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Abstract

The article proposes a novel solution to the control problem of centrifugal gas compressors which are driven by three-phase

induction motors (IMs) and three-phase permanent magnet synchronous motors (PMSMs), through a novel flatness-based

control scheme which is implemented in successive loops. By re-arranging state variables and by splitting suitably the state

vector of the IM-driven gas-compressor and of the PMSM-driven gas compressor into subsystems one arrives at writing the

associated state-space models in the triangular (strict feedback) form. For the latter state-space description it is possible to

solve the control and stabilization problem using chained control loops. The state-space model of the IM-driven gas-compressor

and of the PMSM-driven gas-compressor is decomposed into cascading subsystems which satisfy differential flatness properties.

For these subsystems virtual control inputs are computed, capable of inverting their dynamics and of eliminating the associated

tracking error. The control inputs which are actually applied to the complete nonlinear form of the IM-actuated gas-compressor

and of the PMSM-actuated gas compressor are computed from the last subsystem of the chained state-space description. These

control inputs incorporate in a recursive manner all virtual control inputs which were computed from the individual subsystems

included in the initial state-space equation. The control inputs that should be applied to the nonlinear system so as to assure

that all state vector elements will converge to the desirable setpoints are obtained at each iteration of the control algorithm by

tracing backwards the subsystems of the chained state-space model. The method is of proven global stability and ensures fast

and accurate tracking of the reference setpoints by the state variables of the IM-driven gas compressor and of the PMSM-driven

gas compressor.
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26504, Rion Patras Greece Fisciano, 84084, Italy 19000, Setif, Algeria

e-mail: grigat@ieee.org e-mail: psiano@unisa.it e-mail: bilal.sari@univ-setif.dz

Mohammed AL-Numayd Masoud Abbaszadehe Gennaro Cuccurullof

dElectrical Eng. Dept. eDept. ECS Engineering fDept. of Industrial Eng.

King Saud University Rensselaer Polytech. Inst. Univ. of Salerno

Riyadh 11421, Saudi Arabia 12065, NY, USA Fisciano, 84084, Italy

e-mail: alnumay@ksu.edu.sa e-mail: masouda@ualberta.ca e-mail: gcuccurullo@unisa.it

Abstract: The article proposes a novel solution to the control problem of centrifugal gas compressors
which are driven by three-phase induction motors (IMs) and three-phase permanent magnet synchronous
motors (PMSMs), through a novel flatness-based control scheme which is implemented in successive loops.
By re-arranging state variables and by splitting suitably the state vector of the IM-driven gas-compressor
and of the PMSM-driven gas compressor into subsystems one arrives at writing the associated state-space
models in the triangular (strict feedback) form. For the latter state-space description it is possible to solve
the control and stabilization problem using chained control loops. The state-space model of the IM-driven
gas-compressor and of the PMSM-driven gas-compressor is decomposed into cascading subsystems which
satisfy differential flatness properties. For these subsystems virtual control inputs are computed, capable
of inverting their dynamics and of eliminating the associated tracking error. The control inputs which are
actually applied to the complete nonlinear form of the IM-actuated gas-compressor and of the PMSM-
actuated gas compressor are computed from the last subsystem of the chained state-space description.
These control inputs incorporate in a recursive manner all virtual control inputs which were computed
from the individual subsystems included in the initial state-space equation. The control inputs that should
be applied to the nonlinear system so as to assure that all state vector elements will converge to the desir-
able setpoints are obtained at each iteration of the control algorithm by tracing backwards the subsystems
of the chained state-space model. The method is of proven global stability and ensures fast and accu-
rate tracking of the reference setpoints by the state variables of the IM-driven gas compressor and of the
PMSM-driven gas compressor.
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global stability, Lyapunov analysis.

1



1 Introduction

Flatness-based control has been one of the main research directions on nonlinear control systems during
the last years [1-2]. The method allows for ensuring controllability and designing stabilizing feedback con-
trollers for complex nonlinear dynamical systems [3-5]. A system is considered to be differentially flat if the
following two conditions hold: (i) all its state variables and its control inputs can be written as differential
functions of a subset of its state variables which define the flat outputs of the system (ii) the flat outputs
of the system are differentially independent, which means that they are not connected through a relation
in the form of an homogeneous differential equation [6-9]. The proof of differential flatness-properties for a
system signifies that through successive differentiations of its flat outputs and a change of state variables
the system can be transformed into the input-output linearized form [10-13]. Equivalently differentially flat
systems can be written into the canonical Brunovsky form [14-18]. The latter description of the system’s
state-space model is both controllable and observable and this enables the design of a stabilizing feedback
controller with the use of the eigenvalues assignment technique as well as the design of a convergent state
estimator, for instance in the form of the Kalman Filter [19-22]. However, to compute the control inputs
that should be applied on the initial nonlinear state-space model of the system one should perform inverse
transformations, without excluding the appearance of singularities. To avoid such a case and to design a
stabilizing feedback controller based on the differential flatness properties of the system, but without the
need for changes of state variables, successive differentiations of the flat outputs and state-space model
transformations, the present article introduces the concept of flatness-based control in successive loops
[23-26].

In the flatness-based control approach in successive loops, the initial nonlinear state-space model of the
system is written in the form of a chain of subsystems, where for each one of them it is shown that differ-
ential flatness properties hold [23-26]. The state vector of the (i-th) subsystem becomes also a flat outputs
vector about it while the state vector of the (i+1)-th subsystem forms a virtual control inputs vector for
the i-th subsystem. The proof of differential flatness properties for these subsystems signifies that each
one of them can be written in the input-output linearized form and that a stabilizing feedback controller
can be designed for each one of them by inverting its dynamics. In this concept, the virtual control inputs
vector that stabilizes the (i-th) subsystem should be also a setpoints vector for the (i+1)-th subsystem.
Finally, the N-th (last) subsystem in this chain of state-space models contains the real control inputs.
The inversion of its dynamics gives the stabilizing feedback controller for the initial nonlinear state-space
model. The control signal which achieves stabilization for the initial extended nonlinear state-space model
uses recursively the virtual control inputs of the preceding N − 1 subsystems, by tracing these subsystems
backwards that is from the (N-1)-th subsystem to the 1st one. The global stability of the flatness-based
control method in successive loops is proven analytically by showing the asymptotic elimination of the
tracking error of each one of the subsystems that constitute the integrated system’s dynamics. A global
stability proof can be also obtained using Lyapunov analysis [27-29].

In the present article, the flatness-based control method in successive loops is tested in two nonlinear indus-
trial systems: (i) centrifugal gas compressors driven by induction motors (ii) centrifugal gas compressors
driven by permanent magnet synchronous motors. Gas compressors are of paramount importance for nat-
ural gas processing stations and have progressively become the backbone of the gas distribution network
[30-32]. They perform liquidisation of natural gas thus facilitating its storage and transport [33-34]. Be-
sides, they enable the transfer of natural gas through pipelines under agreed pressure specifications [35-36].
The growing interest in the optimized functioning of gas distribution networks and gas terminals has mo-
tivated much related research during the last years. Recent advancements on optimization techniques for
the gas distribution network are given in [37-40]. Recent advancements in the control of gas compressors
and pressure levels in the gas network are outlined in [41-43].

Natural gas compressors exhibit multivariable and nonlinear dynamics [44-46]. If inefficiently controlled
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gas compressors may exhibit surge, which is associated with unsteady mass flow through the compressor
and sustained oscillations that may finally damage the compressor’s blades [47- 49]. To treat the compli-
cated nonlinear and multi-variable dynamics of gas compressors elaborated nonlinear control algorithms
have been proposed [50-52]. Fault tolerance, precision and robustness are prerequisites for the actuation
systems of gas compressors. [53-55]. One can distinguish for instance several results on NMPC (nonlinear
model predictive control), as well as on MPC which is applied to linearized models of the compressors
[56-57]. Besides, one can note results on the use of global linearization-based control and state estimation-
based control [58-60]. Additionally one can find results based on linearization around multiple equilibria
and subsequent use of LMI techniques [61-62]. Usually the opening or closure of the compressor’s inlet,
outlet and retrofitting valves function as control inputs [63-65]. Moreover, when the compressor receives
actuation from an electric motor, the motor’s torque becomes also a control input that determines signifi-
cantly the stability properties and the optimal function of the compressor [66-68].

Several types of electric motors have been considered as actuators of centrifugal gas-compressors, and these
are mainly synchronous three-phase motors, asynchronous (induction) motors and multi-phase motors [69-
72]. To stabilize the functioning of the compressor and to make its input and output pressure as well as its
mass flow reach the targeted setpoints, elaborated nonlinear control methods have been proposed [73- 75].
The control problem of distributed gas-compressors is primarily found in gas-processing stations where the
aim is to mix volumes of gas, arriving through different gas-transmission pipelines under different mass rate
and pressure characteristics [76-79]. Different configurations of gas-compressors, being connected serially
or in parallel, can result into gas processing units of nonlinear, complicated and high-dimensional state-
space models [80- 83]. The development of nonlinear control and optimization methods that can assure
the reliable functioning of such gas-processing stations is obviously a non-trivial task [84-86]. Similar are
the control problems in the case of electrically-driven air compressors and this is another industrial domain
where the article’s results potentially can be used [87 -90].

The present article considers models of gas-compressors with electric actuation coming from either three-
phase induction (asynchronous) motors or from three-phase permanent magnet synchronous motors. The
global stability properties of the flatness-based control method in successive loops is analytically proven and
experimentally confirmed through simulation tests. The structure of the article is as follows: In Section 2
the dynamic model of the induction motor-driven gas-compressor is analyzed. In Section 3 a flatness-based
controller in successive loops is designed for the gas compressor with actuation from an induction motor.
In Section 4 the dynamic model of the PMSM-driven gas compressor is analyzed. The global stability
properties of the associated control loop are proven. In Section 5 a flatness-based controller in successive
loops is developed for the dynamic model of the gas compressor with actuation from a PM synchronous
motor. The global stability properties of the associated control loop are proven. In Section 6 simulation
experiments are performed to test the performance of (i) flatness-based control in successive loops for the
dynamic model of the induction motor-driven gas compressor, (ii) flatness-based control in successive loops
for the dynamic model of the PMSM-driven gas-compressor. Finally, in Section 7 concluding remarks are
stated.

2 Dynamic model of the induction motor-driven gas-compressor

2.1 Dynamics of the IM-driven gas compressor

The diagram of the integrated system which includes a gas compressor that is actuated by an Induction
Motor is given in Fig. 1. Two tanks are considered of volumes Vi and Vo respectively. These represent the
plenum before and after compression. The inlet tank stores uncompressed gas arriving to it through the
inlet valve. The outlet tank stores compressed gas arriving to it through the outlet valve. The pressure of
the inlet valve is denoted as pi. The pressure of the outlet valve is denoted as po. The mass flow through
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the compressor is denoted as m. The mass flow is dependant on the tank volumes and gas velocities,
as well as on inlet and outlet tank conditions, denoted as ai and ao respectively. The compressor’s turn
speed, which is also the motor’s turn speed is denoted as ω. The compressor’s torque is denoted as τc. The
motor’s torque is denoted as τd and is a control input for the compressor. The moment of inertia of the
turning part of the compressor is denoted as J [32], [66-68], [91].

Figure 1: Diagram of the integrated system that includes a gas compressor being actuated by an Induction
Motor

The mass flow through the recycle valve is described by a first-order differential equation with a time
constant which is denoted as Tr. The steady-state recycle mass flow is denoted as mr,s. The compres-
sor’s characteristics which define the mass flow rate through it are denoted by function π(m,ω). The
compressor’s torque τc is given by function τc(m,ω) which signifies that the torque which is developed by
the compressor depends on its turn speed and on the mass flow rate through it.In aggregate, the dynamic
model of the compressor is given by the following equations [32]:

ṗi =
a2i
Vi
[mi(pi)−m+mp] (1)

ṗo =
a2o
Vo
[−mo(po) +m−mr] (2)

ṁ = 1
L
[π(ω,m)pi − po] (3)

ω̇ = 1
J
[τd − τc(ω,m)− vω] (4)
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ṁr =
1
Tr
[mr,ss(pi, po,Ki)−mi] (5)

where v is a mechanical friction coefficient. Besides, about the inlet, outlet and reverse mass flow in the
gas compressor it holds that [32]

mi(pi) = Ki

√
patm − pi (6)

mo(po) = Ko

√
po − patm (7)

mr,ss(pi, po,Kr) = Kr

√
p2 − p1 (8)

where Ki is the inlet valve constant which is used as a control input, Ko is the outlet valve constant, patm
is the atmospheric pressure and Kr is the recycle valve constant which also serves as a control input. The
three valves’ constants depend on each valve’s throttle position. Non-return values ensure also that mass
flow rates mi, mo and mr cannot change direction.

By substituting Eq. (6), Eq. (7) and Eq. (8) into Eq. (1) to Eq. (5) one obtains [32]

ṗi =
a2i
Vi
[Ki

√
patm − pi −m+mr] (9)

ṗo =
a2o
Vo
[−Ko

√
po − patm +m−mr] (10)

ṁ = 1
L
[π(ω,m)pi − po] (11)

ω̇ = 1
J
[τd − τc(m,ω)− vω] (12)

ṁr =
1
Tr
[Kr

√
po − pi −Ki

√
patm − pi] (13)

By defining the state vector x = [x1, x2, x3, x4, x5]
T = [pi, po,m, ω,mr]

T and the control inputs vector Ki,
Kr, τd the dynamic model of the compressor is written as

ẋ1 =
a2i
Vi
[Ki

√
patm − x1 − x3 + x5] (14)

ẋ2 =
a2o
Vo
[−Ko

√
x2 − patm + x3 − x5] (15)

ẋ3 = 1
L
[π(x3, x4)x1 − x2] (16)

ẋ4 = 1
J
[τd − τc(x3, x4)− vx4] (17)

ẋ5 = 1
Tr
[Kr

√
x2 − x1 −Ki

√
patm − x1] (18)

Under the assumption of field orientation, the magnetic field of the induction motor rotates asynchronously
at a rate which is defined by the first-order time-derivative of the field-orientation angle [3], [1-5]

ρ = tan−1(ψrb

ψra
) (19)
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In the dq asynchronously rotating reference frame only the d-axis constituent of the magnetic flux remains
while the q-axis constituent of the magnetic flux vanishes, that in ψ = ψrd and ψrq = 0. In the new
coordinates frame the induction motor model is written as: [3], [1-5]

θ̇ = ω (20)

ω̇ =
µ

J
ψrdisq −

TL

J
− Tb

J
(21)

ψ̇rd = −αψrd + αMisd (22)

i̇sd = −γisd + αβψrd + npωisq +
αMisq

2

ψrd
+

1

σLs
vsd (23)

i̇sq = −γisq − βnpωψrd − npωisd −
αMisqisd

ψd
+

1

σLs
vsq (24)

ρ̇ = npω +
αMisq

ψrd
(25)

In Eq. (21) TL is the load torque and in the case of the compressor TL = τc(m,ω), while Tb is the
torque due to mechanical friction with Tb = vω. M denotes mutual inductance, and np is the number
of poles. Parameters σ, γ, µ, a and β are associated with the coefficients of the electric circuit of the
stator and the rotor (resistance, inductance, mutual inductance and number of poles) [1-5], [91]. Next, the
following state variables are defined: x = [x6, x7, x8, x9]

T = [ψrd, isd, isq, ρ]
T while the control inputs vector

is u = [vsd, vsq]
T . Thus, in the dynamic model of the induction motor the driving torque is rewritten as

τd = µx6x8 (26)

while about the dynamics of the electric part of the induction motor one has

ẋ6 = −αx6 + αMx7 (27)

ẋ7 = −γx7 + αβx6 + npx4x8 +
αMx28
x6

+
1

σLs
vsd (28)

ẋ8 = −γx8 − βnpx4x6 − npx4x7 −
αMx8x7

x6
+

1

σLs
vsq (29)

ẋ9 = npx4 +
αMx8

x6
(30)

2.2 State-space model of the electrically actuated gas compressor

The state vector of the integrated gas compression system which consists of a centrifugal gas-compressor
and a three-phase induction motor is given by:

x = [x1, x2, x3, x4, x5, x6, x7, x8, x9]
T⇒

x = [Pi, Po,m, ω,mr, ψrd , isd , isq , ρ]
T (31)

The dynamic model of the induction motor-driven has the following state-space description
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a2i
Vi
(−x3 + x5)

a2o
Vo
[−Ko

√
x2 − patm + x3 − x5]

1
L
[π(x3, x4)x1 − x2]

1
J
[µx6x8 − τc(x3, x4)− vx4]

0
−ax6 + aMx7

−γx7 + aβx6 + npx4x6 +
aMx2

8

x6

−γx6 − βnpx4x6 − npx4x7 − aMx8x7

x6

npx4 +
aMx8

x6


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a2i
Vi

√
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− 1
Tr

√
patm − x1

1
Tr

√
x2 − x1 0 0

0 0 0 0
0 0 1
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0

0 0 0 1
σLs

0 0 0 0


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u4









(32)
First, the rows of the state-space model are reorganized as follows:

ẋ2 =
a2o
Vo
[−Ko

√
x2 − patm + x3 − x5] (33)

ẋ3 = 1
L
[π(x3, x4)x1 − x2] (34)

ẋ4 = 1
J
[µx6x8 − τc(x3, x4)− vx4] (35)

ẋ6 = −ax6 + aMx7 (36)

ẋ1 =
a2i
Vi
(−x3 + x5) +

a2i
Vi

√
patm − x1u1 (37)

ẋ5 = − 1
Tr

√
patm − x1u1 +

1
Tr

√
x2 − x1u2 (38)

ẋ7 = −γx7 + aβx6 + npx4x6 +
aMx2

8

x6

+ 1
σLs

u3 (39)

ẋ8 = −γx6 − βnpx4x6 − npx4x7 − aMx8x7

x6

+ 1
σLs

u4 (40)

The integrated system can be also written in the concise nonlinear affine-in-the-input state-space form

ẋ = f(x) + g(x)u (41)

where x∈R9×1, f(x)∈R9×1, g(x)∈R9×4 and u∈R4×1.

Next, the state variable of the electrically actuated system are re-defined as follows: z1 = x2, z2 = x3,
z3 = x4, z4 = x6, z5 = x1, z6 = x5, z7 = x7 and z8 = x8. By substituting state variables xi by state
variables zi one obtains

ż1 =
a2o
Vo
[−Ko

√
z1 − patm + z2 − z6] (42)

ż2 = 1
L
[π(z2, z3)z5 − z1] (43)

ż3 = 1
J
[µz4z8 − τc(z2, z3)− vz3] (44)

ż4 = −az4 + aMz7 (45)
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ż5 =
a2i
Vi
(−z2 + z6) +

a2i
Vi

√
patm − z5u1 (46)

ż6 = − 1
Tr

√
patm − z5u1 +

1
Tr

√
z1 − z5u2 (47)

ż7 = −γz7 + aβz4 + npz3z4 +
aMz2

2

z4
+ 1

σLs
u3 (48)

ż8 = −γz4 − βnpz3z4 − npz3z7 − aMz8z7
z4

+ 1
σLs

u4 (49)

Thus, the state-space model of the induction motor-driven gas compressor takes the following form:
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0
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1
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0 0 1
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0
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(50)
Next, subsystem Σ1 is defined with the following subvectors and submatrices: z1,4 = [z1, z2, z3, z4]

T ,
f1,4(z1,4) and g1,4(z1,4)

f1,4 =









a2o
Vo
[−Ko

√
z1 − patm + z2]

− 1
L
z1

1
J
[−τc(z2, z3)− vz3]
−az4 + aMz7









g1,4 =




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0 − a2o
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0 0
1
L
[π(z2, z3) 0 0 0

0 0 0 1
J
[µz4
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
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

(51)

Moreover, subsystem Σ2 is defined with the following subvectors and submatrices: z5,8 = [z5, z6, z7, z7]
T ,

f5,8(z1,4, z5,8) and g5,8(z1,4, z5,8)

f5,8 =











a2i
Vi
(−z2 + z6)

0

−γz7 + aβz4 + npz3z4 +
aMz2

2

z4

−γz4 − βnpz3z4 − npz3z7 − aMz8z7
z4











g5,8 =











a2i
Vi

√
patm − z5 0 0 0

− 1
Tr

√
patm − z5

1
Tr

√
z1 − z5 0 0

0 0 1
σLs

0

0 0 0 1
σLs











(52)
Thus, the dynamic model of the induction motor-driven gas-compressor can be now written in the form of
the two chained subsystems Σ1 and Σ2

ż1,4 = f1,4(z1,4) + g1,4(z1,4)z5,8 (53)

ż5,8 = f5,8(z1,4, z5,8) + g5,8(z1,4)z5,8u (54)
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2.3 Differential flatness of the IM-driven gas compressor

It can be proven that the state-space model of the IM-driven gas compressor which consists of the cascading
subsystems of Eq. (53) and Eq. (54) is differentially flat, with flat outputs vector y1 = z1,4. From Eq.(53)
one solves for subvector z5,8 which gives

z5,8 = g1,4(z1,4)
−1[ż1,4 − f1,4(z1,4)]⇒z5,8 = ha(z1,4, ż1,4) (55)

which signifies that z5,8 is a differential function of the flat outputs vector of the system. Moreover, from
Eq. (54) one solves for the control input u. This gives

u = g5,8(z1,4, z5,8)
−1[ż5,8 − f5,8(z1,4, z5,8)]⇒u = hb(z1,4, ż1,4) (56)

which signifies that u is a differential function of the flat outputs vector of the system. This comes to
confirm that the integrated gas-compression system is differentially flat.

3 Flatness-based controller in successive loops for the IM-driven gas-compressor

It will be proven that each one of the subsystems Σ1 and Σ2 of Eq. (53) and Eq. (54) which constitute
the dynamics of the induction motor-driven gas compressor is a differentially flat subsystem. Indeed in the
subsystem of Eq. (53) the flat output is taken to be y1 = z1,4 and the virtual control input is v1 = z5,8.
Then, solving Eq. (53) for the virtual control input v1 one has

v1 = g1,4(z1,4)
−1[ż1,4 − f1,4(z1,4)] (57)

which signifies that v1 is a differential function of the flat output y1. Consequently, Eq. (53) represents a
differentially flat subsystem. Next, in the subsystem of Eq. (54) the flat output is taken to be y2 = z5,8,
and z1,4 is considered to be a coefficients vector and u is the real control input. Solving for u gives

u = g5,8(z1,4, z5,8)
−1[ż1,4 − f5,8(z1,4, z5,8)] (58)

Consequently, u is a differential function of the flat output y2 and the subsystem of Eq. (54) is also differ-
entially flat.

Knowing that the subsystems of Eq. (53) and Eq. (54) are differentially flat, it is also inferred that they
can be written in the input-output linearized form. Next, a stabilizing feedback controller can be designed
for each one of them by inverting their dynamics, as it is commonly done for input-output linearized systems.

For the subsystem of Eq. (53), the stabilizing feedback control input which is provided by v1 = z5,8 is

v1 = g1,4(z1,4)
−1[żd1,4 − f1,4(z1,4)−K1(z1,4 − zd1,4))] (59)

Next, the value of the virtual control input v1 = zd5,8 becomes setpoint zd5,8 for the subsystem of Eq. (54).
The stabilizing feedback control for the latter subsystem, coming from the real control input u is given by

u = g5,8(z1,4, z5.8)
−1[żd5,8 − f5,8(z1,4, z5.8)−K2(z5,8 − zd5,8))] (60)

By substituting Eq. (59) into Eq. (53) and by defining the tracking error variable e1,4 = z1,4− zd1,4, as well
as the diagonal gain matrix K1∈R4×4 > 0 with diagonal elements k1,ii > 0 for i = 1, · · · , 4, one obtains
the tracking error dynamics for the first subsystem. This is given by:

ż1,4 = f1,4(z1,4) + g1,4(z1,4)g1,4(z1,4)
−1[żd1,4 − f1,4(z1,4)−K1(z1,4 − zd1,4)]⇒

(ż1,4 − żd1,4) +K1(z1,4 − zd1,4) = 0⇒ė1,4 +K1e1,4 = 0⇒
limt→∞ e1,4(t) = 0⇒z1,4 = zd1,4

(61)
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By substituting Eq. (60) into Eq. (54) and by defining the tracking error8 variable e5,8 = z5,8 − zd5,8,
as well as the diagonal gain matrix K2∈R4×4 > 0 with diagonal elements k2,ii > 0 for i = 1, · · · , 4, one
obtains the tracking error dynamics for the first subsystem. This is given by:

ż5,8 = f5,8(z1,4, z5,8) + g5,8(z1,4, z5,8)g5,8(z1,4, z5,8)
−1[żd5,8 − f5,8(z1,4, z5,8)−K2(z5,8 − zd5,8)]⇒

(ż5,8 − żd5,8) +K2(z5,8 − zd5,8) = 0⇒ė5,8 +K2e5,8 = 0⇒
limt→∞ e5,8(t) = 0⇒z5,8 = zd5,8

(62)

Consequently, all state vector elements zi i = 1. · · · , 8 converge to the associated setpoints zdi and through
them the state variables of the initial nonlinear system xi, i = 1, · · · , 8 converge to the associated setpoints
xdi . Therefore, the control loop of the induction motor-driven gas-compressor is globally asymptotically
stable.

Global stability for the control loop of the IM-driven gas compressor can be also proven through Lyapunov
analysis. To this end, the following Lyapunov function is defined

V = 1
2 [e

T
1,4e1,4 + eT5,8e5,8] (63)

By differentiating in time one obtains

V̇ = 1
22[e

T
1,4ė1,4 + eT5,8ė5,8] (64)

Next, using the relations about the tracking error dynamics of the system’s subvectors which was given in
E q. 61 and Eq. (62) one obtains

V̇ = [eT1,4(−K1e1,4) + eT5,8(−K2e5,8)]⇒
V̇ = −[eT1,4K1e1,4 − eT5,8K2e5,8]⇒

V̇ < 0 ∀ e1,4 6=0, e5,8 6=0

(65)

Moreover, V̇ = 0 if and only if e1,4 = 0 and e5,8 = 0. consequently V is a strictly diminishing function
which converges asymptotically to the equilibrium [e1,4 = 0, e5,8 = 0]. Thus, once again global asymptotic
stability is proven for the control loop of the induction motor-driven gas-compressor.

4 Dynamic model of the PMSM-driven gas-compressor

4.1 Dynamics of the PMSM-driven gas compressor

The diagram of the PMSM electrically-driven gas compression system is given in Fig. 2/ The pressure of
the inlet valve is denoted again as Pi. The pressure of the outlet valve is denoted as Po. The mass flow
through the compressor is denoted as m. The mass flow depends on the tank volumes and gas velocities, as
well as on inlet and outlet tank conditions. The compressor’s turn speed is denoted as ω. The compressor’s
torque is denoted as τc. The motor’s torque is denoted as τd and is a control input for the compressor.
The moment of inertia of the turning part of the compressor is denoted as J . By defining the state vector
of the electrically driven gas compressor as xa = [x1, x2, x3, x4, x5]

T = [Pi, Po,m, ω,mr]
T the associated

state-space model is given by [32], [91]

ẋ1 =
a2i
Vi
[Ki

√
patm − x1 − x3 + x5]

ẋ2 =
a2o
Vo
[−Ko

√
x2 − patm + x3 − x5]

ẋ3 = 1
L
[π(x3, x4)x1 − x2]

ẋ4 = 1
J
[τd − τc(x3, x4)− vx4]

ẋ5 = 1
Tr
[Kr

√
x2 − x1 −Ki

√
patm − x1]

(66)
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By defining the state vector of the permanent magnet synchronous motor as xb = [x6, x7, x8, x9]
T =

[θ, ω, id, iq]
T the state-space model of this electric motor is given by [3-5]

ẋ6 = x7
ẋ7 = 1

J
[px9(Ψm − (Ld − Lq)x8)−Bx7 − TL]
ẋ8 = 1

Ld
(vd −Rx8 − px7Lqx9)

ẋ9 = 1
Lq

(vq −Rx9 − px7Ldx8 − x7Ψm)

(67)

where J is the moment of inertia of the PMSM, p is the number of poles, Ψm is the magnetic flux due to
the machine’s permanent magnets, Ld, Lq are the inductance coefficients in the dq reference frame, R is
the stator’s resistance and B is the mechanical friction coefficient.

Using that the torque which provides the rotational motion of the compressor is the electromagnetic torque
of the PMSM, that is

τd = px9(Ψm − (Ld − Lq)x8) (68)

and applying Eq. (66) about the dynamics of the compressor, as well as Eq. (67) about the dynamics of
the PMSM, and by considering that the complete state vector of the integrated system is

x = [x1, x2, x3, x4, x5, x6, x7]T = [Pi, Po,m, ω,mr, id, iq]T (69)

and that the control inputs vector of the integrated system is

u = [u1, u2, u3, u4]
T = [Ki,Kr, vd, vq]

T (70)

the integrated state-space model of the compressor-PMSM system comprises the following equations

ẋ1 =
a2i
Vi
[u1

√
patm − x1 − x3 + x5] (71)

ẋ2 =
a2o
Vo
[−Ko

√
x2 − patm + x3 − x5] (72)

ẋ3 = 1
L
[π(x3, x4)x1 − x2] (73)

ẋ4 = 1
J
{[px7(Ψm − (Ld − Lq)x6)]− τc(x3, x4)− vx4} (74)

ẋ5 = 1
Tr
[u2

√
x2 − x1 − u1

√
patm − x1] (75)

ẋ6 = 1
Ld

(u3 −Rx6 − px4Lqx7) (76)

ẋ7 = 1
Lq

(u4 −Rx7 − px4Ldx6 − x4Ψm) (77)

The previous state-space model of Eq. (71) to Eq. (77) can be also written in the nonlinear affine-in-the-
input state-space form

ẋ = f(x) + g(x)u (78)

where x∈R7×1, f(x)∈R7×1, g(x)∈R7×4 and u∈R4×1. The associated matrix equations are given next
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Figure 2: Diagram of the PMSM electrically-driven gas compressor

f(x) =























a2i
Vi
[−x3 + x5]

a2o
Vo
[−Ko

√
x2 − patm + x3 − x5]

1
L
[π(x3, x4)x1 − x2]

1
J
{[px7(Ψm)− (Ld − Lq)x6]− τc(x3, x4)− vx4}

0
1
Ld

(−Rx6 − px4Lqx7)
1
Lq

(−Rx7 − px4Ldx6 − x4Ψm)























(79)

g(x) =























a2i
Vi

√
patm − x1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

− 1
Tr

√
patm − x1

1
Tr

√
x2 − x1 0 0

0 0 1
Ld

0

0 0 0 1
Lq























(80)

4.2 State-space model of the PMSM-driven gas-compressor

The state vector of the PMSM-driven gas-compressor is given by:

x = [x1, x2, x3, x4, x5, x6, x7]
T = [P1, P2,m, ω,mr, id, iq]

T (81)
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and the control inputs vector is given by

u = [u1, u2, u3, u4]
T = [Ki,Kr, vd, vq]

T (82)

The dynamic model of the PMSM-driven gas compressor is given by





















ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7





















=























a2i
Vi
(−x3 + x5)

a2o
Vo
(−Ko

√
x2 − patm + x3 − x5)

1
L
[π(x3, x4)x1 − x2]

1
J
{[px7Ψm − (Ld − Lq)x6]− τc(x3, x4)− vx4}

0
1
Ld

(−Rx6 − px4Lqx7)
1
Lq

(−Rx7 − px4Ldx6 − x4Ψm)























+























a2i
Vi

√
patm−x1

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

− 1
Tr

√
patm − x1

1
Tr

√
x2 − x1 0 0

0 0 1
Ld

0

0 0 0 1
Lq































u1
u2
u3
u4









(83)
Next, the system’s state-space model is reorganized as follows:

ẋ2 =
a2o
Vo
(−Ko

√
x2 − patm + x3 − x5) (84)

ẋ3 = 1
L
[π(x3, x4)z1 − x2] (85)

ẋ1 =
a2i
Vi
(−x3 + x5) +

a2i
Vi

√
patm−x1

u1 (86)

ẋ5 = − 1
Tr

√
patm − x1u1 +

1
Tr

√
x2 − x1u2 (87)

ẋ4 = 1
J
{[px7Ψm − (Ld − Lq)x6]− τc(x3, x4)− vx4} (88)

ẋ6 = 1
Ld

(−Rx6 − px4Lqx7) +
1
Ld
u3 (89)

ẋ7 = 1
Lq

(−Rx7 − px4Ldx6 − x4Ψm) + 1
Lq
u4 (90)

Next, the state variables of the system are re-defined as: z1 = x2, z2 = x3, z3 = x1, z4 = x5, z5 = x4,
z6 = x6 and z7 = x7. Using this state variables notation the system’s state-space model is rewritten as::

ż1 =
a2o
Vo
(−Ko

√
z3 − patm + z2 − z4) (91)

ż2 = 1
L
[π(z2, z5)z3 − z1] (92)

ż3 =
a2i
Vi
(−z2 + z4) +

a2i
Vi

√
patm−z3u1 (93)

ż4 = − 1
Tr

√
patm − z3u1 +

1
Tr

√
z1 − z3u2 (94)

ż5 = 1
J
{[pz7Ψm − (Ld − Lq)z6]− τc(z2, z5)− vz5} (95)

ż6 = 1
Ld

(−Rz6 − pz5Lqz7) +
1
Ld
u3 (96)
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ż7 = 1
Lq

(−Rz7 − pz5Ldz6 − z5Ψm) + 1
Lq
u4 (97)

Next, the dynamics of the PMSM-driven gas-compressor is written in the form of the following chained
subsystems:

(

ż1
ż2

)

=

(

a2o
Vo
(−Ko

√
z3 − patm + z2)

− 1
L
z1

)

+

(

0 − a2o
Vo

− 1
L
π(z2, z5) 0

)

(

z3
z4

)

(98)

(

ż3
ż4

)

=

(

a2i
Vi
(−z2 + z4)

0

)

+

(

−a2i
Vi

√
patm − z1 0

− 1
Tr

√
patm − z3

1
Tr

√
z1 − z3

)

(

u1
u2

)

(99)

ż5 = [− 1
J
τc(z2, z5)− v

J
z5] + [

Ld−Lq

J
z6 +

pΨm

J
z7] (100)

(

z6
z7

)

=

(

1
Ld

(−Rz6 − pz5Lqz7)
1
Lq

(−Rz7 − pz5Ldz6 − z5Ψm)

)

+

(

1
Ld

0

0 1
Lq

)

(

u3
u4

)

(101)

4.3 Differential flatness-properties of the PMSM-driven gas-compressor

The dynamic system of the PMSM-driven gas-compressors is differentially flat with flat outputs vector

Y = [y1, y2, y3, y4]
T = [x1, x2, x4, x6]

T = [z3, z1, z2, z6]
T (102)

From the first row of the re-arranged state-space model one has:

ż1 =
a2
0

Vo
(−Ko

√
z1 − patm + z2 − z4) (103)

and by solving for z4 it holds that

z4 = 1
a2o
[−Voż1 − a2oKo

√
z1 − patm + a2oz2] (104)

which signifies that z4 is a differential function of the flat output of the system or z4 = h4(Y, Ẏ ). From the
second row of the re-arranged state-space model one has

ż2 = 1
L
[π(z2, z5)z3 − z1] (105)

thus, by solving for z5 it holds that

π(z2, z5) =
1
z3
[Lż2 + z1] (106)

which allows for expressing z5 in the form of a differential function of the flat output vector, or z5 = h5(Y, Ẏ ).
From the fifth row of the state-space model one has

ż5 = 1
J
[pz7Ψm − (Ld − Lq)z6]− τc(z2, z5)− vz6 (107)

thus by solving for z7 one has

z7 = 1
pΨm

[Jż5 + (Ld − Lq)z6 + τc(z3, z4) + vz5] (108)

which signifies that z7 is a differential function of the flat outputs vector Y or z7 = h7(Y, Ẏ ). Next, from
the 3rd, 4th, 6th and 7th rows of the state-space model one has the following system of equations
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







ż3
ż4
ż6
ż7









=











a2i
Vi
(−z2 + z4)

0
1
Ld

(−Rz6 − pz5Lqz7)
1
Lq

(−Rz7 − pz5Ldz6 − z5Ψm)











+











a2i
Vi

0 0 0

− 1
Tr

√
patm − z3

1
Tr

√
z1 − z3 0 0

0 0 1
Ld

0

0 0 0 1
Lq



















u1
u2
u3
u4









(109)

or, in concise form the previous matrix equation is written as

˙̃z = f̃ + g̃u⇒u = g̃1[ ˙̃z − F̃ ] (110)

where z̃, f̃ , g̃, are differential functions of the flat outputs vector. Thus it is also inferred that u is also a
differential function of the flat outputs vector Y , or equivalently u = hu(Y, Ẏ ). Consequently, the dynamic
model of the PMSM-driven gas compressor is differentially flat. The differential flatness properties of this
system confirm its linearizability and implicitly also its controllability.

5 Flatness-based control in successive loops for the PMSM-driven gas-compressor

It will be proven that each one of the subsystems of Eq. (98) to Eq. (101) is differentially flat and a
flatness-based controller can be designed about it. The following sub-vectors and sub-matrices are defined:
For subsystem Σ1 one has subvector z1,2 and submatrices f1,2(z1,2), g1,2(z1,2) and virtual control input
v1 = [v3, v4]

T :

ż1,2 =

(

z1
z2

)

f1,2 =

(

a2o
Vo
(−Ko

√
z1 − patm + z2)

− 1
L
z1

)

g1,2 =

(

0 − a2o
Vo

− 1
L
π(z2, z5) 0

)

(111)

For subsystem Σ2 one has subvector z3,4 and submatrices f3,4(z1,2, z3,4), g3,4(z1,2, z3,4) and real control
input ua = [u1, u2]

T :

z3,4 =

(

z3
z4

)

f3,4 =

(

a2i
Vi
(−z2 + z4)

0

)

g3,4 =

(

−a2i
Vi

√
patm − z1 0

− 1
Tr

√
patm − z3

1
Tr

√
z1 − z3

)

(112)

For subsystem Σ3 one has subvector z5 and submatrices f5(z1,2, z3,4, z5), g5(z1,2, z3,4, z5) and virtual control

input v2 = − (Ld−Lq)
J

z6 +
µΨm

J
z7:

z5 f5 = − 1
J
τc(z2, z5)− v

J
z5 g5 = 1 (113)

For subsystem Σ4 one has subvector z6,7 and submatrices f6,7(z1,2, z3,4, z5, z6,7), g6,7(z1,2, z3,4, z5, z6,7) and
real control input ub = [u3, u4]

T :

z6,7 =

(

z6
z7

)

f6,7 =

(

1
Ld

(−Rz6 − pz5Lqz7)
1
Lq

(−Rz7 − pz5Ldz6 − z5Ψm)

)

g6,7 =

(

1
Ld

0

0 1
Lq

)

(114)

Thus, the dynamics of the PMSM-driven gas-compressor can be written in the form of the following
subsystems Σ1 to Σ4:

ż1,2 = f1,2(z1,2) + g1,2(z1,2)v1 (115)

ż3,4 = f3,4(z1,2, z3,4) + g3,4(z1,2, z3,4)ua (116)

ż5 = f5(z1,2, z3,4, z5) + g5(z1,2, z3,4, z5)v2 (117)
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ż6.7 = f6,7(z1,2, z3,4, z5, z6,7) + g6,7(z1,2, z3,4, z5, z6,7)ub (118)

For the subsystem Σ1 of Eq. (115) the flat output is defined as y1 = z1,2 and the virtual control input is
v1 = z3,4. By solving Eq. (115) for v1 one has

v1 = g1,2(z1,2)
−1[ż1,2 − f1,2(z1,2)] (119)

which signifies that v1 is a differential function of the flat output y1 and that the subsystem of Eq. (115)
is differentially flat.

For the subsystem Σ2 of Eq. (115) the flat output is defined as y2 = z3,4, the real control input is ua, while
z1,2 is viewed as a coefficients vector. By solving for ua one has

ua = g3,4(z1,2, z3,4)
−1[ż3,4 − f3,4(z1,2, z3,4)] (120)

which signifies that ua is a differential function of the flat output y2, and thus the subsystem of Eq. (116)
is differentially flat.

For the subsystem Σ3 of Eq. (117) the flat outputs vector is y3 = z5, the virtual control input is v2 while
z1,2 and z3,4 are viewed as coefficients. Solving Eq. (117) for v2 gives

v2 = g5(z1,2, z3,4, z5)
−1[ż5 − f5(z1,2, z3,4, z5)] (121)

which signifies that v2 is a differential function of the flat output y3 and that the subsystem of Eq. (117)
is differentially flat.

For the subsystem Σ4 of Eq. (118) the flat output vector is y4 = z6,7, the real control input is ub, while
z1,2, z3,4, z5 are viewed as coefficients. By solving Eq. (118) for vb one obtains

ub = g6,7(z1,2, z3,4, z5, z6,7)
−1[ż6,7 − f6,7(z1,2, z3,4, z5, z6,7)] (122)

which signifies that ub is a differential function of the flat output y4 and that the subsystem of Eq. (118)
is differentially flat.

Knowing that each one of the subsystems Σ1 to Σ4 of Eq. (115) to Eq. (118) is differentially flat means
also that each one of them can be written in the input-output linearized form. Besides, it means that a
stabilizing feedback controller can be designed for each one of these subsystems by applying inversion of
its dynamics, as it is usually done for input-output linearized systems.

For the subsystem Σ1 of Eq. (115) the stabilizing feedback control is taken to be v1 = zd1.2

v1 = g1,2(z1,2)[ż
d
1,2 − f1,2(z1,2)−K1(z1,2 − zd1,2)] (123)

where K1 > 0 is a diagonal matrix with diagonal elements k1,ii > 0 for i = 1, 2. The virtual control
input v1 = zd1,2 becomes setpoint to the subsystem of Eq. (116). For the subsystem Σ2 of Eq. (116) the
stabilizing feedback control is taken to be

ua = g3,4(z1,2, z3,4)[ż
d
3,4 − f3,4(z1,2, z3,4)−K2(z3,4 − zd3,4)] (124)

where K2 > 0 is a diagonal matrix with diagonal elements k2,ii > 0 for i = 1, 2. For the subsystem Σ3 of
Eq. (117) the stabilizing feedback control is taken to be

v2 = g5(z1,2, z3,4, z5)[ż
d
5 − f5(z1,2, z3,4, z5)−K3(z5 − zd5)] (125)
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where K3 > 0 is a positive scalar feedback gain. Knowing that the desirable value for control input v2 is

v∗2 = − (Ld−Lq)
J

z6+
µΨm

J
z7 and by assigning a desirable setpoint value to z6 which is denoted as zd6 one can

also find the desirable (setpoint) value for z7 which is denoted as zd7 . Actually it holds that

zd7 = 1
pΨm

[Jv∗2 + (Ld − Lq)z
d
6 ] (126)

For the subsystem Σ4 of Eq. (118) the stabilizing feedback control is taken to be

ub = g6,7(z1,2, z3,4, z5,6, z7)[ż
d
6,7 − f6,7(z1,2, z3,4, z5,6, z7)−K4(z6,7 − zd6,7)] (127)

where K4 > 0 is a diagonal matrix with diagonal elements k4,ii > 0 for i = 1, 2. The setpoints vector
zd6,7 = [zd6 , z

d
7 ] has been defined before using the value of zd6 and the value of zd7 that was computed from

Eq. (126).

Next, the following tracking error variables are defined: e1,2 = z1,2 − zd1,2, e3,4 = z3,4 − zd3,4, e5 = z5 − zd5 ,

e6,7 = z6,7 − zd6,7.. By substituting Eq. (123) into Eq. (115) the following tracking error dynamics is
obtained

ż1,2 = f1,2(z1,2) + g1,2(z1,2)g1,2(z1,2)
−1[żd1,2 − f1,2(z1,2)−K1(z1,2 − zd1,2)]⇒

(ż1,2 − żd1,2) +K1(z1,2 − zd1,2) = 0⇒ė1,2 +K1e1,2 = 0⇒
limt→∞e1,2(t) = 0⇒limt→∞z1,2(t) = zd1,2(t)

(128)

By substituting Eq. (124) into Eq. (116) the following tracking error dynamics is obtained

ż3,4 = f3,4(z1,2, z3,4) + g3,4(z1,2, z3,4)g1,2(z1,2, z3,4)
−1[żd3,4 − f3,4(z1,2, z3,4)−K2(z3,4 − zd3,4)]⇒

(ż3,4 − żd3,4) +K2(z3,4 − zd3,4) = 0⇒ė3,4 +K2e3,4 = 0⇒
limt→∞e3,4(t) = 0⇒limt→∞z3,4(t) = zd3,4(t)

(129)

By substituting Eq. (125) into Eq. (117) the following tracking error dynamics is obtained

ż5 = f5(z1,2, z3,4, z5) + g5(z1,2, z3,4, z5)g5(z1,2, z3,4, z5)
−1[żd5 − f5(z1,2, z3,4, z5)−K3(z5 − zd5)]⇒

(ż5 − żd5) +K3(z5 − zd5) = 0⇒ė5 +K3e5 = 0⇒
limt→∞e5(t) = 0⇒limt→∞z5(t) = zd5(t)

(130)

Finally, by substituting Eq. (127) into Eq. (118) the following tracking error dynamics is obtained

ż6,7 = f6,7(z1,2, z3,4, z5, z6,7) + g6,7(z1,2, z3,4, z5, z6,7)g6,7(z1,2, z3,4, z5, z6,7)
−1

·[żd6,7 − f6,7(z1,2, z3,4, z5, z6,7)−K4(z6,7 − zd6,7)]⇒
(ż6,7 − żd6,7) +K4(z6,7 − zd6,7) = 0⇒ė6,7 +K4e6,7 = 0⇒

limt→∞e6,7(t) = 0⇒limt→∞z6,7(t) = zd6,7(t)

(131)

By proving that state vector elements zi converge to the associated setpoints zdi it is also proven that the
state variables of the initial nonlinear system xi converge to their setpoints xdi . Thus, the control loop of
the PMSM-driven gas compressor is globally asymptotically stable.

Global stability can be also proven through Lyapunov analysis. To this end, the following Lyapunov
function is defined:

V = 1
2 [e

T
1,2e1,2 + eT3,4e3,4 + e25 + eT6,7e6,7] (132)

By differentiating the above equation in time one obtains:

V̇ = 1
22[e

T
1,2ė1,2 + eT3,4ė3,4 + e5ė5 + eT6,7ė6,7] (133)
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Next, by substituting in Eq. (133) the relations about the tracking error dynamics which are provided by
Eq. (128) to Eq. (131) one gets

V̇ = [eT1,2(−K1e1,2) + eT3,4(−K2e3,4) + e5(−K3e5) + eT6,7(−K4e6,7)]⇒
V̇ = −[eT1,2(K1e1,2) + eT3,4(K2e3,4) + (K3e

2
5) + eT6,7(K4e6,7)]⇒

V̇ < 0 ∀ e1,2 6=0, e3,4 6=0, e5 6=0, e6,7 6=0,

(134)

and V̇ = 0 if and only if e1,2 = 0, e3,4 = 0, e5 = 0 and e6,7 = 0. Consequently, Lyapunov function V

is a strictly diminishing function which converges asymptotically to the fixed point [eT1,2 = 01×2, e
T
3,4 =

01×2, e5 = 0, eT6,7 = 01×2]. In this manner, it is proven once again that the dynamic model of the PMSM-
driven gas compressor is globally asymptotically stable.

6 Simulation tests

6.1 Results on control of IM-driven gas compressors

Results about the tracking accuracy and the speed of convergence to setpoints of the successive-loops
flatness-based control method, in the case of the induction motor-driven gas compressor, are shown in Fig.
3 to Fig. 18. A per-unit (p.u.) state variables notation has been used. It can be noticed, that under this
control scheme one achieves fast and precise tracking of reference setpoints for all state variables of the
induction motor-driven gas compressor. It is noteworthy, that through the stages of this method one solves
also the setpoints definition problem for all state variables of the induction motor-driven gas compressor.
Actually, the selection of setpoints for state variables x2, x3, x4 and x6 is unconstrained. On the other
side by defining state variables x1, x5, x6, x7 as virtual control inputs to the subsystem of x2, x3, x4, x6
one can find the setpoints for x1, x5, x6, x7 as functions of the setpoints for x2, x3, x4, x6. The speed of
convergence of the state variables of the induction motor-driven gas compressor under flatness-based con-
trol implemented in successive loops is dependent on the selection of values for the diagonal gain matrices
Ki, i = 1, 2 of Eq. (59) to Eq. (60).

6.2 Results on control of PMSM-driven gas compressor

Results about the tracking accuracy and the speed of convergence to setpoints of the successive-loops
flatness-based control method, in the case of the PMSM-driven gas compressor, are shown in Fig. 19 to
Fig. 34. A per-unit (p.u.) state variables notation has been used. It can be noticed, that under this
control scheme one achieves fast and precise tracking of reference setpoints for all state variables of the
PMSM-driven gas compressor. It is noteworthy, that through the stages of this method one solves also
the setpoints definition problem for all state variables of the PMSM-driven gas compressor. Actually, the
selection of setpoints for state variables x2 and x3 is unconstrained. On the other side by defining state
variables x1 and x5 as virtual control inputs for the subsystem of x2, x3 one can find the setpoints for x1, x5
as functions of the setpoints for x2, x3. In a similar manner the selection of setpoints for the turn speed x4
of the compressor is unconstrained. On the other side by defining state variables x6 and x7 as parts of the
virtual control input for the subsystem of x2, and by assigning without constraints a value to the setpoint
of x6 one can also find the setpoinf for x7 as a function of the setpoints of x4, x6. The speed of convergence
of the state variables of the PMSM-driven gas compressor under flatness-based control implemented in
successive loops is dependent on the selection of values for the diagonal gain matrices Ki, i = 1, · · · , 4 of
Eq. (123) to Eq. (123) .
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Figure 3: Tracking of setpoint 1 by the induction motor-driven gas compressor (a) Convergence of state
variables x1 to x4 (blue lines) to the reference setpoints (red lines) and their KF-based estimation (green
line), (b) Convergence of state variables x5 to x8 (blue lines) to the reference setpoints (red lines) and their
KF-based estimation (green line)
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Figure 4: Tracking of setpoint 1 by the induction motor-drive gas compressor (a) Variations of the control
inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 5: Tracking of setpoint 2 by the induction motor-driven gas compressor (a) Convergence of state
variables x1 to x4 (blue lines) to the reference setpoints (red lines) and their KF-based estimation (green
line), (b) Convergence of state variables x5 to x8 (blue lines) to the reference setpoints (red lines) and their
KF-based estimation (green line)
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Figure 6: Tracking of setpoint 2 by the induction motor-drive gas compressor (a) Variations of the control
inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 7: Tracking of setpoint 3 by the induction motor-driven gas compressor (a) Convergence of state
variables x1 to x4 (blue lines) to the reference setpoints (red lines) and their KF-based estimation (green
line), (b) Convergence of state variables x5 to x8 (blue lines) to the reference setpoints (red lines) and their
KF-based estimation (green line)
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Figure 8: Tracking of setpoint 3 by the induction motor-drive gas compressor (a) Variations of the control
inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 9: Tracking of setpoint 4 by the induction motor-driven gas compressor (a) Convergence of state
variables x1 to x4 (blue lines) to the reference setpoints (red lines) and their KF-based estimation (green
line), (b) Convergence of state variables x5 to x8 (blue lines) to the reference setpoints (red lines) and their
KF-based estimation (green line)
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Figure 10: Tracking of setpoint 4 by the induction motor-drive gas compressor (a) Variations of the control
inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 11: Tracking of setpoint 5 by the induction motor-driven gas compressor (a) Convergence of state
variables x1 to x4 (blue lines) to the reference setpoints (red lines) and their KF-based estimation (green
line), (b) Convergence of state variables x5 to x8 (blue lines) to the reference setpoints (red lines) and their
KF-based estimation (green line)
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Figure 12: Tracking of setpoint 5 by the induction motor-drive gas compressor (a) Variations of the control
inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 13: Tracking of setpoint 6 by the induction motor-driven gas compressor (a) Convergence of state
variables x1 to x4 (blue lines) to the reference setpoints (red lines) and their KF-based estimation (green
line), (b) Convergence of state variables x5 to x8 (blue lines) to the reference setpoints (red lines) and their
KF-based estimation (green line)
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Figure 14: Tracking of setpoint 6 by the induction motor-drive gas compressor (a) Variations of the control
inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 15: Tracking of setpoint 7 by the induction motor-driven gas compressor (a) Convergence of state
variables x1 to x4 (blue lines) to the reference setpoints (red lines) and their KF-based estimation (green
line), (b) Convergence of state variables x5 to x8 (blue lines) to the reference setpoints (red lines) and their
KF-based estimation (green line)
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Figure 16: Tracking of setpoint 7 by the induction motor-drive gas compressor (a) Variations of the control
inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 17: Tracking of setpoint 8 by the induction motor-driven gas compressor (a) Convergence of state
variables x1 to x4 (blue lines) to the reference setpoints (red lines) and their KF-based estimation (green
line), (b) Convergence of state variables x5 to x8 (blue lines) to the reference setpoints (red lines) and their
KF-based estimation (green line)
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Figure 18: Tracking of setpoint 8 by the induction motor-drive gas compressor (a) Variations of the control
inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 19: Tracking of setpoint 1 by the PM synchronous motor-driven gas compressor (a) Convergence
of state variables x1 to x3 (blue lines) to the reference setpoints (red lines) and their KF-based estimation
(green line), (b) Convergence of state variables x4 to x7 (blue lines) to the reference setpoints (red lines)
and their KF-based estimation (green line)
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Figure 20: Tracking of setpoint 1 by the PM synchronous motor-drive gas compressor (a) Variations of the
control inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 21: Tracking of setpoint 2 by the PM synchronous motor-driven gas compressor (a) Convergence
of state variables x1 to x3 (blue lines) to the reference setpoints (red lines) and their KF-based estimation
(green line), (b) Convergence of state variables x4 to x7 (blue lines) to the reference setpoints (red lines)
and their KF-based estimation (green line)
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Figure 22: Tracking of setpoint 2 by the PM synchronous motor-drive gas compressor (a) Variations of the
control inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 23: Tracking of setpoint 3 by the PM synchronous motor-driven gas compressor (a) Convergence
of state variables x1 to x3 (blue lines) to the reference setpoints (red lines) and their KF-based estimation
(green line), (b) Convergence of state variables x4 to x7 (blue lines) to the reference setpoints (red lines)
and their KF-based estimation (green line)
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Figure 24: Tracking of setpoint 3 by the PM synchronous motor-drive gas compressor (a) Variations of the
control inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 25: Tracking of setpoint 4 by the PM synchronous motor-driven gas compressor (a) Convergence
of state variables x1 to x3 (blue lines) to the reference setpoints (red lines) and their KF-based estimation
(green line), (b) Convergence of state variables x4 to x7 (blue lines) to the reference setpoints (red lines)
and their KF-based estimation (green line)
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Figure 26: Tracking of setpoint 4 by the PM synchronous motor-drive gas compressor (a) Variations of the
control inputs u1 to u4, (b) Tracking error of state variables x1 to x4

30



0 5 10 15 20 25 30 35 40
0

5

time (sec)

x
1

0 5 10 15 20 25 30 35 40
1

2

3

time (sec)

x
2

0 5 10 15 20 25 30 35 40
0

2

4

time (sec)

x
3

0 10 20 30 40
1

1.5

2

2.5

time (sec)

x
4

0 10 20 30 40
−5

0

5

10

15

time (sec)

x
5

0 10 20 30 40
0.5

1

1.5

2

2.5

time (sec)

x
6

0 10 20 30 40
−1

0

1

2

3

time (sec)

x
7

(a) (b)

Figure 27: Tracking of setpoint 5 by the PM synchronous motor-driven gas compressor (a) Convergence
of state variables x1 to x3 (blue lines) to the reference setpoints (red lines) and their KF-based estimation
(green line), (b) Convergence of state variables x4 to x7 (blue lines) to the reference setpoints (red lines)
and their KF-based estimation (green line)
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Figure 28: Tracking of setpoint 5 by the PM synchronous motor-drive gas compressor (a) Variations of the
control inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 29: Tracking of setpoint 6 by the PM synchronous motor-driven gas compressor (a) Convergence
of state variables x1 to x3 (blue lines) to the reference setpoints (red lines) and their KF-based estimation
(green line), (b) Convergence of state variables x4 to x7 (blue lines) to the reference setpoints (red lines)
and their KF-based estimation (green line)
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Figure 30: Tracking of setpoint 6 by the PM synchronous motor-drive gas compressor (a) Variations of the
control inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 31: Tracking of setpoint 7 by the PM synchronous motor-driven gas compressor (a) Convergence
of state variables x1 to x3 (blue lines) to the reference setpoints (red lines) and their KF-based estimation
(green line), (b) Convergence of state variables x4 to x7 (blue lines) to the reference setpoints (red lines)
and their KF-based estimation (green line)
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Figure 32: Tracking of setpoint 7 by the PM synchronous motor-drive gas compressor (a) Variations of the
control inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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Figure 33: Tracking of setpoint 8 by the PM synchronous motor-driven gas compressor (a) Convergence
of state variables x1 to x3 (blue lines) to the reference setpoints (red lines) and their KF-based estimation
(green line), (b) Convergence of state variables x4 to x7 (blue lines) to the reference setpoints (red lines)
and their KF-based estimation (green line)
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Figure 34: Tracking of setpoint 8 by the PM synchronous motor-drive gas compressor (a) Variations of the
control inputs u1 to u4, (b) Tracking error of state variables x1 to x4
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7 Conclusions

The article has proposed a flatness-based control method implemented in successive loops for the dynamic
model of IM-driven and PMSM-driven gas compressors. In common approaches to flatness-based control,
nonlinear systems undergo a change of state variables and through successive differentiations of their flat
outputs one arrives at describing their dynamics in the input-output linearized form and subsequently in
the linear canonical (Brunovsky) form. On the contrary, in the proposed flatness-based control method
implemented in successive loops there is no need for changes of state variables or forth and back state-space
model transformations, and consequently it does not come against singularity cases. The proposed control
method achieves fast tracking of reference setpoints. The global stability of the flatness-based control
method in successive loops is proven analytically by showing the asymptotic elimination of the tracking
error of each one of the subsystems that constitute the integrated system’s dynamics. A global stability
proof can be also obtained using also Lyapunov analysis. Two case studies have been considered: (i)
flatness-based control in successive loops for the dynamic model of a gas-compressor that is actuated by an
induction motor, (ii) flatness-based control in successive loops for the dynamic model of a gas compressor
that is actuated by a permanent magnet synchronous motor.

In the proposed flatness-based control method implemented in successive loops. the initial nonlinear state-
space model of the system is transformed into a chain of subsystems, where for each one of them it is
shown that differential flatness properties hold. The state vector of the (i-th) subsystem becomes also a
flat outputs vector about it while the state vector of the (i+1)-th subsystem forms a virtual control inputs
vector for the i-th subsystem. The proof of differential flatness properties for each one of these subsystems
signifies that each one of them can be written in the input-output linearized form and that a stabilizing
feedback controller can be designed for each one of them by inverting its dynamics. In this concept, the
virtual control inputs vector that stabilizes the (i-th) subsystem should be also a setpoints vector for the
(i+1)-th subsystem. Finally, the N-th (last) subsystem in this chain of state-space model contains the real
control inputs. The inversion of its dynamics gives the stabilizing feedback controller for the initial non-
linear state-space model. This control signal which achieves stabilization for the initial extended nonlinear
state-space model uses recursively the virtual control inputs of the preceding N − 1 subsystems, by tracing
these subsystems backwards that is from the (N-1)-th subsystem to the 1st one. The fine performance of
the flatness-based control method in successive loops for IM-actuated and PMSM-actuated gas compressors
has been further confirmed through simulation experiments.
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