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Abstract

In this article, a two prey-one predator model in which prey and predator disperse simultaneously in a heterogeneous environment

with n patches is proposed and analyzed. We prove that the solution of the system is positive and uniformly ultimately bounded.

Meanwhile, we use the monotonic theory of spectral bounds to investigate the effect of the dispersal rate on population dynamics.

To be precise, we discuss the stability behaviour for the trivial equilibrium and semitrivial equilibrium as well as the uniform

persistence of the system. Furthermore, we prove the global asymptotic stability of the positive equilibrium by constructing a

global Lyapunov function which applies the results from graph theory. Some numerical simulations are provided to show the

effectiveness of the theoretical results.
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Abstract

In this article, a two prey-one predator model in which prey and predator disperse simul-

taneously in a heterogeneous environment with n patches is proposed and analyzed. We prove

that the solution of the system is positive and uniformly ultimately bounded. Meanwhile, we

use the monotonic theory of spectral bounds to investigate the effect of the dispersal rate on

population dynamics. To be precise, we discuss the stability behaviour for the trivial equilib-

rium and semitrivial equilibrium as well as the uniform persistence of the system. Furthermore,

we prove the global asymptotic stability of the positive equilibrium by constructing a global

Lyapunov function which applies the results from graph theory. Some numerical simulations

are provided to show the effectiveness of the theoretical results.
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1. Introduction

It is well known that the theoretical study of predator-prey systems in mathematical ecol-

ogy has a long history, starting with the innovative work on prey and predator species by

Lotka [6] in 1925 and Volterra [25] in 1926. Parrish and Saila [16] first proposed a simple

mathematical model of the two prey-one predator system which better reflects the diversity

of biological systems in nature. Much progress has ever been made in the study of the dy-

namics of three-dimensional models of two-prey and one-predator [9, 14], but the dispersal of

species between patches has been not considered in those models. Although dispersal makes

the models more complicated, there has been some progress in studying predator-prey models

of dispersal in heterogeneous environments. For example, some scholars have studied predator-

prey models with dispersal between two types of patches [5, 7, 17]. Certainly, others have

also studied predator-prey models for dispersal in heterogeneous environments with multiple

patches. Takeuchi [21] investigated the global dynamics of a single-species model of dispersal in

∗Corresponding author
E-mail address: sunxn107@nenu.edu.cn
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heterogeneous environments with n patches. Shuai [8] developed the global dynamics of a two-

dimensional predator-prey model where only the prey dispersed in heterogeneous environments

with n patches. Since diffused predators play an important role in population regulation, Chen

et al. [2] studied the global dynamics of a two-dimensional predator-prey model in a hetero-

geneous environment with n patches, where both predator and prey disperse simultaneously.

Additionally, Lu et al. [12] used the basic reproduction number as a threshold value to establish

the global dynamics of a three-dimensional predator-prey model with age structure, where all

species disperse simultaneously in a heterogeneous environment with n patches.

Therefore, based on the above research results, we consider the following two prey-one

predator model with a general functional response in a heterogeneous environment with n

patches (n ≥ 2):

u′i = r1iui

(
1− ui

K1i

)
− gi(ui)wi + ρu

n∑
j=1

(aijuj − ajiui), i = 1, 2, . . . , n,

v′i = r2ivi

(
1− vi

K2i

)
− gi(vi)wi + ρv

n∑
j=1

(aijvj − ajivi), i = 1, 2, . . . , n,

w′
i = wi (ci (gi(ui) + gi(vi))− di) + ρw

n∑
j=1

(aijwj − ajiwi), i = 1, 2, . . . , n,

(1.1)

where ui, vi and wi denote the population density of the three species u, v and w in the ith

patch, respectively; r1i, r2i, K1i, K2i > 0 are the growth rate and carrying capacity of the prey

u and prey v in the ith patch, respectively; di, ci is the mortality rate and conversion rate of the

predator w in the ith patch, respectively; the connectivity matrices A = (aij)n×n describes the

dispersal pattern between patches for prey and predators, where aij ≥ 0, i ̸= j, represents rate

of the prey and predators from patch j to patch i, and ajj = −
∑

i ̸=j aij is the total movement

out from patch j of the prey and predators; ρu, ρv, ρw ≥ 0 represent the dispersal rates of

the three species u, v and w, respectively. Function gi represents the functional response of

predator in the ith patch and satisfies the following assumption.

(g) For 1 ≤ i ≤ n, gi : R+ → R+ is continuous and strictly increasing and gi(0) = 0. The

flowchart of dispersal is shown in Figure 1

In contrast to the general two-dimensional predator-prey model, there are few scholars who

research the two prey-one predator model, where both predator and prey disperse simultane-

ously in a heterogeneous environment with multiple patches. Due to the high dimensionality

of the population model and the existence of migration terms, it is difficult to prove the global

asymptotic stability of its equilibrium points. In this paper, based on the ideas of [2, 8], the

stability behavior of the equilibria of system (1.1) is discussed by using monotonicity theory of

spectral bounds and graph theory knoeledge. For trivial equilibrium and semi-trivial equilib-

rium, we obtain the threshold parameters with respect to the dispersal rate ρ to determine the

boundary between population persistence and extinction. Then the local asymptotic stability

of the semitrivial equilibrium is proven based on these threshold parameters. Next, we ex-
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Figure 1: Flowchart of the dispersal process between patch i and j

plore the global asymptotic stability of the semitrivial equilibrium by the comparison principle

[18, 20] and the theory of asymptotically autonomous semiflows [22]. For most investigations

on the global asymptotic stability of positive equilibrium, it is a classical method to establish

a suitable Lyapunov function and utilize the LaSalle invariance principle [4, 11]. However, for

the population model with migration terms, we use the results of graph theory [8] to construct

the global Lyapunov function for large-scale coupled system from individual vertex system, and

then prove the global asymptotic stability of positive equilibrium.

The paper is structured as follows. In Section 2, we provide essential preliminary knowledge

to discuss the stability of equilibrium points. In Section 3, we demonstrate that the solution

of system (1.1) is positive and uniformly ultimately bounded. In Section 4, we discuss the

stable behavior of the trivial equilibrium and semitrivial equilibrium based on the monotonicity

theory of spectral bounds with respect to the dispersal rate. In Section 5, we prove the uniform

persistence of system (1.1) and the global asymptotic stability of the positive equilibrium. Some

numerical examples and simulation results are provided in Section 6. Finally, the research

results and relevant ecological explanations are summarized in Section 7.

2. Preliminaries

We shall briefly review the basic knowledge so as to facilitate the subsequent proofs.

Let A be an n × n matrix and let σ(A) be the set of eigenvalues of A. A is called non-

negative if aij ≥ 0 for all i, j = 1, 2, . . . , n. A is called essentially non-negative (Metzler matrix)

if aij ≥ 0 for all i ̸= j. A is called irreducible if there nonexistent a permutation matrix P such

that PAP T is the upper triangular matrix. Let s(A) be the spectral bound of A, i.e.,

s(A) = max{Reλ : λ ∈ σ(A)}.

3



Let us now give the definition with respect to the graph theory and the uniform persistence.

Definition 2.1. (Graph theory [8])

(i) A directed graph G = (V,E) contains a set V = {1, 2, . . . , n} of vertices and a set E of

arcs (i, j) leading from initial vertex i to terminal vertex j.

(ii) A digraph G is strongly connected if for any pair of distinct vertices, there exists a directed

path from one to the other.

(iii) A weighted digraph (G, A) is strongly connected if and only if the weight matrix A is

irreducible.

Definition 2.2. [15] System (1.1) is said to be uniformly persistent if solution ((ui(t), vi(t),

wi(t)) of it with initial condition (ui(0), vi(0), wi(0)) ∈ intR3n
+ satisfies the following conditions:

(i) ui(t) ≥ 0, vi(t) ≥ 0, wi(t) ≥ 0, for ∀ t ≥ 0.

(ii) There exists ε > 0 such that limt→∞ inf (ui(t), vi(t), wi(t)) ≥ ε.

Next, we state one useful theorem about spectral monotonicity.

Theorem 2.1. [2] Let A = (aij)n×n be an irreducible essentially nonnegative matrix and let

Q = diag(qi) be a real diagonal matrix. Then the following results hold:

(i) If s(A) < 0, then s(ρA+Q) is strictly decreasing in ρ ∈ (0,∞). Moreover,

lim
ρ→0

s(ρA+Q) = max
1≤i≤n

{qi} and lim
ρ→∞

s(ρA+Q) = −∞.

(ii) If s(A) = 0, then s(ρA+Q) is strictly decreasing provided that Q is not a multiple of I.

Moreover,

lim
ρ→0

s(ρA+Q) = max
1≤i≤n

{qi} and lim
ρ→∞

s(ρA+Q) =
n∑

i=1

viqi,

where vi ∈ (0, 1) for each 1 ≤ i ≤ n is determined by A and satisfies
∑n

i=1 vi = 1 (if A

has each row sum equaling zero, then v is a left positive eigenvector of A).

3. Uniform ultimate boundedness of positive solution

Throughout this section, we use the following notation. Let Nn = {1, 2, . . . , n}, (u(t), v(t),
w(t)) = (u1(t), . . . , un(t), v1(t), . . . , vn(t), w1(t), . . . , wn(t)) ∈ R3n

+ , and A0 = (u(0), v(0), w(0)).

Moreover, we may assume that each component of A0 is nonnegative and the initial conditions

are as follows:
n∑

i=1

ui(0) > 0,
n∑

i=1

vi(0) > 0,
n∑

i=1

wi(0) > 0. (3.1)
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System (1.1) with initial conditions A0 satisfies the standard existence and uniqueness theorem

for ordinary differential equations [24]. Therefore, it follows that system (1.1) has a unique

solution (u(t), v(t), w(t)).

From biological point of view, positivity implies the survival of the populations and uni-

form ultimate boundedness of the solution means that none of the interacting population grow

abruptly for a long period of time. Therefore, it is necessary to illustrate that the solution of

system (1.1) is positive and uniformly ultimately bounded.

Theorem 3.1. For nonnegative initial conditions (3.1), system (1.1) has a unique positive

solution (u(t), v(t), w(t)) for all t > 0, and the solution is uniformly ultimately bounded.

Proof. We first prove that ui(t) > 0 for t > 0 and i ∈ Nn. For convenience, we rewrite the first

equation of system (1.1) as

u′i(t) = ui(t)pi(t) + qi(t), i = 1, . . . , n, (3.2)

where

pi(t) =

(
r1i −

r1iui(t)

K1i

)
− gi(ui(t))

ui(t)
wi(t)− ρu

n∑
j=1

aji,

qi(t) = ρu

n∑
j=1

aijuj(t).

(3.3)

Let I1 = {i ∈ Nn | ui(0) > 0} and I2 = Nn\I1. Since
∑n

i=1 ui(0) > 0, we can know that I1 ̸= ∅.
Consequently, there must exist i0 ∈ I1, from equation (3.2) with i = i0, one can then derive

u′i0(t) = ui0(t)

[(
r1i0 −

r1i0ui0(t)

K1i0

)
− gi0(ui0(t))

ui0(t)
wi0(t)− ρu

n∑
j=1

aji0

]
+ ρu

n∑
j=1

ai0juj(t). (3.4)

Applying (3.4) and the constant variation formula, we get

ui0(t) = ui0(0)e
∫ t
0 pi0 (ζ)dζ +

∫ t

0

qi0(ζ)e
−

∫ ζ
t pi0 (ξ)dξdζ. (3.5)

Noting ui0(0) > 0, we can obtain that ui0(t) > 0 for t > 0. If I2 = ∅, then the situation remains

the same as discussed above. Suppose now that I2 ̸= ∅, which implies ui(0) = 0 for i ̸= i0,

i ∈ Nn. Similarly, by (3.2) and the constant variation formula, we derive

ui(t) = ui(0)e
∫ t
0 pi(ζ)dζ +

∫ t

0

qi(ζ)e
−

∫ ζ
t pi(ξ)dξdζ. (3.6)

Obviously, with the initial condition ui(0) = 0, we only need to consider the sign of qi(t). Since
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A = (aij) is irreducible, it is clear that there exists i1 ∈ I2 such that ai1j ̸= 0 for some j ∈ I1.

Therefore, qi1(t) > 0 for t > 0. By substituting i = i1 into equation (3.6), we can conclude

that ui1(t) > 0 for t > 0. Let M1 = I1 ∪ {i1} and M2 = I2\{i1}. If M2 = ∅, then the situation

remains the same as discussed above. However, if M2 ̸= ∅, we continue the process. After a

finite number of steps, it is easy to see ui(t) > 0 for t > 0 and i ∈ Nn. We can use the similar

way to obtain vi(t) > 0, wi(t) > 0 for t > 0 and i ∈ Nn.

We next prove the uniform ultimate boundedness of the positive solution ((u(t), v(t), w(t)).

Denote u(t) =
∑n

i=1 ui(t), then we have

du(t)

dt
=

n∑
i=1

r1iui(t)

(
1− ui(t)

K1i

)
−

n∑
i=1

gi (ui(t))wi(t).

Let r1 = max1≤i≤n {r1i}, r2 = max1≤i≤n {r2i}, r̄1
K1

= min1≤i≤n { r1i
K1i

}, r̄2
K2

= min1≤i≤n { r2i
K2i

}.
Then by the Cauchy-Schwartz inequality, we derive

du(t)

dt
≤

n∑
i=1

r1iui(t)−
n∑

i=1

r1i
K1i

u2i (t)

≤ max
1≤i≤n

{r1i}u(t)− min
1≤i≤n

{ r1i
K1i

}
n∑

i=1

u2i (t)

≤ max
1≤i≤n

{r1i}u(t)− min
1≤i≤n

{ r1i
K1i

}u
2(t)

n

= r1u(t)−
r̄1u

2(t)

K1n

= r1u(t)

(
1− u(t)r̄1

nK1r1

)
.

Hence, limt→∞ supu(t) ≤ nK1r1/r̄1 is established. We can use the similar way to obtain

limt→∞ sup v(t) ≤ nK2r2/r̄2. We further denote G(t) =
∑n

i=1 (ciui(t) + civi(t) + wi(t)), and

let l = max1≤i≤n {2cir1i, 2cir2i}, h = max1≤i≤n {ci}, d = min1≤i≤n {r1i, r2i, di}. Then one can

obtain

dG(t)

dt
=

n∑
i=1

[
cir1iui

(
1− ui

K1i

)
+ cir2ivi

(
1− vi

K2i

)
+ ciρu

n∑
j=1

(aijuj − ajiui)

+ciρv

n∑
j=1

(aijvj − ajivi)− diwi

]

≤
n∑

i=1

[
2cir1iui + 2cir2ivi + ciρu max

1≤j≤n
{aij}u(t) + ciρv max

1≤j≤n
{aij}v(t)

]
−

n∑
i=1

[cir1iui + cir2ivi + diwi]

6



≤

(
l +

n∑
i=1

hρu max
1≤j≤n

{aij}

)
u(t) +

(
l +

n∑
i=1

hρv max
1≤j≤n

{aij}

)
v(t)− dG(t).

Since limt→∞ supu(t) ≤ nK1r1/r̄1 and limt→∞ sup v(t) ≤ nK2r2/r̄2, we can conclude that for

arbitrary ε > 0, there exists T = T (ε) such that the solutions u(t) and v(t) satisfy u(t) <

nK1r1/r̄1 + ε and v(t) < nK2r2/r̄2 + ε for t ≥ T . Hence, it is follows that

lim
t→∞

supG(t)

≤ (l +
∑n

i=1 hρu max1≤j≤n {aij})nK1r1r̄2 + (l +
∑n

i=1 hρv max1≤j≤n {aij})nK2r2r̄1
dr̄1r̄2

.

This completes the proof.

Moreover, according to the above theorem, we can obtain the feasible domain of system

(1.1) as follows:

Γ =
{
(u(t), v(t), w(t)) ∈ R3n

+ | G(t)

≤ (l +
∑n

i=1 hρu max1≤j≤n {aij})nK1r1r̄2 + (l +
∑n

i=1 hρv max1≤j≤n {aij})nK2r2r̄1
dr̄1r̄2

}
.

Further, we also have the following theorem.

Theorem 3.2. For nonnegative initial conditions (3.1), system (1.1) is dissipative, that is,

there exists M > 0 such that each positive orbit (u(t), v(t), w(t)) eventually enters the set

Γ = {(u(t), v(t), w(t)) ∈ R3n
+ | G(t) =

∑n
i=1 (ciui(t) + civi(t) + wi(t)) ≤M} and Γ is a positive

invariant set with respect to system (1.1).

4. Trivial equilibrium and semitrivial equilibrium

In this section, we discuss the stability of the trivial equilibrium and semitrivial equilibrium.

We shall now start to prove the instability of the trivial equilibrium E0 using the mono-

tonicity of spectral bounds with respect to the dispersal rate. The following theorem describes

this result in detail.

Theorem 4.1. Let A be an irreducible matrix, and denote (α1, α2, . . . , αn)
T as the positive

eigenvector of A corresponding to eigenvalue 0 with
∑n

i=1 αi = 1. Then for any ρu > 0, ρv > 0,

ρw > 0, system (1.1) admits a trivial equilibrium E0 = (0, 0, . . . , 0). And E0 is unstable for any

ρw > 0.

Proof. Linearizing (1.1) at E0, the local stability of E0 is decided by the following eigenvalue

7



problem: 

λϕi = r1iϕi + ρu
n∑

j=1

(aijϕj − ajiϕi), i = 1, 2, . . . , n,

λψi = r2iψi + ρv
n∑

j=1

(aijψj − ajiψi), i = 1, 2, . . . , n,

λφi = −diφi + ρw
n∑

j=1

(aijφj − ajiφi), i = 1, 2, . . . , n,

(4.1)

where (ϕ, ψ, φ) with ϕ = (ϕ1, ϕ2, . . . , ϕn)
T, ψ = (ψ1, ψ2, . . . , ψn)

T and φ = (φ1, φ2, . . . , φn)
T is

an eigenvector of (4.1) corresponding to eigenvalue λ. Hence, we know that the local stability

of E0 is determined by the sign of s(ρuA+diag(r1i)), s(ρvA+diag(r2i)) and s(ρwA−diag(di)).
Since A = (aij)n×n is an essential nonnegative matrix and

∑n
i=1 aij = 0, −A is a Lapla-

cian matrix, it follows that the minimum eigenvalue of −A is 0. Therefore, we have s(A) =

max{Reλ} = 0. By Theorem 2.1, we can get

0 <
n∑

i=1

αir1i = lim
ρ→∞

s(ρuA+ diag(r1i)) ≤ s(ρuA+ diag(r1i)),

0 <
n∑

i=1

αir2i = lim
ρ→∞

s(ρvA+ diag(r2i)) ≤ s(ρvA+ diag(r2i)),

s(ρwA− diag(di)) ≤ lim
ρ→0

s(ρwA− diag(di)) = max
1≤i≤n

{−di} < 0.

Clearly, E0 is unstable for any ρw > 0. This proof is complete.

Next, based on the comparison principle [18, 20] and the theory of asymptotically au-

tonomous semiflows [22], we will prove the global asymptotic stability of the semitrivial equi-

librium E1 by using new threshold parameters M and m in Theorem 4.2. Meanwhile, the

theorem also highlights the impact of dispersal rates on population dynamics of system (1.1).

Theorem 4.2. Let A be an irreducible matrix, and denote (α1, α2, . . . , αn)
T as the positive

eigenvector of A corresponding to eigenvalue 0 with
∑n

i=1 αi = 1. Then for any ρu > 0, ρv > 0,

ρw > 0, system (1.1) admits a semitrivial equilibrium E1 = (u∗, v∗, 0) and satisfies
r1iu

∗
i

(
1− u∗

i

K1i

)
+ ρu

n∑
j=1

(aiju
∗
j − ajiu

∗
i ) = 0, i = 1, 2, . . . , n,

r2iv
∗
i

(
1− v∗i

K2i

)
+ ρv

n∑
j=1

(aijv
∗
j − ajiv

∗
i ) = 0, i = 1, 2, . . . , n,

(4.2)

where u∗ = (u∗1, u
∗
2, . . . , u

∗
n), v

∗ = (v∗1, v
∗
2, . . . , v

∗
n), u

∗
i > 0, v∗i > 0. LetM = max1≤i≤n{ci(gi(u∗i )+

gi(v
∗
i ))− di} and m =

∑n
i=1 αi (ci(gi(u

∗
i ) + gi(v

∗
i ))− di). Then the following results hold:

(i) If M < 0, then the equilibrium E1 is globally asymptotically stable in R3n
+ − {E0} for all

ρw > 0.

(ii) If m > 0, then the equilibrium E1 is unstable for all ρw > 0.

8



(iii) If m < 0 < M , then there exists a unique ρ∗w > 0 such that E1 is globally asymptotically

stable in R3n
+ − {E0} for ρw > ρ∗w while E1 is unstable for 0 < ρw < ρ∗w.

Proof. To start with, we prove the local asymptotic stability of E1. Linearizing (1.1) at E1,

the local asymptotic stability of E1 is decided by the following eigenvalue problem:

λϕi = r1iϕi

(
1− 2u∗

i

K1i

)
− gi(u

∗
i )φi + ρu

n∑
j=1

(aijϕj − ajiϕi), i = 1, 2, . . . , n,

λψi = r2iψi

(
1− 2v∗i

K2i

)
− gi(v

∗
i )φi + ρv

n∑
j=1

(aijψj − ajiψi), i = 1, 2, . . . , n,

λφi = φi [ci (gi(u
∗
i ) + gi(v

∗
i ))− di] + ρw

n∑
j=1

(aijφj − ajiφi), i = 1, 2, . . . , n,

(4.3)

where (ϕ, ψ, φ) with ϕ = (ϕ1, ϕ2, . . . , ϕn)
T, ψ = (ψ1, ψ2, . . . , ψn)

T and φ = (φ1, φ2, . . . , φn)
T is

an eigenvector of (4.3) corresponding to eigenvalue λ. If Reλ < 0 for any eigenvalue λ of (4.3),

then E1 is locally asymptotically stable; if (4.3) has an eigenvalue λ such that Reλ > 0, then

E1 is unstable. If φ = 0, then λ is an eigenvalue of
λϕi = r1iϕi

(
1− 2u∗

i

K1i

)
+ ρu

n∑
j=1

(aijϕj − ajiϕi), i = 1, 2, . . . , n,

λψi = r2iψi

(
1− 2v∗i

K2i

)
+ ρv

n∑
j=1

(aijψj − ajiψi), i = 1, 2, . . . , n,
(4.4)

i.e., λ is an eigenvalue of ρuA + diag(r1i(1 − 2u∗i /K1i)) and ρvA + diag(r2i(1 − 2v∗i /K2i)). By

(4.2) and the Perron-Frobenius theorem [13], it follows that s(ρuA+diag(r1i(1−u∗i /K1i))) = 0,

s(ρvA+ diag(r2i(1− v∗i /K2i))) = 0. Consequently, we haveReλ ≤ s(ρuA+ diag(r1i(1− 2u∗i /K1i))) < s(ρuA+ diag(r1i(1− u∗i /K1i))) = 0,

Reλ ≤ s(ρvA+ diag(r2i(1− 2v∗i /K2i))) < s(ρvA+ diag(r2i(1− v∗i /K2i))) = 0.
(4.5)

If φ ̸= 0, then λ is an eigenvalue of

λφi = φi [ci (gi(u
∗
i ) + gi(v

∗
i ))− di] + ρw

n∑
j=1

(aijφj − ajiφi), i = 1, 2, . . . , n,

i.e., λ is an eigenvalue of ρwA + diag(ci (gi (u
∗
i ) + gi (v

∗
i )) − di). Therefore, by Theorem 2.1,

we can easily know that the local asymptotic stability of E1 is decided by the sign of s(ρwA+

diag(ci (gi(u
∗
i ) + gi(v

∗
i )) − di)). Then the results on the local asymptotic stability of E1 in

(i)− (iii) can be explained.

Further, we prove the global asymptotic stability of E1 when s(ρwA + diag(ci(gi(u
∗
i ) +

gi(v
∗
i ))− di)) < 0. Assume that (u1(0), u2(0), . . . , un(0)) is nontrivial. Let ûi(t), 1 ≤ i ≤ n, be
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the solution of 
û′i = r1iûi

(
1− ûi

K1i

)
+ ρu

n∑
j=1

(aijûj − ajiûi), i = 1, 2, . . . , n,

ûi(0) = ui(0), i = 1, 2, . . . , n,

and v̂i(t), 1 ≤ i ≤ n, be the solution of
v̂′i = r2iv̂i

(
1− v̂i

K2i

)
+ ρv

n∑
j=1

(aij v̂j − ajiv̂i), i = 1, 2, . . . , n,

v̂i(0) = vi(0), i = 1, 2, . . . , n.

According to the comparison principle [18, 20], we have ui(t) ≤ ûi(t), vi(t) ≤ v̂i(t) for all t ≥ 0

and 1 ≤ i ≤ n. Noting [2, Theorem 5.1], we conclude limt→∞ ûi(t) = u∗i , limt→∞ v̂i(t) = v∗i ,

thus it can be seen limt→∞ sup ûi(t) = u∗i , limt→∞ sup v̂i(t) = v∗i for 1 ≤ i ≤ n. Choose ε0 > 0

such that s(ρwA + diag(ci (gi(u
∗
i + ε0) + gi(v

∗
i + ε0))− di)) < 0. Then there exists T > 0 such

that ui(t) ≤ u∗i + ε0, vi(t) ≤ v∗i + ε0 for all t ≥ T . By the third equation of system (1.1) and

the monotonicity of gi, we obtain
w′

i ≤ wi (ci (gi(u
∗
i + ε0) + gi(v

∗
i + ε0))− di) + ρw

n∑
j=1

(aijwj − ajiwi), t ≥ T, i = 1, 2, . . . , n,

wi(T ) ≤ Cα̃i, t ≥ T, i = 1, 2, . . . , n,

where (α̃1, α̃2, . . . , α̃n) is a positive principal eigenvector of ρwA+ diag(ci(gi(u
∗
i + ε0) + gi(v

∗
i +

ε0))− di) corresponding with eigenvalue s0 := s(ρwA+ diag(ci (gi(u
∗
i + ε0) + gi(v

∗
i + ε0))− di))

and C > 0 is large. Again by the comparison principle [18, 20], we can derive wi(t) ≤ ŵi(t) for

all t ≥ T , where ŵi is the solution of
ŵ′

i = ŵi (ci (gi (u
∗
i + ε0) + gi (v

∗
i + ε0))− di) + ρw

n∑
j=1

(aijŵj − ajiŵi), t ≥ T, i = 1, 2, . . . , n,

ŵi(T ) = Cα̃i, t ≥ T, i = 1, 2, . . . , n.

(4.6)

Then, it is easy to solve that the solution of (4.6) is ŵi(t) = Cα̃ie
s0(t−T ), 1 ≤ i ≤ n. Since

s0 < 0, we obtain that limt→∞ ŵi(t) = 0, which implies limt→∞wi(t) = 0. Finally, by the theory

of asymptotically autonomous semiflows [22], we have limt→∞ ui(t) = u∗i , limt→∞ vi(t) = v∗i ,

1 ≤ i ≤ n. Therefore, we can illustrate that E1 is global asymptotically stable. This proof is

complete.

5. Positive equilibrium

In this section, we discuss the existence and stability of the positive equilibrium.

To start with, we aim to obtain the conditions for the existence of the positive equilibrium
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by proving the uniform persistence of system (1.1). To achieve this, we need to discuss the

stability of the trivial equilibrium E0 = (0, 0), semitrivial equilibrium E
′
= (u∗, 0), Ê = (0, v∗),

and positive equilibrium Ē = (u∗, v∗) of system (5.1). Similar to the proof of the stability of E0

and E1, as shown in Theorem 4.1 and Theorem 4.2 in Section 4, we utilize the monotonicity of

spectral bounds to analyze E0, E
′
and Ê. It follows that E0, E

′
and Ê are evidently unstable.

As shown in Lemma 5.1, we prove the global asymptotic stability of Ē = (u∗, v∗) by con-

structing the Lyapunov function.
u′i = r1iui

(
1− ui

K1i

)
+ ρu

n∑
j=1

(aijuj − ajiui), i = 1, 2, . . . , n,

v′i = r2ivi

(
1− vi

K2i

)
+ ρv

n∑
j=1

(aijvj − ajivi), i = 1, 2, . . . , n.
(5.1)

Lemma 5.1. Assume that the following assumptions hold.

(i) Dispersal matrix A = (aij)n×n is irreducible.

(ii) There exists σj > 0 such that ρuaiju
∗
j = σjρvaijv

∗
j .

Then system (5.1) has a globally asymptotically stable positive equilibrium Ē in R2n
+ .

Proof. Clearly, system (5.1) has at least one positive equilibrium [1, 20]. Let Ē = (u∗, v∗) =

(u∗1, . . . , u
∗
n, v

∗
1, . . . , v

∗
n), u

∗
i , v

∗
i > 0 for 1 ≤ i ≤ n, where u∗, v∗ satisfy

0 = r1i

(
1− u∗i

K1i

)
+ ρu

n∑
j=1

(
aij
u∗j
u∗i

− aji

)
, i = 1, . . . , n, (5.2)

0 = r2i

(
1− v∗i

K2i

)
+ ρv

n∑
j=1

(
aij
v∗j
v∗i

− aji

)
, i = 1, . . . , n. (5.3)

Denote

Vi(ui, vi) = ui − u∗i − u∗i ln
ui
u∗i

+ vi − v∗i − v∗i ln
vi
v∗i
. (5.4)

It can be checked that Vi(ui, vi) > 0 for all ui, vi ≥ 0 and Vi(ui, vi) = 0 if and only if ui = u∗i ,

vi = v∗i . Using (5.2) and (5.3), we can get

V̇i =
u′i
ui
(ui − u∗i ) +

v′i
vi
(vi − v∗i )

=(ui − u∗i )

[
r1i

(
1− ui

K1i

)
+ ρu

n∑
j=1

(
aij
uj
ui

− aji

)]

+ (vi − v∗i )

[
r2i

(
1− vi

K2i

)
+ ρv

n∑
j=1

(
aij
vj
vi

− aji

)]

=(ui − u∗i )

[
r1i

(
1− ui

K1i

)
− r1i

(
1− u∗i

K1i

)
+ ρu

n∑
j=1

(
aij
uj
ui

− aji

)
−ρu

n∑
j=1

(
aij
u∗j
u∗i

− aji

)]
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+ (vi − v∗i )

[
r2i

(
1− vi

K2i

)
−r2i

(
1− v∗i

K2i

)
+ρv

n∑
j=1

(
aij
vj
vi

− aji

)
−ρv

n∑
j=1

(
aij
v∗j
v∗i

− aji

)]

=(ui − u∗i )

[
r1i

(
1− ui

K1i

)
− r1i

(
1− u∗i

K1i

)]
+ (vi − v∗i )

[
r2i

(
1− vi

K2i

)
− r2i

(
1− v∗i

K2i

)]
+ ρu

n∑
j=1

aiju
∗
j

(
uj
u∗j

− ui
u∗i

− uju
∗
i

uiu∗j
+ 1

)
+ ρv

n∑
j=1

aijv
∗
j

(
vj
v∗j

− vi
v∗i

− vjv
∗
i

viv∗j
+ 1

)

=− r1i
K1i

(ui−u∗i )2−
r2i
K2i

(vi−v∗i )2+ρu
n∑

j=1

aiju
∗
j

[(
uj
u∗j

− ui
u∗i

−uju
∗
i

uiu∗j
+1

)
+

1

σj

(
vj
v∗j

− vi
v∗i

− vjv
∗
i

viv∗j
+1

)]

≤ρu
n∑

j=1

aiju
∗
j

[(
uj
u∗j

− ui
u∗i

− uju
∗
i

uiu∗j
+ 1

)
+

1

σj

(
vj
v∗j

− vi
v∗i

− vjv
∗
i

viv∗j
+ 1

)]
.

For convenience, we let

dij = ρuaiju
∗
j , Gi(ui, vi) = −ui

u∗i
+ ln

ui
u∗i

− 1

σj
(
vi
v∗i

+ ln
vi
v∗i

),

Fij(ui, uj, vi, vj) =
uj
u∗j

− ui
u∗i

− uju
∗
i

u∗jui
+ 1 +

1

σj

(
vj
v∗j

− vi
v∗i

− vjv
∗
i

v∗j vi
+ 1

)
.

Then this is straightforward:

V̇i(ui, vi) ≤
n∑

j=1

dijFij(ui, uj, vi, vj), (5.5)

and since 1− a+ ln a ≤ 0 for a > 0 with equality holding iff a = 1, one can obtain

Fij(ui, uj, vi, vj) =Gi(ui, vi)−Gj(uj, vj) + 1− uju
∗
i

u∗jui
+ ln

uju
∗
i

u∗jui

+
1

σj

(
1− vjv

∗
i

v∗j vi
+ ln

vjv
∗
i

v∗j vi

)
≤Gi(ui, vi)−Gj(uj, vj).

(5.6)

Thus, Vi, Fij, Gi and dij satisfy the assumptions in [8, Theorem 3.1]. Denote Ti be the set

of all spanning trees T of (G, A), rooted at vertex i, and w(T ) be the weight of T . If we let

Ci =
∑

T ∈Ti
w(T ) is the cofactor of the i-th diagonal element in the Laplacian matrix of the

weighted digraph (G, A), then

V (u1, . . . , un, v1, . . . , vn) =
n∑

i=1

CiVi(ui, vi)

as defined in [8, Theorem 3.1] is a Lyapunov function for (5.1). Namely, V̇ ≤ 0 for all
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(u1, . . . , un, v1, . . . , vn) ∈ R2n
+ .

To show Ē is globally asymptotically stable, we examine the largest compact invariant set

of {(u1, . . . , un, v1, . . . , vn) ∈ R2n
+ | V̇ = 0}. Since (G, A) is strongly connected, that is, V̇ = 0

implies that −r1i(ui − u∗i )
2/K1i − r2i(vi − v∗i )

2/K2i = 0 and dijFij(ui, uj, vi, vj) = 0. Further,

from r1i, r2i, K1i, and K2i are positive constant, we have ui = u∗i and vi = v∗i . According to the

irreducibility of the matrix A, there exists an arc from j to i in weight graph (G, A). Hence,

dijFij(ui, uj, vi, vj) = 0 indicates that ui = uj and vi = vj. Let l ̸= k denote any vertex of

(G, A), then by the strong connectivity of (G, A), there exists a directed path p from l to k.

Applying the relation ui = uj and vi = vj to each arc (j, i) of p, we can obtain that ul = uk

and vl = vk. As a consequence, V̇ = 0 implies ui = u∗i and vi = v∗i for all i. This suggests that

the largest compact invariant subset of {(u1, . . . , un, v1, . . . , vn) ∈ R2n
+ | V̇ = 0} is the singleton

{Ē}. By the LaSalle Invariance Principle [10], Ē is globally asymptotically stable in R2n
+ . The

proof is now complete.

In the subsequent analysis, we utilize persistence theory [3, 19, 23, 26, 27] to establish the

uniform persistence of system (1.1). This enables us to deduce the existence of a positive

equilibrium for system (1.1). We present this significant result in the following theorem.

Theorem 5.1. If m > 0 and there exists σj > 0 such that ρuaiju
∗
j = σjρvaijv

∗
j , then system

(1.1) is uniformly persistent, that is, there exists ε > 0 such that every solution Φt (A0) =

(u(t), v(t), w(t)) with A0 = (u(0), v(0), w(0)) ∈ R2n
+ × IntRn

+ satisfies

lim
t→∞

inf (wi(t)) ≥ ε, i = 1, . . . , n.

Hence, system (1.1) has at least one positive equilibrium.

Proof. Let

X = {(ui, vi, wi) | ui ≥ 0, vi ≥ 0, wi ≥ 0},

X̃0 = {wi > 0, i = 1, . . . , n},

∂X̃0 = X\X̃0.

According to Lemma 3.1, it is easy to know that X̃0 is a positive invariant set and system (1.1)

is dissipative. Define

M∂ := {A0 ∈ ∂X̃0 | Φt(A0) ∈ ∂X̃0, ∀ t ≥ 0}.

We first claim that

M∂ = {A0 ∈ X | w(t) = 0, ∀ t ≥ 0}.

Suppose on the contrary that there exists t0 ≥ 0 such that w(t0) > 0. We partition {1, 2, . . . , n}
into two sets Z1 and Z2, such that wi(t0) = 0, ∀ i ∈ Z1, and wi(t0) > 0, ∀ i ∈ Z2. If Z1 = ∅, it
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is not difficult to see that wi(t) > 0 for t0 < t < t0 + ε, ∀ i = 1, 2, . . . , n, given a enough small

ε0 > 0. On the other hand, if Z1 ̸= ∅, then for ∀ i ∈ Z1, we get

ẇi(t0) = wi(t0) (ci (gi (ui(t0)) + gi (vi(t0)))− di) + ρw

n∑
j=1

(aijwj(t)− ajiwi(t0))

= ρw
∑
j∈Z2

aijwj(t0).

Since A = (aij) is irreducible, it is clearly that there exists i0 ∈ Z1 such that ai0j ̸= 0 for some

j ∈ Z2, which implies that ρw
∑

j∈Z2
aijwj(t0) > 0, i.e. ẇi(t0) > 0. Therefore, there exists a

enough small ε > 0 such that wi(t) > 0 for t0 < t < t0 + ε, ∀ i ∈ Z1 ∪ Z2. According to the

above discussion, we can obtain that Φt(A0) ̸∈ ∂X̃0 for t0 < t < t0 + ε, which contradicts with

the definition of M∂, thus the above claim has been verified on M∂.

We next prove that for some constant η > 0, the solution Φt(A0) through A0 satisfies

lim
t→∞

sup max
1≤i≤n

{wi(t)} > η. (5.7)

Assume (5.7) is not true, then there must exist T > 0 such that

0 < max
1≤i≤n

{wi(t)} ≤ η, ∀ t ≥ T.

Therefore, it is easy to see

dui
dt

= r1iui

(
1− ui

K1i

)
− gi(ui)wi + ρu

n∑
j=1

(aijuj − ajiui)

≥ r1iui

(
1− ui

K2i

)
− gi(ui)η + ρu

n∑
j=1

(aijuj − ajiui),

dvi
dt

= r2ivi

(
1− vi

K2i

)
− gi(vi)wi + ρv

n∑
j=1

(aijvj − ajivi)

≥ r2ivi

(
1− vi

K2i

)
− gi(vi)η + ρv

n∑
j=1

(aijvj − ajivi).

14



Consider the following auxiliary equation

dūi
dt

= r1iūi

(
1− ūi

K1i

)
− gi(ūi)η + ρu

n∑
j=1

(aijūj − ajiūi),

(ū1(T ), . . . , ūn(T )) = (u1(T ), . . . , un(T )) .

dv̄i
dt

= r2iv̄i

(
1− v̄i

K2i

)
− gi(v̄i)η + ρv

n∑
j=1

(aij v̄j − ajiv̄i),

(v̄1(T ), . . . , v̄n(T )) = (v1(T ), . . . , vn(T )) .

(5.8)

Applying comparison principle [18, 20], we have u(t) ≥ ū(t), v(t) ≥ v̄(t), ∀ t ≥ T , where ū(t) =

(ū1(t), . . . , ūn(t))
T, v̄(t) = (v̄1(t), . . . , v̄n(t))

T. By Lemma 5.1, we also have that (u∗, v∗)T(η)

is globally asymptotically stable for (5.8) and u∗(0) = u∗, v∗(0) = v∗. Then there exists a

sufficiently small δ with δ = (δ1, . . . , δn)
T ∈ Rn

+ and a sufficiently large T > 0, such that

u∗(η) > u∗ − δ, v∗(η) > v∗ − δ, and it follows that u(t) ≥ u∗(η) ≥ u∗ − δ, v(t) ≥ v∗(η) ≥ v∗ − δ

for all t ≥ T + T1. Hence, we obtain

dwi(t)

dt
= wi(t) (ci (gi (ui(t)) + gi (vi(t)))− di) + ρw

n∑
j=1

(aijwj(t)− ajiwi(t))

≥ wi(t) (ci (gi (u
∗
i − δ) + gi (v

∗
i − δ))− di) + ρw

n∑
j=1

(aijwj(t)− ajiwi(t)).

Consider the following auxiliary system:

dw̄i(t)

dt
= w̄i(t) (ci (gi (u

∗
i − δ) + gi (v

∗
i − δ))− di) + ρw

n∑
j=1

(aijw̄j(t)− ajiw̄i(t)) . (5.9)

Using the Perron-Frobeneius theory andm0 > 0, it then follows that the matrixD has a positive

eigenvalue s(D) with a positive eigenvector, whereD is ρwA+diag(ci(gi(u
∗
i−δ)+gi(v∗i −δ))−di).

Besides, denote ᾱ = (α1, . . . , αn)
T be a positive eigenvector corresponding to s(D), then the

solution of system (5.9) is given by kᾱes(D)t. Again, using the comparison principle [18, 20], we

can get

wi(t) ≥ kᾱes(D)t, ∀ t ≥ T.

Then wi(t) → ∞, i = 1, . . . , n, for t→ ∞, which results to a contradiction.

In the end, we will prove that system (1.1) is uniformly persistent in regard to (X̃0, ∂X̃0).

Note that (u∗, v∗)T is globally asymptotically stable in R2n
+ \{E0, E

′
, Ê} when ρuaiju∗j = ρvaijv

∗
j .

By the above discussion, we obtain that E0, E1, (u
∗, 0, 0) and (0, v∗, 0) are isolated invariant

subsets in X. At the same time, we have W s(E0)∩ X̃0 = ∅, W s(E1)∩ X̃0 = ∅, W s ((u∗, 0, 0))∩
X̃0 = ∅ and W s ((0, v∗, 0)) ∩ X̃0 = ∅. Here W s(E0), W

s(E1), W
s ((u∗, 0, 0)) and W s ((0, v∗, 0))
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are stable set of E0, E1, (u
∗, 0, 0) and (0, v∗, 0), respectively. It is obvious that every orbit in

M∂ converges to one of four equilibria, which include (u∗, 0, 0), (0, v∗, 0), E0 and E1. Moreover,

(u∗, 0, 0), (0, v∗, 0), E0 and E1 are acyclic in M∂. By [3], we can infer that system (1.1) is

uniformly persistent in regard to (X̃0, ∂X̃0). According to [26], system (1.1) has at least one

positive equilibrium (u∗, v∗, w∗) ∈ X̃0 with w∗ ≫ 0. We further assert that u∗ ̸= 0, v∗ ̸=
0. Otherwise, if u∗ = v∗ = 0, by summing up the equilibrium equations for w, we have∑n

i=1−diw∗ = 0. Consequently, w∗ = 0, which leads to a contradiction. This proof is complete.

We now focus on studying the global asymptotic stability of the positive equilibrium E2

under the assumption of a linear functional response for system (1.1). This allows us to rewrite

the system (1.1) as follows:

u′i = r1iui

(
1− ui

K1i

)
− biuiwi + ρu

n∑
j=1

(aijuj − ajiui), i = 1, 2, . . . , n,

v′i = r2ivi

(
1− vi

K2i

)
− biviwi + ρv

n∑
j=1

(aijvj − ajivi), i = 1, 2, . . . , n,

w′
i = wi (ci(biui + bivi)− di) + ρw

n∑
j=1

(aijwj − ajiwi), i = 1, 2, . . . , n.

(5.10)

The result is shown in the following theorem.

Theorem 5.2. Assume that the following assumptions hold.

(i) Dispersal matrix A = (aij)n×n is irreducible;

(ii) m > 0;

(iii) There exists σ1j, σ2j > 0 such that ρuaiju
∗
j = σ1jρvaijv

∗
j = 1

ci
σ2jρwaijw

∗
j ;

where m is given in Theorem 4.2 and gi(ui) = biui, gi(vi) = bivi. Then system (5.10) has a

globally asymptotically stable positive equilibrium E2 in Γ.

Proof. By Theorem 5.1, we know that system (5.10) has at least one positive equilibrium. Let

E2 = (u∗, v∗, w∗) = (u∗1, . . . , u
∗
n, v

∗
1, . . . , v

∗
n, w

∗
1, . . . , w

∗
n), u

∗
i , v

∗
i , w

∗
i > 0 for 1 ≤ i ≤ n, where u∗,

v∗, w∗ satisfy

0 = r1i

(
1− u∗i

K1i

)
− biw

∗
i + ρu

n∑
j=1

(
aij
u∗j
u∗i

− aji

)
, i = 1, . . . , n, (5.11)

0 = r2i

(
1− v∗i

K2i

)
− biw

∗
i + ρv

n∑
j=1

(
aij
v∗j
v∗i

− aji

)
, i = 1, . . . , n, (5.12)

0 = ci(biu
∗
i + biv

∗
i )− di + ρw

n∑
j=1

(
aij
w∗

j

w∗
i

− aji

)
, i = 1, 2, . . . , n. (5.13)
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Denote

Vi(ui, vi, wi) = ui − u∗i − u∗i ln
ui
u∗i

+ vi − v∗i − v∗i ln
vi
v∗i

+
1

ci
(wi − w∗

i − w∗
i ln

wi

w∗
i

). (5.14)

It can be checked that Vi(ui, vi, wi) ≥ 0 for all ui, vi, wi > 0 and Vi(ui, vi, wi) = 0 if and only if

ui = u∗i , vi = v∗i , wi = w∗
i . Using (5.11), (5.12) and (5.13). we can get

V̇i =
u′i
ui
(ui − u∗i ) +

v′i
vi
(vi − v∗i ) +

1

ci

w′
i

wi

(wi − w∗
i )

=(ui − u∗i )

[
r1i

(
1− ui

K1i

)
− biwi + ρu

n∑
j=1

(
aij
uj
ui

− aji

)]

+ (vi − v∗i )

[
r2i

(
1− vi

K2i

)
− biwi + ρv

n∑
j=1

(
aij
vj
vi

− aji

)]

+
1

ci
(wi − w∗

i )

[
ci(biui + bivi)− di + ρw

n∑
j=1

(
aij
wj

wi

− aji

)]

=(ui − u∗i )

[
r1i

(
1− ui

K1i

)
− biwi + ρu

n∑
j=1

(
aij
uj
ui

− aji

)
− r1i

(
1− u∗i

K1i

)
+ biw

∗
i

−ρu
n∑

j=1

(
aij
u∗j
u∗i

− aji

)]
+ (vi − v∗i )

[
r2i

(
1− vi

K2i

)
− biwi + ρv

n∑
j=1

(
aij
vj
vi

− aji

)

−r2i
(
1− v∗i

K2i

)
+ biw

∗
i − ρv

n∑
j=1

(
aij
v∗j
v∗i

− aji

)]
+

1

ci
(wi − w∗

i )

[
ρw

n∑
j=1

(
aij
wj

wi

− aji

)

+ci(biui + bivi)− di − ci(biu
∗
i + biv

∗
i ) + di − ρw

n∑
j=1

(
aij
w∗

j

w∗
i

− aji

)]

=(ui − u∗i )

[
r1i

(
1− ui

K1i

)
− r1i

(
1− u∗i

K1i

)]
+ (vi − v∗i )

[
r2i

(
1− vi

K2i

)
− r2i

(
1− v∗i

K2i

)]
+ ρu

n∑
j=1

aiju
∗
j

(
uj
u∗j

− ui
u∗i

− uju
∗
i

uiu∗j
+ 1

)
+ ρv

n∑
j=1

aijv
∗
j

(
vj
v∗j

− vi
v∗i

− vjv
∗
i

viv∗j
+ 1

)

+
ρw
ci

n∑
j=1

aijw
∗
j

(
wj

w∗
j

− wi

w∗
i

− wjw
∗
i

wiw∗
j

+ 1

)

=− r1i
K1i

(ui − u∗i )
2 − r2i

K2i

(vi − v∗i )
2 + ρu

n∑
j=1

aiju
∗
j

[(
uj
u∗j

− ui
u∗i

− uju
∗
i

uiu∗j
+ 1

)
+

1

σ1j

(
vj
v∗j

− vi
v∗i

− vjv
∗
i

viv∗j
+ 1

)
+

1

σ2j

(
wj

w∗
j

− wi

w∗
i

− wjw
∗
i

wiw∗
j

+ 1

)]
.
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For convenience, we let

dij = ρuaiju
∗
j , Gi(ui, vi, wi) = −ui

u∗i
+ ln

ui
u∗i

− 1

σ1j
(
vi
v∗i

− ln
vi
v∗i

)− 1

σ2j
(
wi

w∗
i

− ln
wi

w∗
i

),

Fij(ui, uj , vi, vj , wi, wj) =
uj
u∗j

− ui
u∗i

− uju
∗
i

u∗jui
+1+

1

σ1j

(
vj
v∗j

− vi
v∗i

− vjv
∗
i

v∗j vi
+1

)
+

1

σ2j

(
wj

w∗
j

− wi

w∗
i

−wjw
∗
i

w∗
jwi

+1

)
.

Then one can get

V̇i(ui, vi, wi) ≤
n∑

j=1

dijFij(ui, uj, vi, vj, wi, wj), (5.15)

and since 1− a+ ln a ≤ 0 for a > 0, we have

Fij(ui, uj, vi, vj, wi, wj) =Gi(ui, vi, wi)−Gj (uj, vj, wj) + 1− uju
∗
i

u∗jui
+ ln

uju
∗
i

u∗jui

+
1

σ1j

(
1− vjv

∗
i

v∗j vi
+ ln

vjv
∗
i

v∗j vi

)
+

1

σ2j

(
1− wjw

∗
i

w∗
jwi

+ ln
wjw

∗
i

w∗
jwi

)
≤Gi(ui, vi, wi)−Gj (uj, vj, wj).

(5.16)

We have proven that Vi, Fij, Gi and dij satisfy the assumptions in [8, Theorem 3.1]. Therefore,

V (u1, . . . , un, v1, . . . , vn, w1, . . . , wn) =
n∑

i=1

CiVi(ui, vi, wi)

as defined in [8, Theorem 3.1] is a Lyapunov function for (5.10), where Ci is the same as defined

in Lemma 5.1. Namely, V̇ ≤ 0 for all (u1, . . . , un, v1, . . . , vn, w1, . . . , wn) ∈ Γ.

To show E2 is globally asymptotically stable, we examine the largest compact invariant set

of {(u1, . . . , un, v1, . . . , vn, w1, . . . , wn) ∈ Γ | V̇ = 0}. Through a discussion similar to Lemma

5.1, it is easy to see that V̇ = 0 indicates that ui = u∗i , vi = v∗i and wi = w∗
i for all i. This implies

that the largest compact invariant subset of {(u1, . . . , un, v1, . . . , vn, w1, . . . , wn) ∈ Γ | V̇ = 0}
is the singleton {E2}. By the LaSalle Invariance Principle [10], E2 is globally asymptotically

stable in Γ. This completes the proof.

6. Numerical simulations

In this section, we provide some numerical simulations to prove the effectiveness of the

theoretical results discussed in Sections 4 and 5. In order to make the simulation results more

intuitive, we may assume that the functional response in system (1.1) is linear, n = 2 and
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(aij)2×2 =

(
−1 1

1 −1

)
. Then system (1.1) can be simplified into the following form.



u′1 = r11u1

(
1− u1

K11

)
− b1u1w1 + ρu(u2 − u1),

u′2 = r12u2

(
1− u2

K12

)
− b2u2w2 + ρu(u1 − u2),

v′1 = r21v1

(
1− v1

K21

)
− b1v1w1 + ρv(v2 − v1),

v′2 = r22v2

(
1− v2

K22

)
− b2v2w2 + ρv(v1 − v2),

w′
1 = w1 (c1(b1u1 + b1v1)− d1) + ρw(w2 − w1),

w′
2 = w2 (c2(b2u2 + b2v2)− d2) + ρw(w1 − w2).

(6.1)

Example 6.1. Let us take the parameter values as follows: r11 = 0.2, r12 = 0.1, r21 = 0.1,
r22 = 0.15, K11 = 10, K12 = 11, K21 = 12, K22 = 13, b1 = 0.1, b2 = 0.05, c1 = 0.02, c2 = 0.05,
d1 = 0.1, d2 = 0.1, ρu = 0.01, ρv = 0.01, ρw = 0.02.

Based on the above parameter values, the semitrivial equilibrium of system (6.1) is deter-

mined as E1 ≈ (10.04, 10.91, 12.09, 12.94, 0, 0). By computing, we have thatM ≈ −0.0404 < 0.

Then condition (i) of Theorem 4.2 is satisfied. Analysis of Figure 2(a) and Figure 2(d) reveals

that maintaining the other parameter values constant, any positive value ρw does not affect

the stable behavior of E1. In addition, as shown in Figure2(c) and Figure 2(f), we can see that

the solutions of system (6.1) all run to point E1 for any initial value. Consequently, combined

with Figure 2(b), Figure 2(e), we can conclude that E1 is globally asymptotically stable for all

ρw > 0.
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(a) patch 1 (b) patch 1 (c) patch 1

(d) patch 2 (e) patch 2 (f) patch 2

Figure 2: Stable behavior and Phase portrait of E1 with M < 0

Example 6.2. We take the parameter values as follows: r11 = 0.2, r12 = 0.1, r21 = 0.1,
r22 = 0.15, K11 = 10, K12 = 11, K21 = 12, K22 = 13, b1 = 0.4, b2 = 0.1, c1 = 0.1, c2 = 0.2,
d1 = 0.07, d2 = 0.06, ρu = 0.01, ρv = 0.01, ρw = 0.02.

By computations we get that m ≈ 0.6161 > 0, then the condition (i) of Theorem 4.2

is satisfied. As shown in Figure 3(a) and Figure 3(b), we can find that any solution curve

of system (6.1) eventually runs towards Ẽ ≈ (0.75, 0.41, 0.34, 3.16, 0.14, 1.05) and away from

E1 ≈ (10.04, 10.91, 12.09, 12.94, 0, 0). Hence, simulation results demonstrate that the semitriv-

ial equilibrium E1 ≈ (10.04, 10.91, 12.09, 12.94, 0, 0) is unstable.

(a) patch 1 (b) patch

Figure 3: Unstable behavior of E1
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Example 6.3. We set the parameters as: r11 = 0.2, r12 = 0.1, r21 = 0.1, r22 = 0.15, K11 = 10,
K12 = 11, K21 = 12, K22 = 13, b1 = 0.1, b2 = 0.06, c1 = 0.02, c2 = 0.05, d1 = 0.1, d2 = 0.05,
ρu = 0.01, ρv = 0.01.

Based on the parameter values in Example 6.3, we numerically simulate the stable behavior

of the semitrivial equilibrium E1 as the dispersal rate ρw varies. In Figure 4(a) and Figure

4(d), it is not difficult to observe that the three curves represented by u, v and w tend to be

stable when ρw > ρ∗w. This indicates that the values of (u, v, w) become stable around the

equilibrium point E1 ≈ (10.04, 10.91, 12.09, 12.94, 0, 0). We may assume that ρw = 1, then

m ≈ −0.0171 < 0, M ≈ 0.0216 > 0 satisfy the condition (iii) of Theorem 4.2. The stable

behavior of E1 and phase portrait are presented in the Figure 4(b), Figure 4(e), Figure 4(c)

and Figure 4(f), respectively. Hence, we can infer that E1 is unstable for 0 < ρw < ρ∗w, while

E1 is globally asymptotically stable for ρw > ρ∗w.

(a) patch 1 (b) patch 1 (c) patch 1

(d) patch 2 (e) patch 2 (f) patch 2

Figure 4: Stable behavior and Phase portrait of E1 with m < 0 < M

Example 6.4. We set the parameter values as follows: r11 = 0.2, r12 = 0.1, r21 = 0.1,
r22 = 0.15, K11 = 10, K12 = 11, K21 = 12, K22 = 13, b1 = 0.4, b2 = 0.1, c1 = 0.15, c2 = 0.25,
d1 = 0.05, d2 = 0.02, ρu = 0.1, ρv = 0.1, ρw = 0.01.

It is easy to verify that m ≈ 0.9334 > 0 and there exists σj > 0 such that ρuaiju
∗
j ≈

σjρvaijv
∗
j , then the conditions of Theorem 5.1 are satisfied. Thus we can illustrate the uniform

persistence of system (6.1) and the existence of its positive equilibrium E2 ≈ (0.376, 0.388, 0.305,
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0.603, 0.489, 0.935), as shown in Figure 5(a) and Figure 5(b). In addition, we also find there

exists σ1j, σ2j > 0 such that ρuaiju
∗
j ≈ σ1jρvaijv

∗
j ≈ 1

ci
σ2jρwaijw

∗
j . Hence, the conditions of

Theorem 5.2 are satisfied, which implies that E2 is globally asymptotically stable. The results

are shown in Figure 5(c) and Figure 5(d).

(a) patch 1 (b) patch 2

(c) patch 1 (d) patch 2

Figure 5: The positive equilibrium E2 of system (6.1) and stable behavior of E2

Next, we investigate the apparent competition relation between the prey u and v by ob-

serving the population density of the prey and predator with respect to changes in the prey

growth rate.

Example 6.5. We may assume that r1 = r11 = r12, r2 = r21 = r22, K11 = 5, K12 = 8,
K21 = 15, K22 = 18, b1 = 0.4, b2 = 0.1, c1 = 0.1, c2 = 0.2, d1 = 0.07, d2 = 0.06, ρu = 0.1,
ρv = 0.1, ρw = 0.01.

Firstly, in Figure 6(a) and Figure 6(b), it is not difficult to observe that as the growth rate

r of one prey increases, corresponding to an increase in its population density, the population

density of the predator w also increases. This increase the risk of another prey being preyed

upon, causing a decrease in its population density. Therefore, it can be explained that there is

a negative interaction between the prey u and v with the predator w as the intermediary. This

indicates the presence of an apparent competition relationship between the prey u and v.
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Secondly, by rotating Figure 6(a) and Figure 6(b) at an angle, we obtain Figures 6(c) and

Figure 6(d). It can be observed that the appropriate growth rates r1 and r2 can allow the prey

u, v and predator w to reach a coexistence state.

(a) patch 1 (b) patch 2

(c) patch 1 (d) patch 2

Figure 6: The apparent competition between prey u and v

7. Conclusion

In this paper, a three-dimensional model in which two prey and one predator disperse

simultaneously in a heterogeneous environment with multiple patches is proposed, and the

stability of its equilibrium points is extensively studied.

We prove theoretically the positivity and uniform ultimate boundedness of the solution of

system (1.1), and analyze the stability of the trivial equilibrium and semitrivial equilibrium by

using threshold values. Under certain parameters constraint, we obtain sufficient conditions

for the uniform persistence of the system, which shows that there exists at least one positive

equilibrium in the model. Furthermore, we prove the global asymptotic stability of the positive

equilibrium by constructing a global Lyapunov function and combining the method of graph

theory. To be precise, it has been seen that the diffusion rate affects the persistence and

extinction of the population, that is, the faster the diffusion rate, the worse the survival of the

population, which plays an important role in maintaining the ecological balance. In addition,

the two groups of prey in the model interact with each other through the shared predator,

leading to a likelihood competition between them. The numerical simulations verified the

validation of the theoretical results.

Certainly, our model can also be applied to various domains of epidemiological systems by

constructing different growth rates and multiple functional responses. This is a direction we

plan to explore in the future.
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