolysis with ultrasound (sonolysis),
and microwave radiation (Gogoi et al., 2018; Pavithara and Jaikumar, 2019). Sichel et al. (2011), , using
UV/chlorine advanced oxidation, degraded ECs such as 17α- ethinylestradiol, sulfamethoxazole, diclofenac,
benzotriazole, carbamazepine, tolyltriazole, iopamidol, desethylatrazine and carbamazepine. AOPs based
on ozone treatment have been shown to be effective in treating wastewater containing a variety of phar-
maceuticals, including angiotensin II receptor antagonists, cocaine, its metabolite benzoylecgonine, anti-
inflammatory medicines, cholesterol-lowering statins, and antibiotics (Ibannz et al. 2013). Research has
demonstrated the efficacy of AOPs in degrading pharmaceutical compounds in water, either individually or
in combination with other degradation methods—over 80% and up to 90%—when used with various pro-
cesses namely coagulation, flocculation, nanofiltration, and electrocatalytic oxidation (Pavithra & Jaikumar,
2019; Rayaroth et al., 2016).

6.2 6.1 Photocatalysis

Photocatalysis, also called accelerated oxidation, is a chemical reaction in which pollutants are oxidized more
quickly by light-activated catalysts (Macwan et al., 2011; Sornalingam et al., 2016). Semiconductor metal
oxides, like titanium dioxide (TiO2), are commonly used as photocatalysts because of their affordability,
stability, and capacity to produce reactive species when exposed to ultraviolet light. A study showed main
wastewater effluent containing pharmaceutical compounds like sulfamethoxazole, metoprolol, acetaminophen,

3
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hydrochlorothiazide, caffeine, carbamazepine, diclofenac, antipyrine, and ketorolac, was treated using aero-
bic degradation combined with heterogeneous solar photocatalysis using TiO2 (Gimeno et al., 2016). Prieto
Rodŕıguez et al. (2013) and Shahid et al. (2021) have reported great removal efficiency (99-100%) of anti-
biotics like amoxicillin, ampicillin, and chloxacclin, as well as pesticides like aldrin, diazinon, and malathion,
using photocatalysis in the presence of H2O2.

6.2 6.2 Fenton and Fenton Processes

Fenton oxidation is a chemical reaction where iron reacts with H2O2, producing hydroxyl(*OH) radicals
(Shemer et al., 2006). Widely used in AOPs due to their ease of use and effectiveness in breaking down a
variety of ECs. Lucas and Peres (2015) achieved deterioration of four kinds of parabens by Fenton reagent:
methylparaben, ethylparaben, propylparaben, and butylparaben. Solar Photoelectro-Fenton (SPEF) process
degraded beta blockers such cendol, propranolol hydrochloride, and metoprolol tartrate with an efficiency of
88–93% (Klamerth and others, 2013).

6.2.7 Ozonation

Ozone is a widely recognised and effective oxidant that can chemically react with many natural and non-
toxic molecules (Coca et al., 2016). The reaction is caused by other oxidants such as hydroxyl radicals
(HO*), which are formed when ozone has side reactions with effluent organic matter (EfOM) components
such as phenols or amines (Rizzo et al., 2019). Numerous studies have demonstrated that ozonation is highly
effective in removing personal care products and pharmaceuticals, with most of these contaminants being
successfully eliminated. It is important to understand that ozone has a brief 1/2 life, and if its awareness
exceeds about 23%, it will become risky (Shen et al., 2019). Ozone reveals selectivity, mainly targeting
electron-wealthy rising contaminants ECs with deprotonating amine action such as sulfamethoxazole and
trimethoprim, especially at low pH levels. In assessment, hydroxyl radicals (HO*) are non-selective and
highly reactive, allowing them to attack a large spectrum of ECs, together with those proof against ozone,
mainly at higher pH degrees (Rizzo et al., 2019; Gogoi et al., 2018; Barbosa et al., 2016; Sui et al.,2010) .

6.2.8 Chlorination

Chlorination was carried out in one-litre amber glass bottles at room temperature (21 ± 2 °C). Free chlorine
was added to each litre of simulated drinking water to achieve a Cl2 concentration of 9.0 mg/L. UV irradiation
was conducted with a 254 nm wavelength light source from a 41 W low-pressure mercury lamp (Light Sources,
Orange, CT, USA) (Huang et al., 2019). A quasi-collimated beam with a 254 nm wavelength, generated by 41
W low-pressure mercury lamps (Light Sources, Orange, CT, USA), was used for UV irradiation (Huang et al.,
2019). The comparison of inactivation rates between antibiotic-resistant bacteria and general heterotrophic
bacteria during chlorination highlights the relative resistance of antibiotic-resistant strains to chlorine. The
bacterial response, survival, and inactivation patterns of both heterotrophic and antibiotic-resistant bacteria
during chlorination were assessed. Data suggest that ampicillin- and penicillin-resistant bacteria in secondary
wastewater are more susceptible to chlorine than other bacteria due to bacterial inactivation (Templeton et
al., 2009).

6.2.9 UV irradiation

The average irradiance was measured at 0.8 mW/cm² using iodide/iodate chemical actinometry (Boltan
et al.,2003). To speed up the reaction, all test solutions were agitated for 30 minutes at 350 rpm. 1440
mJ/cm² was the final UV dose. Standard procedures used in UV/chlorine advanced oxidation processes were
used to determine the dosage of chlorine and length of UV irradiation. Wang et al.(2015) The majority of
studies on the behaviour of micropollutants in UV or UV-based processes have been carried out in laboratory
environments, usually with solutions prepared with lab water. Wastewater or natural river water samples
are rarely used in research, resulting in limited data on the behaviour of micropollutants in wastewater
during UV treatment (Cicek et al., 2007). By gathering samples at every stage of the treatment process,
the elimination of estrogen in a full-scale wastewater treatment plant (WWTP) was investigated. Pathogens
can be effectively inactivated by UV therapy, although their efficacy may be impacted by water quality

4
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parameters such as turbidity and the presence of organic matter (Linden et al., 2011).

6.2.10 Nanofiltration

A membrane filtering method called nanofiltration uses cylindrical pores the size of nanometers that are
arranged perpendicularly through the membrane. These membranes are smaller than those used in micro-
filtration and have pore diameters ranging from 1 to 10 nanometers. Reverse osmosis (RO) membranes
are slightly larger than those in ultrafiltration. Drugs can be eliminated using three different methods by
nanofiltration (NF) membranes: adsorption, Sieving and electrostatic repulsion (Dolara et al., 2012). The
nanofiltration (NF) capacity, a sophisticated membrane filtration method used to eliminate a range of pol-
lutants, including organic compounds. It started to be used in wastewater treatment in 2003 due to the
molecules, heavy metals and various ions it contains (Van der Bruggen & Vandecasteele., 2003). With pore
sizes that typically range from 0.1 to 1 nanometre, NF membranes function at the molecular level, effectively
rejecting larger particles while allowing smaller ions and water molecules to pass through (Yaroshchuk, 2000).
Because of this, NF is especially useful for getting rid of drugs, substances that cause hormone disruption,
and other new pollutants that are hard to remove using traditional treatment techniques (Hilal et al., 2004).
It has low energy consumption and higher rejection of contaminants (Das et al., 2018). Because NF may
achieve more than 90% clearance efficiency, it is a potential choice for pharmaceutical distribution (Bolong
et al., 2009).

6.2.11 Nanomaterials

Nanomaterials (NMs) remain a highly discussed topic, with ongoing research focused on their environmental
presence, behaviour, and toxicity, alongside the continuous development of new NMs. Nanosilver (nAg) is
still the most widely used material, commonly found in bandages, body stockings, T-shirts, food containers,
children’s blankets, towels and toys. Nanomaterials such as graphene, fullerenes, single-walled carbon nano-
tubes, nTiO2, nZnO and nCeO2. There is a growing consensus that NM may also pose low environmental
risk, although data are lacking in many areas (Lead et al., 2018). Nanomaterials have physical, chemical,
and biological properties due to their nanoscale dimensions (usually 1 to 100 nm). The range of domains
associated with the number usually affects their behaviour. Examples include carbon nanotubes, graphene,
quantum dots, steel nanoparticles, and ceramic nanofibers. These materials’ exceptional properties are used
in various packaging applications in fields such as electronics, energy, and biomedicine. The flexibility and
tunability of nanomaterials make them important in different industries, stimulating the development of
technologies such as electricity and energy for medical and environmental technologies (Pomerantseva et al.,
2019).

7 Innovative and combined treatment technologies

Wastewater treatment plants (WWTPs) are transforming because of innovative and combined treatment
technologies that improve sustainability, efficiency, and contaminant removal. Combining biological treat-
ment techniques with advanced oxidation processes (AOPs) like photocatalysis and ozonation is a cutting-
edge strategy. Reactive species produced by these AOPs, such as hydroxyl radicals, degrade emerging and
persistent organic pollutants, which are frequently impervious to standard biological processes (Wang et al.,
2012; Vilhunen & Sillanpää, 2010). Another novel combination that merges biological treatment and mem-
brane filtration is the membrane bioreactor (MBR). MBRs are ideal for water reuse applications because
they efficiently remove bacteria, suspended solids, and even some dissolved pollutants, resulting in superior
effluent quality (Judd, 2011). Additionally, biogas production can be improved while sludge volume is re-
duced and energy recovery maximized by combining anaerobic digestion with membrane filtration (Appels
et al., 2008; Bolzonella et al., 2018). Bioaugmentation involves introducing particular microorganisms into
wastewater remedy structures to enhance the elimination of pollutants, which include microplastics. research
has demonstrated that bioaugmentation in secondary remedy approaches—such as activated sludge, sequen-
cing batch reactors, and membrane bioreactors—can gain high microplastic removal efficiency, reaching up
to 100% with certain polymer-microbe combinations.

8 Challenges of the treatment technologies

5
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The influence of wastewater treatment on biophysical ecosystems and living creatures poses considerable
issues. Regulations controlling waste management are not the only elements influencing these difficulties;
socioeconomic and regional considerations also play a role. It is challenging to find a universal technique
that will remove every contaminant from wastewater. Many biological, physical and chemical treatments
have been developed and published in the last three years (Barakat, 2011; Rathoure, 2015). Although was-
tewater treatment technologies are crucial for reducing pollution, they face several serious obstacles. The
intricate and varied makeup of wastewater is a significant problem that can reduce the efficacy of treatment
processes (Köhler et al., 2018). Emerging contaminants which include drugs, personal care items, and micro-
plastics are difficult for conventional methods to remove and require sophisticated treatment methods that
are frequently expensive and energy-intensive (Drewes et al., 2016). Managing the residuals and byproducts
produced during treatment presents another difficulty. For example, advanced oxidation processes (AOPs)
and membrane technologies can generate hazardous byproducts or concentrated waste streams that need
additional handling or disposal, increasing operational complexity (Parsons & Jefferson, 2006). Membrane
fouling is a recurring issue in membrane-based technologies, necessitating frequent maintenance and replace-
ment, which raises operational costs (Li et al., 2017). Similarly, the high energy requirements of procedures
like electrocoagulation and reverse osmosis raise concerns regarding the sustainability and carbon footprint
of wastewater treatment (Shannon et al., 2008). Furthermore, there are budgetary and logistical difficulties
in integrating new technologies into existing treatment facilities. Modernizing infrastructure to support novel
treatments frequently necessitates a large financial outlay, and maintaining these cutting-edge systems calls
for qualified staff (Chen et al., 2015). Further research and regulation are necessary to ensure the safe appli-
cation of emerging treatment technologies, as their potential impacts on human health and the environment,
such as the use of nanomaterials, are not yet fully understood (Qu, Alvarez, & Li, 2013).

9. Future Directions

Emerging contaminants (ECs) present a significant challenge for water treatment systems due to their pre-
sence in trace quantities. Although physical, chemical, biological, and hybrid treatment processes have proven
effective for many ECs, complete removal remains elusive. Consequently, several promising research directions
are suggested to address this issue, including:

• Development of Specialized Microbial Consortia: Future research should prioritize the creation of spe-
cialized microbial consortia designed to target contaminants of emerging concern, including drug-related
and daily used products. Engineering microbial communities with tailored metabolic pathways and syn-
ergistic interactions can enhance the efficiency and specificity of bioremediation. By optimizing these
consortia, researchers can improve the degradation rates and expand the range of pollutants addressed,
leading to more effective and adaptable wastewater treatment solutions.

• Advancement in Detection and Monitoring Technologies: There is an urgent need for advancements in
detection and monitoring technologies to manage the treatment of emerging contaminants effectively.
Real-time analytical tools, including high-resolution mass spectrometry and advanced biosensors, can
provide accurate and timely data on contaminant concentrations and degradation progress. These inno-
vations will enable more precise control over the treatment processes, allowing for quicker adjustments
and enhanced removal of pollutants from wastewater.

• Integration of Bioremediation with Advanced Oxidation Processes (AOPs): Integrating bioremediation
techniques with advanced oxidation processes (AOPs) offers a promising avenue for improving the treat-
ment of persistent emerging contaminants. By combining biological methods with chemical treatments
such as photocatalysis and ozonation, hybrid systems can achieve more comprehensive degradation of
pollutants. This approach leverages the strengths of both biotic and abiotic processes, potentially over-
coming the limitations of each method and leading to more effective and robust wastewater treatment
solutions.

10.Conclusion

In conclusion, managing Emerging Contaminants (ECs) is a complex and evolving challenge that requires a
comprehensive, multi-faceted approach. The following key points summarize the critical considerations for
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addressing ECs effectively:

• Diverse and complex Nature of ECs: ECs, such as prescribed drugs, endocrine disruptors, nanomate-
rials, and microplastics, are numerous and complicated, complicating their detection, monitoring, and
management.

• Limitations of Current Technologies: Existing treatment technologies face significant limitations in
effectively removing ECs, highlighting the need for innovative and integrated systems that can bridge
the gaps in individual methods.

• Regulatory Shortcomings: While there are regulations in place to control ECs, they are not yet suf-
ficient to fully address the scale and complexity of the issue, necessitating more comprehensive and
precautionary measures.

• Emerging Health and Ecological Impacts: The potential effects of ECs on human health, wildlife,
and ecosystems are still emerging, underscoring the urgency of improving detection technologies and
treatment methods.

• Need for Interdisciplinary Collaboration: Addressing the challenges posed by ECs requires sustained
research, innovation, and collaboration across scientific, industrial, and regulatory sectors.

• Ongoing Innovation and Policy Development: To ensure the preservation of the environment and pu-
blic health, it is imperative that ongoing efforts be made to improve current strategies, create fresh
approaches, and put into place sensible laws that can lessen the risks connected to ECs.
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Table 1: List of emerging contaminants from various sources and categories

S .No. Source Type Category Emerging Contaminant Country Reference

1. WWTP, Landfill leachate, Surface water Personal Care Products Cosmetics, UV Filters Mexico Wang et al.,2024; Shahid et al.,2014; Nadia et al.,2022
2. Domestic and industrial wastewater Industrial chemicals Plasticizers, Microplastics (MPs) Portugal Shahid et al.,2014; Nadia et al.,2022
3. Agricultural runoffs, Sewage treatment plants, Sediments, Soil, Surface water Herbicides/ Pesticides Methiocarb, Perchlorate, Dicofol, Oxadiazon Mexico Nadia et al., 2022; Wang et al.,2024
4. Hospital and Industrial wastewater, Surface water, WWTP Pharmaceuticals anti-inflammatory medicines, antidepressant, antibiotics : Diazepam, ciprofloxacin Columbia Shahid et al.,2014; Nadia et al.,2022
5. Landfills, WWTPs, Sewage, Urban runoff Persistent organic pollutants (POPs) PCBs, PCDDs, PCDFs, PBDEs China Nguyen et al.,2020; Bolagay et al.,2021
6. Drinking and surface water, Sediments, Soil, Secondary sludge Endocrine disrupting chemicals (EDCs) Estrone, Steroid hormones: PAEs, Bisphenols India Wang et al.,2024; Wee and Aris.,2021
7. Mining and minerals processing industrial waste water Surfactants Ionic and non ionic surfactants. Tweens (Polysorbates) and sodium lauryl sulphate Japan Shahid et al.,2014; Murakami et al.,2011
8. Recycling plants, Hospital waste water, Petroleum refineries Rare earth elements (REEs) 15 lanthanide group elements China, Brazil, Spain Gwenzi et al.,2018
9. Nuclear power plants, Pacific ocean Radionuclides/ Nuclear waste H-3, Sr-90, Cs-137, I-129, Tc-99 Japan Wang et al.,2024
10. Accidental spillages, rainwater runoff Nanoparticles CNPs, AgNPs, Carbon dots US Wang et al.,2024; 25
11 Agriculture, Livestock, Farming and Hospitals waste water Antibiotic- resistant micro- organisms Azithromycin, Sulfamethoxazole US Wang et al.,2024; Vasallo et al.,2021 25
12. Wetlands, Lakes, Reservoirs, Streams, Rivers Algal toxins Cytotoxins, Microcystin Australia Quer et al.,2024; Oliveira et al.,2021
13 Contaminates/ effected/ endemic areas Bioterrorism Biological weapons (Anthrax, Salmonella typhimurium) US Green MBChB et al.,2019 Oliveira et al.,2021
14. Research lab effluents Other biological contaminants Virus, Protein, Different types of RNA China Wang et al.,2024; Crini et al.,2022

Table 2: Overview of Treatment Techniques for Emerging Contaminants

S.No. Treatment Technique Target Emerging Contaminant Removal Efficiency Advantages Drawbacks Reference

1. Aerobic a)Granular sludge b)MBR Roxithromycin 17a-ethinylestradiol 95.2% 93% High quality effluent, short hydraulic retention time (HRT), long solid retention time (SRT), high volumetric loading rate Requires more frequent routine maintenance; May release more nitrates to groundwater Yu et al.,(2020) Nguyen et al.,(2014); Shahid et al.,(2021)
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S.No. Treatment Technique Target Emerging Contaminant Removal Efficiency Advantages Drawbacks Reference

2. Anaerobic a)Sludge b)AnMBR Ciprofloxacin Erythromycin 85% 86% Production of biomethane gas, less sludge, better at dealing with slurries with higher solid content less efficient for hydrophilic and toxic emerging contaminants Carneiro et al., (2020); Dutta et al.,(2014) Phan et al., 2018);
3. Activated Carbon adsorption a)Powdered b)Granulated 17-Alphaethylestradiol Metoprolol 83.3% 95% High CEC removal, No formation of by-products, Full scale evidence on practicability, Additional DOC removal Production needs high energy, Adsorption capacity may fluctuate with each batch, Rizzo et al.,(2019); Sun et al.,(2017); Karelid et al.,(2017)
4. Biochar Assisted Adsorption (from tea waste) Sulfamethazine 33.81mg/g lower production costs, ability to remove contaminants like heavy metals, EDCs High energy and chemical consumption, process complexity Rajapaksha et al.,(2014); Zhao et al., 2016); Enaime et al.,(2020)
5. Clay Minerals Assisted Adsorption (modified zeolites) fluoroquinolones 99% Cation exchange capacity and surface area can be modified, abundance in nature Low thermal stability, Regeneration issues Maraschi et al., (2014); Chouikhi et al.,(2019)
6. Hydrothermal Carbonization Pb(II), ciprofloxacin 119.61 98.38 mg/g Conservation of energy, utilization of organic waste Environmental concerns, Regulatory challenges Qin et al.,(2023); Ischia et al.,(2024)
7. Coagulation – Flocculation Acetaminophen, Diclofenac < 20% effective in removing some hydrophobic pharmaceuticals, removal of musky compounds Temperature sensitivity, high dosage requirement, excessive sludge production Westerhoff et al.,(2005); Pilliai and thombre.,(2023)
8. Advanced Oxidation Processes Sulfamethoxazole > 90% Conversion into less hazardous and more biodegradable compounds High operational costs, complexity Reungoat et al.,(2011); Deng ad Zhao., (2015)
9. Ozonation a)single b)catalytic Ibuprofen (IBU) 26% 90% Partial disinfection, Lower energy demand compared to UV/ H2O2 and membranes Formation of by-products (NDMA, bromate), Need for a subsequent biological treatment Bing et al.,(2015); Rizzo et al.,(2019)
10. Chlorination 17α-estradiol, Estriol > 90% Maintains water quality, cost effectiveness Corrosiveness, handling and safety concerns Westerhoff et al.,(2005); (57); (58)
11. UV Irradiation Tetracyclines, Fluoroquinolones 80–95% Use of solar irradiation, Effective as disinfection process too Low kinetics, Formation of oxidation transformation products, Catalyst removal Kim et al.,(2009); Rizzo et al.,(2019)
12. Nanofilteration Amoxicillin 99% useful for getting rid of drugs, substances that cause hormone disruption Chemical resistance, limited lifetime of membranes Oulebsir et al.,(2020); Hilal et al., 2004; Bruggen et al.,(2008)

Fig.1: Overview of the Source and Types of Emerging Contaminants
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Fig.2: Pathways and Distribution of Emerging Contaminants
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