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Abstract

Grasslands cover between 30 and 40% of the world’s land surface and, despite providing numerous ecosystem services and
being rich in biodiversity, are increasingly under threat and shrinking in coverage. As such, the development and application
of monitoring techniques are of vital importance. The use of remotely sensed imagery for the monitoring of both biodiversity
and functional traits in grassland ecosystems has increased substantially in the last few decades. More recently, uncrewed aerial
vehicles (UAVs) have begun to play an increasingly important role, acting as a bridge between the decameter satellite imagery
and the point scale data collected on the ground. The use of UAV-mounted hyperspectral sensors, covering up to hundreds of
spectral bands, has become particularly popular as the senor sizes have reduced, and UAV technology has improved. Here, we
provide a review of the latest remotely sensed monitoring methods for both biodiversity and functional traits using multispectral
and hyperspectral sensors. We highlight the key innovations that have occurred (e.g., use of point cloud data, identification
of error sources), the bottlenecks to and opportunities for further development. UAV surveys show particular promise for
monitoring functional traits. We conclude that UAV methods offer the opportunity to scale surveys from individual sites to
regional areas, and can aid in refining satellite-based observations to improve the monitoring of grassland ecosystems at national
and global scales.

Introduction

Grasslands cover 30 to 40% of the Earth’s land surface (Blair et al., 2014) and are responsible for up to a third
of net primary productivity on land (Vitousek, 2015), providing many important ecosystem services, from
water flow regulation and purification to erosion control and pollination (Bengtsson et al., 2019: Peciña et al.,
2019). Grasslands also contribute significantly to livestock farming through grazing and fodder production
(Erb et al., 2016). Natural and semi-natural grasslands are often characterised by high community complexity
(Wilson et al., 2012), making them important sources of, and contributors to, biodiversity (Russo et al., 2022).
Surveys carried out on experimental plots have shown that increased grassland biodiversity can contribute
to greater yields, improved yield stability and increased carbon sequestration (Finn et al., 2013; Isbell et
al., 2015; Lange et al., 2015; Craven et al., 2018; Haughey et al., 2018). However, through land-use change,
abandonment, urbanisation and intensive agriculture, natural and semi-natural grasslands have become
endangered ecosystems (Pärtel et al., 2005; Johansen et al., 2022) with decreases in their area and reductions
in their biodiversity in recent decades (Henle et al., 2008; O’Mara, 2012; Newbold et al., 2016). In addition
to the diversity of species, plant functional traits (biochemical, physical and morphological properties that
affect fitness in response to the environment) and trait diversity are key features of (semi-)natural grasslands.
For example, traits such as high leaf dry matter content (LDMC), low specific leaf area (SLA) and low leaf
nitrogen content indicate stress tolerance strategies of grass species and adaptation to low temperature and
low precipitation (Wingler and Sandel, 2023). The relationship between such plant functional traits and
their role in ecosystem functioning and ecosystem services (e.g., water regulation, carbon storage, stress
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tolerance) are well-established (Diaz and Cabibo, 2001; Kattge et al., 2011; Tilman et al., 1997). However,
how diversity of functional traits determines stress resilience is not fully understood (Miller et al., 2019).
In order to preserve current (semi-)natural grasslands, protect biodiversity and ensure the continuation of
important ecosystem services, methods to monitor the biodiversity and functional traits of existing grassland
ecosystems is vitally important. Surveys of plant biodiversity and functional traits traditionally involved the
detailed manual examinations of small plots within a site, a time- and labour-intensive activity, followed
by extrapolation across the entire site (Stroh et al., 2020). These methods are ill-suited to surveying larger
areas or for repeat, long-term national monitoring. Remote sensing offers the ability to monitor biodiversity
across a range of scales, from metres to kilometres, in a consistent and repeatable manner. The physical
and chemical properties of plants influence how sunlight interacts with them. By examining the absorption
and reflection of light across different parts of the electromagnetic spectrum, information about the species
diversity (Figure 1) (Wang and Gamon, 2019), functional traits (Homolová et al., 2013) and thus α-diversity
(diversity at a local scale) and β-diversity (ratio between regional and local diversity) can be extracted.

Recent technological advances make satellites increasingly suited to grassland monitoring, even across the
relatively small and fragmented natural and semi-natural grasslands in Europe. Additionally, instruments
can be mounted on aircraft to provide multispectral (typically up to a dozen discrete spectral bands) or
hyperspectral (100s or of under a meter. Furthermore, developments in Uncrewed Aerial Vehicle (UAV)
technology now allows similar data to be captured at spatial resolutions down to millimetres.

2
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The most common method of mapping grassland biodiversity comes from the spectral variation (SV) hy-
pothesis. This method assumes that the variability in the spectral signal detected by the remote sensing
instrument is correlated with biodiversity (Rocchini et al., 2004). This can be performed with both multi
and hyperspectral instruments and can be used to assess biodiversity across a landscape and within plots
from individual sites (Figure 2). Additional methods for monitoring both biodiversity and functional traits
include the use of different spectral and vegetation indices, 3D data such as from LiDAR or structure from
motion (SfM), data fusion between high spatial resolution imagery and that with greater spectral informa-
tion, or spectral data combined with 3D (Aasan et al., 2015; Gašparović et al., 2019; Laliberte and Rango,
2011).

For this review, a Google Scholar search was conducted for studies between 2018 and 2024 with the search
terms “remote sensing”, “grasslands” and “biodiversity”, and a separate search replacing “biodiversity” with
“functional traits”. The publications that included all the search terms and were directly related to the topic
were examined in further detail and their references checked for additional publications. This resulted in
37 publications, 20 related to biodiversity, 15 on functional traits, and two studies with a focus on both
biodiversity and functional traits (Table 1).

Table 1: List of the main grassland biodiversity and functional trait remote sensing studies used for this
review.

Biodiversity Functional Traits Biodiversity & Functional Traits

Hyperspectral imaging
Rocchini et al., 2010 Capolupa et al., 2015 Tang et al., 2021
Wang et al., 2016 Aasen et al., 2015
Gholizadeh et al., 2018 Schweiger et al., 2017
Gholizadeh et al., 2019 Näsi et al., 2018
Gholizadeh et al., 2020 Wang et al., 2019
Lyu et al., 2020 Wijesingha et al., 2020
Yang and Du, 2021 Zhao et al., 2021a
Xu et al., 2022 Zhang et al., 2022
Thornley et al., 2023 Gholizadeh et al., 2022
Multispectral imaging
Lallibet and Rango, 2011 Li et al., 2018 Zhao et al., 2021b
Mansour et al., 2015 Imran et al., 2020
Lu and He, 2017 Grüner at al., 2020
Lopes et al., 2017 Grüner at al., 2021
Sun et al., 2018 Rakotoarivony et al., 2023
Shoko et al., 2020 Zhao et al., 2024
Fauvel et al., 2020
Conti et al., 2021
Rossi et al., 2022
Yang et al., 2023
Pöttker et al., 2023

Remote Sensing of Grassland Biodiversity

Hyperspectral Remote Sensing of Grassland Biodiversity

Hyperspectral instruments are most typically mounted on crewed aircraft for most grassland studies. Some
satellites, such as Hyperion, have carried hyperspectral sensors, while in recent years a growing number
of studies have made use of UAVs for carrying hyperspectral instruments. Each approach has drawbacks

3
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in terms of spatial resolution, spatial coverage, positioning and accuracy. A good agreement was found
between airborne (crewed aircraft) hyperspectral data, spatial resolution and species turnover (β-diversity) in
a highland savanna (Rocchini et al., 2010). However, spectral diversity in the smaller sampling areas (100 m2)
produced a less robust correlation with β-diversity than in the larger sampling area, 1,000 m2, probably due
to increased noise when using smaller grain sizes. Focusing on α-diversity (richness and Shannon’s Diversity
index), Wang et al. (2016) found a strong positive relationship between biodiversity and productivity, and
between optical diversity and species diversity for a Canadian prairie using airborne hyperspectral data,
ground sampling and eddy covariance measurements. Comparing spectral diversity, recorded via a tram
system, with a range of biodiversity metrics at an experimental prairie test site indicated that a resolution
of 1 to 10 cm is best, and spectral diversity correlated differently with different biodiversity metrics (Wang
et al., 2018). Spatial resolution also affects the confounding impact of bare soil on the correlation between
remote sensing measures of species richness, and, depending on the resolution, different methods to account
for bare soil need to be applied (Gholizadeh et al., 2018). Gholizadeh et al. (2019) assessed α-diversity in
restored grassland plots in Nebraska that had been seeded with native prairie grasses, some of which were
old and contained invasive species while others were younger and mainly contained grasses of the original
study design. Ground based (quadrats) and airborne hyperspectral surveys were used. In young plots,
spectral diversity was strongly related to α-diversity, but in old plots the relationship was not significant.
The relationship between hyperspectral measures of biodiversity and ground surveys varied from one year
to the next and weakened over the growing season – emphasising the need for multitemporal measures of
grassland biodiversity (Gholizadeh et al., 2020). Lyu et al. (2020) combined a handheld spectrometer,
Hyperion and Landsat data for species mapping to assess grassland degradation in Mongolia. This was
achieved by comparing the relative proportions of different grass species, extracted from Hyperion data,
with ground surveys and metrics derived from Landsat imagery, such as above ground biomass (AGB), net
primary productivity and vegetation coverage. By focusing on the identification of typical and indicator
species only, classification accuracies of over 70% were achieved. Utilising a UAV mounted hyperspectral
sensor, Yang and Du (2021) classified plant species in a desert steppe ecosystem in inner Mongolia. They
used a large variety of vegetation indices and decision tree classification to detect plant species with 87%
accuracy. In an Alpine steppe nature reserve, Xu et al. (2022) compared four spectral metrics from a
UAV mounted spectrometer with two species diversity indices (species richness and the Shannon–Wiener
index). The authors found that the relationships between spectral diversity and species diversity were
significantly strengthened when bare soil was filtered from the survey data. Finally, a meta-analysis of
grassland biodiversity predictions from spectral diversity metrics found an overall correlation coefficient of r
= 0.36 across studies (Thornley et al., 2023). The authors noted high levels of variability both within and
between studies, with leaf spectra producing a stronger relationship than overall canopy spectra. Surveys of
arid, tropical and southern hemisphere sites were lacking, and more scalable and multitemporal studies are
required to reduce the uncertainty in the SV/biodiversity correlations.

Multispectral Remote Sensing of Grassland Biodiversity

RGB cameras capture light across the visible wavelengths, while multispectral instruments typically cap-
ture a few additional discrete wavelengths of light in the near and shortwave infrared range, meaning that
less information can be derived regarding the surface under observation when compared with hyperspectral
instruments. However, they are in use on many more satellites resulting in a multi-decadal record of observa-
tions on platforms such as the Landsat series. Furthermore, they are cheaper and smaller than hyperspectral
cameras, making them more accessible and suitable to consumer grade UAV use. While examining the
degradation of grasslands in South Africa, Mansour et al. (2015) employed field sampling, SPOT 5 data and
random forest machine learning classification. Indicator species were identified and used to assess the level
of degradation. The identification of indicator species was improved from 75 % to 89% when ground-based
edaphic measurements were integrated with SPOT 5 data. Lu and He (2017) used a UAV with a near in-
frared (NIR)-GB camera to map tall grassland species in southern Canada at 5 cm resolution. The authors
achieved an accuracy of 85% overall (averaged across all dates and species surveyed) using object-based
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classification, but suggest that this accuracy can be improved with more precise instruments and a greater
number of spectral bands. Across 200 sites in southwest France, Lopes et al. (2017) used a timeseries of
SPOT 5 derived NDVI over 18 dates, and a combination of the eight Sentinel 2 bands across eight dates
to predict biodiversity. Results, compared to the Shannon and Simpson indices were poor, suggesting that
high temporal resolution, moderate-high spatial resolution and multispectral data are not suited to mapping
biodiversity at the grassland scale. In Alpine meadows on the Tibetan Plateau, Sun et al. (2018) flew a
UAV at just 2 m elevation for highly detailed imagery. Plant species in each image were manually identified
and compared to ground-based quadrat surveys and with a range of species composition indices. The UAV
surveys proved highly effective compared with indices derived from traditional methods (r2 values between
0.726 and 0.872), while also covering a larger, more representative area and measuring a greater number
of species. Shoko et al. (2020) attempted to differentiate between C3 and C4 species (Festuca costata and
Themeda triandra ) in South Africa using multidate Sentinel 2 data. The authors achieved greater accuracy
in winter (between 91.8% and 95.3%), than summer (between 81.4% and 90.3%). Using Sentinel 1 (Synthetic
Aperture Radar) and Sentinel 2, in combination with ground surveys, Fauvel et al. (2020) measured and
predicted plant diversity metrics in terms of richness indices, diversity indices and some functional indices in
grasslands in southwest France. The methods used worked better for Simpson and Shannon indices than rich-
ness indices, and moderately well for functional indices. Incorporating Sentinel 1 data did not significantly
improve predictions. In Conti et al. (2021) the authors assessed the links between spectral and taxonomic
diversity, and vertical complexity, using a UAV mounted multispectral sensor in a mesic meadow in South
Bohemia, Czech Republic. It was found that the relationship between spectral and taxonomic diversity was
mediated by grassland vertical complexity - the more pronounced the vertical complexity, the more nega-
tive the relationship between taxonomic and spectral diversity. On Alpine grasslands, Rossi et al. (2022)
flew a UAV with a consumer grade camera and combined the imagery with airborne hyperspectral surveys.
The fused data set tested the effects of spatial resolution and a variety of spectral metrics on measuring
species diversity. The authors found the fused dataset worked well but also produced a surprising finding
– that spectral metrics centred on spectral complexity was negatively correlated with species richness. The
authors, note that the presence of live and dead biomass acted as significant confounding variables in their
correlations. On a semi-natural meadow in Saxony, Germany, Pöttker et al. (2023) achieved accuracies of up
to 88% by using ground surveys and a multispectral UAV in combination with convoluted neural networks
to map plant communities. Yang et al. (2023) combined ground sampling, environmental data and MODIS
imagery to predict biodiversity and AGB in the Qinghai–Tibet Plateau grasslands using a random forest
model, achieving and r2 of 0.60 for their plant species diversity model.

Remote Sensing of Grassland Functional Traits

Hyperspectral Remote Sensing of Grassland Functional Traits

On experimental grassland sites in Germany, Capolupo et al. (2015) used a UAV mounted hyperspectral
camera and ground-based surveys to examine a range of physical and chemical traits (e.g., height, biomass,
crude protein, nitrogen, potassium, etc). To estimate these traits, the authors used two methods, partial
least squares regression (PLSR) and vegetation indices. PLSR performed well for both physical and chemical
traits, while vegetation indices worked well only with physical traits. In a separate experimental barley site
in Germany, Aasen et al. (2015) combined 3D with hyperspectral imagery for precision agriculture. Plant
height, chlorophyll, leaf area index (LAI) and biomass were measured with r2 values of 0.7, 0.52, 0.32 and
0.29, respectively. Airborne hyperspectral surveys were used over Swiss alpine grasslands, in combination
with ground surveys, to examine links between community traits, functional traits and spectra with PLSR.
The authors noted some inconsistent results with plant life and growth forms, but functional type modelling
produced more consistent results (Schweiger et al., 2017). In a barley test site in Finland, Näsi et al. (2018)
equipped a UAV with hyperspectral and RGB cameras. The authors combined the digital surface model
and digital terrain model, generated with using SfM, with the hyperspectral information, estimating dry and
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fresh matter, and nitrogen content. The 3D data combined with RGB information was nearly as accurate
as hyperspectral data for biomass, but hyperspectral imaging performed better for nitrogen content. Wang
et al. (2019) used ground sampling and airborne hyperspectral surveys to map foliar functional traits across
a grassland experimental site in Minnesota. They used PLSR and gaussian processes regression (GPR) for
modelling, uncertainty and performance. Both regression methods produced similar results, with leaf mass
per area, soluble cell contents, hemicellulose and cellulose all producing r2values > 0.8, while models for the
contents of lignin, nitrogen and some pigments performed more poorly. Across eight grassland sites in Nor-
thern Germany, Wijesingha et al. (2020) attempted to predict forage quality by mapping crude protein and
acid detergent fibre using hyperspectral airborne surveys. Five predictive modelling methods were assessed
PLSR, random forest regression, GPR, support vector regression and cubist regression. Support vector re-
gression performed best for crude protein, while cubist regression performed best for acid detergent fibre. In
an Inner Mongolian monoculture test site, Zhao et al. (2021a) used a UAV mounted spectrometer to measure
chemical traits (carbon, nitrogen, phosphorus, lignin, cellulose, and chlorophyll a and b). They successfully
measured numerous functional traits and noted that retrieval worked better on an area basis rather than
mass basis. Certain traits could also be used effectively as predictors of AGB across the monoculture sites.
In mixed grasslands on the Tibetan Plateau, UAV hyperspectral surveys were used by Zhang et al. (2022)
to map functional traits. Algorithms used were PLSR, the generic algorithm integrated with the PLSR, ran-
dom forest (RF) and extreme gradient boosting (XGBoost). Chlorophyll a, chlorophyll b, carotenoid content,
starch content, specific leaf area and leaf thickness were estimated well (r2 values between 0.64 and 0.8),
while nitrogen content, phosphorus content, plant height and leaf dry matter content were modelled with
lower accuracy (r2 values between 0.3 and 0.54). Finally, Gholizadeh et al. (2022) used aerial spectroscopy
(1 m resolution) to map 12 functional traits and use these to differentiate an invasive grassland species,
Lespedeza cuneata , from other species in a tallgrass prairie site in Oklahoma. They achieved an accuracy
on 94%, showing that functional trait measurements can be used to identify invasive species. However, the
accuracy was lower in species-rich grasslands.

Multispectral Remote Sensing of Grassland Functional Traits

On the Qinghai-Tibetan Steppe, Li et al. (2018) used Landsat 8 and Sentinel 2 to map plant functional traits
at the community level - canopy chlorophyll, specific plant area and plant dry matter content. The authors
used field sampling in combination with vegetation indices and statistical modelling, with google earth
engine, and achieved moderately good results (r2 from 0.22 to 0.53). Imran et al. (2020) used ground-based
hyperspectral measurements to simulate Sentinel 2 and 3 imagery, utilising red edge and NIR vegetation
indices to map LAI in grasslands in northern Italy and Austria. They found that LAI retrieval is strongly
influenced by plant traits, physical and chemical (e.g., AGB, leaf angle distribution, brown pigment content
and chlorophyll content). Over an experimental site in northern Germany, Grüner at al. (2020) used UAV
multispectral data, with PLSR and RF regression, for predicting aboveground biomass and nitrogen fixation
in legume-grass mixtures. While consistent estimates of biomass were achieved using RF and the results for
nitrogen fixation were also strong, the most effective regression method depended on the specific legume/grass
proportions in the test site. In a subsequent study, at the same location, Grüner at al. (2021) combined a
terrestrial laser scan survey with a multispectral UAV survey (including texture analysis) to measure fresh
and dry matter (biomass) and nitrogen fixation in legume grass mixtures. The fusion approach proved to
be a significantly better predictor, overcoming the limitation of each separate sensor. For nitrogen fixation,
the multispectral sensor had a relative root mean squared error of prediction (rRMSEP) of 17.64%, with a
rRMSEP of 20.07% for canopy surface height and 14.4% for the sensor fusion. Rakotoarivony et al. (2023)
used field sampling to identify unique functional traits that distinguishesL. cuneata from the native grassland
species. Next, airborne hyperspectral data was used to identify the vegetation indices most closely related to
these traits, and PlanetScope multispectral satellite imagery was then used to identify and map L. cuneata
across a 47 km2 region of U.S., with an accuracy of over 80%. Across three grassland sites in Inner Mongolia,
Zhao et al. (2024) used field sampling to identify 13 functional traits and associated these traits with leaf
spectra through PLSR. PLSR was also applied to twelve bands, 30 vegetation indices and convex hull volume
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from Sentinel 2 imagery to map function diversity on a large scale. All but one of the functional traits (carbon)
were predicted reasonably well from the Sentinel 2 imagery, with r2 values of between 0.32 and 0.82.

not-yet-known not-yet-known

not-yet-known

unknown

7
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Conclusions

This review has examined the remote sensing of grassland biodiversity and functional traits with a focus on
recent technological and methodological developments. Advances in UAV technology have accelerated the
increase in grasslands surveys featuring very high spatial resolutions, with 3D components and increasingly
employing multispectral and hyperspectral sensors. As UAV technology continues to improve and become
more accessible through cheaper costs and automated flight controls, and survey and processing methods
mature, UAVs are likely to become a standard tool in grassland surveys. UAV surveys can also bridge the
gap between ground-based fieldwork and satellite remote sensing, as well as providing ground truthing for
spaceborne data, potentially refining the seemingly inconsistent relationship between spectra variation and
biodiversity. This can aid in the development of satellite remote sensing methods and allow the scaling of
biodiversity and functional trait surveys from discrete points to site-wide and national surveys.
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functional diversity matters to ecosystem processes. Trends in ecology & evolution , 16 (11), 646-655.
https://doi.org/10.1016/S0169-5347(01)02283-2 Erb, K. H., Fetzel, T., Kastner, T., Kroisleitner, C., Lauk,
C., Mayer, A., & Niedertscheider, M. (2016). Livestock grazing, the neglected land use. Social ecology:
Society-nature relations across time and space , 295-313. https://doi.org/10.1007/978-3-319-33326-7 13 Fau-
vel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P. L., Gross, N., & Ouin, A. (2020). Prediction
of plant diversity in grasslands using Sentinel-1 and-2 satellite image time series. Remote Sensing of En-
vironment , 237 , 111536. https://doi.org/10.1016/j.rse.2019.111536 Finn, J. A., Kirwan, L., Connolly, J.,
Sebastià, M. T., Helgadottir, A., Baadshaug, O. H., . . . & Lüscher, A. (2013). Ecosystem function enhanced
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