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Occluded person Re-identification (Re-ID) is to identify a
particular person when the person's body parts are occluded.
However, challenges remain in enhancing effective information
representation and suppressing background clutter when
considering occlusion scenes. In this paper, we propose a novel
Attention Map-Driven Network (AMD-Net) for occluded person
Re-ID. In AMD-Net, human parsing labels are introduced to
supervise the generation of partial attention maps, while we
suggest a Spatial-frequency Interaction Module (SIM) to
complement the higher-order semantic information from the
frequency domain. Furthermore, we propose a Taylor-inspired
Feature Filter (TFF) for mitigating background disturbance and
extracting fine-grained features. Moreover, we also design a part-
soft triplet loss, which is robust to non-discriminative body partial
features. Experimental results on Occluded-Duke, Occluded-Reid,
Market-1501, and Duke-MTMC datasets show that our method
outperforms existing state-of-the-art methods. The code is
available at: https://github.com/ISCLab-Bistu/SA-ReID.

Introduction: The purpose of person Re-identification (Re-ID) is to
identify different instances across cameras and viewpoints [1-3]. With
the advances in deep learning and intelligent algorithms [4], Re-ID
technology has been successfully applied to smart security, person
search, and other fields. However, occlusion occurs from time to time in
real person Re-ID scenarios, which severely impairs model performance.
Under occlusion conditions, the original images contain fewer valid
features as well as more occlusion noise, which leads to the failure of
instances matching.
In order to address the above issues, some methods [5], [6] use a pose

estimator to extract features around keypoints, but this method is not
stable for the person Re-ID datasets due to domain differences. Recently,
several part-based approaches have been proposed and demonstrated
excellent performance [7], [8]. These methods attempt to adaptively
construct body partial feature representations and combine the global
feature representations to suppress the effects of occlusion.
However, we believe that the current approach still suffers from the

following limitations. Firstly, due to the lack of human topological prior,
the part-based approaches could not accurately constrain the regions of
local feature pooling, which leads to low-quality partial feature
representations. Secondly, in occlusion scenes, the effective information is
limited. There is no specific solution on how to reasonably increase the
effective information. In addition, background clutter remains a serious
distraction due to the lack of a special fine-grained feature filter. Thirdly,
the prevailing part-based methods [9], [10] currently rely on identity loss
and hard triplet loss to supervise individual partial feature blocks for
learning discriminative representations. However, this approach lacks
reasonability, as two people with different identities may have remarkably
similar appearances in specific body parts.
In response to the above problems, this letter proposes specific solutions.

Our contributions are summarised below:

(1) We propose a novel approach for occluded person Re-ID named
Attention Map-Driven Network (AMD-Net). We use human pasing
labels and a Spatial-frequency Interaction Module (SIM) to generate
semantically enhanced body partial attention maps.

Fig. 1 The pipeline of ACM-Net. It consists of the part attention generation
branch and the global-partial feature learning branch.

(2) Taylor-inspired Feature Filter (TFF) is designed to suppress back-
ground interference and extract effective features. Combine with
semantically enhanced attention maps, AMD-Net can generate global
and partial features with finer granularity.

(3) We introduce a part-soft triplet loss to supervise body partial features,
which is robust to occlusion and similar body part appearance.

Part Attention Generation Branch: Part Attention Generation Branch
(PAGB) is shown in Figure 1(a). Body partial attention maps are subject to
dual supervision, one is the human parsing labels, which are generated by a
pre-trained pose estimation network [11], and the other is Re-ID loss,
which includes identity loss and triplet loss. Human parsing labels provide
a restricted region for each body partial attention, and then Re-ID loss
supervises the attention maps to focus on identity-related feature parts. In
addition, we design the SIM to aggregate high-level semantic information
in the frequency domain.
Let � ∈ R�×�×� represent the input tensor of the PAGB, which is

extracted by the backbone network. Firstly, SIM is used for domain
information enhancement. Then, we employ a 1 × 1 convolutional layer
followed by the SoftMax function to derive the attention maps � ∈
R�×�×� : � = ��,⋯�� . ��,⋯�� represent the attention maps of �
body parts, respectively. In this paper, the value of � is 5, which denotes
the body regions of the head, arms, trunk, legs, and feet. The entire process
could be expressed as follows:

� = softmax(�(�; �) ∙ ��
�) (1)

where �� is the weight of the 1 × 1 convolution. �(∙ ; �) represents the
process of frequency-space domain information interaction, and � is the
process parameter. Pixel value ��(ℎ,�) of � -th map represents the prob-
ability that it belongs to the �-th body part. We calculate the loss of partial
attention:

�����_��� =− �=1
�

ℎ=0
�−1

�=0
�−1��� ∙ ���(��(ℎ, �))�� ,

�� =
1− �+

�
� �� �(ℎ,�) = �

�
�

��ℎ������ (2)

where � is the batchsize, � ∈ R�×�×1 represents the human parsing label.
If the pixel position (ℎ,�) belongs to the k body parts, the pixel value
�(ℎ,�) is assigned as 1,⋯� ; otherwise, it is set to 0 for the background.
� is the label smoothing coefficient, which is set to 0.15 in this paper.

Spatial-frequency Interaction Module: Previous studies [12] have shown
that the phase component of the Fourier transform usually
preserves higher-order semantics of the original signal, while the
amplitude component includes low-level modal information. Most
existing Re-ID methods [5-8] rely on spatial domain processing to
extract effective features while omitting the global information within
the Fourier domain. SIM is proposed to aggregate the high-level
semantic information contained in the Fourier domain. As depicted in

https://github.com/ISCLab-Bistu
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Figure 1(c), we apply the fast Fourier transform to acquire the phase and
amplitude components. Then, we introduce the convolutional induction
bias in the Fourier domain to enhance the generalisation ability of the
model. Finally, we interact information in the spatial and frequency
domains to generate semantically enhanced attention maps. The key
operations of SIM can be summarized as follows:

����，���� = ℱFFT(�; �) (3)

���� = α ∙ [ℱIFFT(���� ∙ ��
�; �)] + (1 − �) ∙ � (4)

where ℱFFT( ∙ ; �) and ℱIFFT( ∙ ; �) represent the fast Fourier transform
and its corresponding inverse process. ���� and ���� are the amplitude
and phase components. ��

� is the weight of the convolution operation.
α is the hyper-parameter regulating the interaction between the spatial
and frequency domains, which is set to 0.35 in this paper.

Global-partial Feature Learning Branch: Within the Global-partial
Feature Learning Branch (GFLB), as depicted in Figure 1(b), we first
use TFF to extract fine-grained information and suppress background
interference, which will be described in next section. The feature after
TFF is denoted as ��R�×�×�, and we use the partial attention maps � =
��, ⋯�� to generate the foreground attention �� ∈ ��×�×1 :
��(�,�) = Max ��(ℎ, �),⋯��(ℎ, �) . Then, we generate foreground
and the � body partial representations as follows：

� = Ʈ(�; �) (5)

�� = ℎ=0
�−1

�=0
�−1�(ℎ,�)∙��(ℎ,�)��

�∙�
，�� �, 1,2,⋯� (6)

where Ʈ( ∙ ; �) represents the processing of TGFF. Furthermore, we
perform a global average pooling operation on � to obtain �� and concat
all body partial features to obtain ��. The process is shown below:

�� = ℎ=0
�−1

�=0
�−1�(ℎ,�)��
�∙�

, �� = ��⨁��⋯⨁�� (7)

Finally, we use ������� = ��, ��, �� to denote the global feature
representations and ����� = ��, ⋯�� for the partial feature represen-
tations. To mitigate the impact of occluded parts on the model, we
employ partial attention maps to generate quality scores that reflect the
visibility of body parts. When there exists at least one pixel value in
��(� ∈ 1,2,⋯� ) that is higher than the threshold γ (which is set to 0.4),
the quality score of the �-th body part is set to 1. In the inference phase,
we compare only the visible parts.

Taylor-inspired Feature Filter: In the occlusion scenes, person Re-
identification task frequently encounters challenges such as background
clutter and occlusion noise, which make it difficult for the model to
capture fine-grained and effective features. To tackle this problem, we
rethink the similarity between ordinary differential equations (ODEs)
and residual networks. In prior works [13], the forward Euler was
mapped to the residual block and utilized the Eulerian approach to
construct a more detailed feature extraction module. Since the Taylor
finite difference method has higher accuracy than the Eulerian method in
solving numerical ODEs [14], inspired by the Taylor method, we
construct a specialised feature filter TFF using residual blocks and gated
convolutions (shown in Figure 1(d)). Concretely, we discretize the ODEs
using second-order Taylor finite difference equations, and the partial
derivatives can be approximated as follows:

��
��
= −3�(�)+4�(�+ℎ)−�(�+2ℎ)

2ℎ
(8)

The above equation can be expressed as:

�(��, ��) =
−1
2��+2+2��+1−

3
2��

ℎ
(9)

Equivalent variations of the Eq. (9) is as follows:

��+2 = ��+1 + [3(��+1 − ��)] − 2�(��, ��)ℎ (10)

Similar to [13], we use multiple convolutional layers to implement the
mapping from �� to ��+1, and (��+1 − ��) denotes the residual feature ∆��.
In addition, to suppress the background clutter, we apply the gated
convolution ����� to obtain −2�(��, ��)ℎ. This process can be formulated
as follows:

��+2 = ��+1 + ����� +3∆�� (11)

Above is the construction process of the basis block in TFF. By
superimposing the basis block, TFF enables the extraction of more
detailed and intricate feature information from multiple layers. Besides,
through the soft gating mechanism in gated convolution, TFF can
effectively suppress background interference. We use three basis blocks
to build TFF in our AMD-Net.

Part-Soft Triplet Loss: Previous occluded person Re-ID methods mainly
apply identity loss and hard triplet loss [15] to each individual body
partial feature. However, it is important to note that different
individuals may exhibit high similarity in certain body parts that lack
sufficient distinctiveness for identity discrimination.

In this paper, we design a part-soft triplet loss to enhance the
model's capability in handling non-discriminative partial features and
improve its overall robustness. we combine the average distance of all
body partial features to compute the triplet loss. Particularly, consider
that human head contains more discriminative features, such as face [16].
We provide a complementary coefficient βℎead to emphasise the distinc-
tion of head feature, which is set to 0.5 in our method. The process of
calculating the average distance can be described as follows:

�(�,�) =
(1+�ℎ���)∙deu(�1

�,�1
�)+ �=2

� deu(��
�� ,��

�)

�+�ℎ���
(12)

��
(�)and ��

(�) are the sampled features of two different instances on the k-
th body part. deu( ∙ ) denotes the computation process of the Euclidean
distance. For the anchored sample � , we compute the hardest positive
distance �(�,�) and the hardest negative distance �(�,�), which is similar to
[7], [8]. Finally, part-soft triplet loss can be formulated as:

�������� = (�,�),(�,�) �(�,�) − �(�,�) +�
+

� (13)

where ∙ + stands for hinge loss and � is the distance margin. As
mentioned above, our proposed part-soft triplet loss globally optimizes
the distances between the corresponding partial features in a softer way.
And it enables the model to prioritize discriminative partial features
during the training process, while being robust to non-discriminative
partial features as well as occlusion features. For global feature
��, ��, �� , we compute the cross-entropy loss ��������� with label
smoothing, which is similar to Eq. (2). Finally, the whole optimisation
objective can be described as:

���� = �������� + ��������� + �����_��� (14)

Datasets and Implementation Details: We conduct experiments on the
dedicated occluded person Re-ID datasets Occluded-Duke [17] and
Occluded-Reid [18] as well as the regular person Re-ID datasets Market-
1501 [19] and DukeMTMC [20]. Similar to [1], we adopt mean Average
Precision (mAP) and Rank-1 as evaluation metrics.
AMD-Net is built based on the TorchReID framework [21], and is

trained and evaluated on 2 RTX 3090 GPUs. We used HRNet-W32 after
pre-trained on ImageNet dataset as the backbone network. All images are
reshaped to 384×128 and the batchsize is set to 64. We train our model
with Adam optimizer for 120 epochs, the initial learning rate is 3.0 ×
10−4 , and at the 50th and 80th epoch, it drops to the 3.0 × 10−5 and
3.0 × 10−6, respectively.

Experimental results:We compare our proposed AMD-Net with existing
methods on occluded and regular person Re-ID datasets. As shown in
Table 1, AMD-Net outperforms the state-of-the-art methods. In addition,
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Table 2 reports the ablation experiments on Occluded-Duke dataset, and
the experimental results demonstrate the effectiveness of our design
components and loss function.

Table 1. Compare with state-of-the-art methods on Occluded-Duke,
Occluded-Reid, Market-1501, and Duke-MTMC datasets

Table 2. Ablation experiments on the Occluded-Duke dataset. w/o
denotes as “without”, r/w denotes as “replace with”

Conclusion: In this paper, we propose an Attention Map-Driven
Network (AMD-Net) for occluded person Re-ID. We have improved the
shortcomings of the previous approaches in three ways. To begin with,
human parsing labels are utilized to establish more precise feature
extraction regions. Subsequently, we introduce the Spatial-frequency
Interaction Module (SIM) and the Taylor-inspired Feature Filter (TFF)
to add valid information and suppress background clutter. Lastly, we
suggest a part-soft triplet loss to increase the model's inclusiveness of the
non-discriminative body partial features.The comprehensive experimen-
tal results on four datasets provide strong evidence of the exceptional
performance of AMD-Net.
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QPM [8] 66.7 53.3 - - - - - -

HCGA[7] 70.2 57.5 87.2 95.6 95.2 88.4 - -

CAAO [2] 68.5 59.5 87.1 83.4 95.3 88.0 89.8 80.9

Ours* 75.8 63.3 87.3 87.4 96.2 89.4 91.3 82.7

Method Rank1 mAP
w/o Part Attention / 63.2 51.2
w/o SIM / 72.3 61.2
w/o TFF / 73.1 60.8
w/o SIM & TFF / 70.7 58.9
w/o part-soft triplet Loss r/w ID Loss 71.5 59.8
w/o part-soft triplet Loss r/w hard-triplet Loss 72.6 60.5

Ours* / 75.8 63.3
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