
P
os
te
d
on

14
A
p
r
20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
71
30
91
94
.4
59
48
97
9/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A Two-Stage Approach for Single Thermal Image Restoration

Guanyu Liu1, Jinxiang Xu1, Yihui Cheng2, Yi Su3, and Ruiheng Zhang1

1Beijing Institute of Technology
2Beijing University of Chemical Technology
3University of Electronic Science and Technology of China

April 14, 2024

Abstract

Thermal images, extensively utilized in various communication applications, are concurrently impacted by noise, contrast, and

details. However, existing image restoration methods, designed for RGB domain, exhibit suboptimal effects when applied

to thermal domain due to a lack of consideration for the interaction between noise and contrast, consequently resulting in

detail losses. In this letter, we propose a two-stage deep network based on this interaction for thermal image enhancemnet.

Our network decouples the image restoration task into a denoising stage and a contrast improvement stage for simultaneous

denoising and contrast improvement. Detail information is extracted, preserved, and fused in the process of the entire network

to avoid the detail losses. Extensive experiments show that our propsoed method outperforms other state-of-the-art approachs

in terms of PSNR , SSIM, and visual effect.
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Thermal images, extensively utilized in various communication appli-
cations, are concurrently impacted by noise, contrast, and details. How-
ever, existing image restoration methods, designed for RGB domain,
exhibit suboptimal effects when applied to thermal domain due to a lack
of consideration for the interaction between noise and contrast, conse-
quently resulting in detail losses. In this letter, we propose a two-stage
deep network based on this interaction for thermal image enhancemnet.
Our network decouples the image restoration task into a denoising stage
and a contrast improvement stage for simultaneous denoising and con-
trast improvement. Detail information is extracted, preserved, and fused
in the process of the entire network to avoid the detail losses. Extensive
experiments show that our propsoed method outperforms other state-of-
the-art approachs in terms of PSNR , SSIM, and visual effect.

Introduction: Thermal images, which play a crucial role in thermal
communication systems [1–4], military communication networks [5–8],
remote sensing [9], and pattern recognition [10], often encounter signif-
icant degradation issues, including noise [11, 12], low contrast [13, 14],
and missing details [15, 16]. These challenges significantly impact the
visual quality and downstream tasks [17, 18]. Therefore, enhancing ther-
mal images holds great significance for their effective application.

Over the past few decades, image restoration has predominantly
relied on transform-based approaches [3, 19] and model-based meth-
ods [20–22]. Despite their historical significance, these methods
have encountered limited adoption due to their inherent inflexibility.
More recently, inspired by the remarkable success of deep learning,
researchers have increasingly shifted their focus towards learning-based
techniques [23–27]. However, learning-based methods were initially
designed for the visible RGB domain, restricting their effectiveness to
addressing specific issues like noise, low contrast, or diminished details.
When applied to thermal images facing challenges of both noise con-
tamination and reduced contrast, these approaches struggle to simulta-
neously suppress noise and enhance contrast.

In pursuit of these objectives, we present a two-stage methodol-
ogy for enhancing thermal images, with a focus on concurrent denois-
ing, contrast improvement, and detail preservation. Our network divides
the thermal image restoration task into two stages: the denoising stage
and the contrast improvement stage. Each stage employs an Encoder-
Decoder architecture. The initial denoising stage is executed to mit-
igate the impact of noise on overall contrast. Subsequently, the con-
trast improvement stage takes the denoised output as input, producing
the final result. The second stage adopts a decoupling and aggregation
strategy, preventing noise amplification and concurrently enhancing both
contrast and details. To minimize detail loss throughout these stages, the
encoder’s extracted details information from the denoising stage is fused
into the decoder of the contrast improvement stage. For effective net-
work training and validation, we curated a dedicated dataset specifically
for thermal image restoration. The key contributions of this letter can be
summarized as follows:

• We present a unified network based on the interrelationship between
noise and contrast within thermal images for simultaneous denoising
and contrast improvement.

• We develop a novel dataset specifically tailored for thermal image
restoration, representing a significant contribution to the field of
thermal image restoration.

• Experiments validate the effectiveness of our approach in noise sup-
pression, contrast improvement. Quantitative and qualitative estima-
tion attest to the robust performance of our method.
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Fig 1 Flowchart of our network.

Related Work: Over the past few decades, numerous image denois-
ing methods have been introduced, with our particular emphasis on
learning-based techniques closely aligned with our work [28–30]. In
recent years, significant strides have been made in the advancement
of supervised learning methods for image denoising. These techniques
involve training denoisers on sets of clear/noisy image pairs. Zhang et
al. [23] introduced DnCNN, a model that integrates convolutional neu-
ral networks with residual learning for blind denoising. Zhang et al. [25]
propose IRCNN, which is a fast and effective denoiser integrated into
a model-based optimization method for image denoising. Zhang et al.
[26] present FFDNet for fast and flexible image denoising based on
supervised learning. Zhang et al. [31] have also made significant con-
tributions in the field of few-shot learning methods. Meanwhile, Liu et
al. [32] have introduced a novel lightweight network designed specifi-
cally for deep learning applications. Additionally, in their groundbreak-
ing work, Zhang et al. [33] present an innovative approach for adap-
tive digital self-interference cancellation, which is particularly effective
in denoising millimeter-wave signals. While these supervised methods
excel in enhancing visible images, their performance often falls short
when applied to thermal images due to the sophisticated degradation
in the latter. However, these supervised methods provide robust super-
visory signals during training, enhancing generalization across diverse
domains. Based on these advancements, we advocate for the utilization
of supervised learning methods.

In the realm of contrast improvement, various transform-based meth-
ods have been proposed over the past decades [34]. He et al. [20] pro-
pose a dark channel prior to estimate the haze transmission efficiently
and improve the contrast of an image. Ling et al. [21] present satura-
tion line prior for image dehazing and contrast improvement. Setiawan
et al. [35] developed contrast limited adaptive histogram equalization
(CLAHE) for fast contrast improvement. Petro et al. [36] presents Multi-
Scale Retinex (MSR) to perform contrast improvement in various scales,
which considers more comprehensive information. Zhang et al. [37] pro-
pose cognition-driven structural prior for label noise task. Luo et al. [38]
propose a integrity verification scheme for cloud data improvement. Cai
et al. [39] applied DehazeNet for end-to-end image dehazing with con-
trast improvement. However, despite significant progress in these image
dehazing methods, their evaluation on noise-free or dehazed images may
not account for the inevitable noise in natural images, potentially limit-
ing their effectiveness in achieving satisfactory visual results.

Methodology: The comprehensive architecture of our network is visu-
ally presented in Fig.1. The network is composed of two major compo-
nents: the denoising stage and the contrast improvement stage. Draw-
ing inspiration from the U-Net framework known for its effectiveness
in image modeling and transformation tasks, the denoising stage is
designed. The encoder of the denoising stage extracts detailed infor-
mation, which is seamlessly integrated into the decoder of the contrast
improvement stage. In the contrast improvement stage, we decompose
the denoised image into detail and contrast components, and two CNN
branches work concurrently to enhance global contrast and refine details.

Denoising Stage: Within the denoising stage, careful consideration has
been given to the design of both encoder and decoder. The detailed
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Table 1. Quantitative comparison with other image restoration meth-
ods on our dataset. The best and second best are indicated in bold
and underline, respectively.

Classification Methods PSNR↑ SSIM↑

Denoising

NB2NB [41] 17.589 0.5552
DnCNN [23] 17.475 0.4840
IRCNN [25] 17.290 0.4609
FFDNet [26] 17.611 0.5162

Contrast
Improvement

SLP [21] 17.582 0.3805
RefineDNet [27] 14.591 0.3428
DCP [20] 15.754 0.3900
DehazeNet [39] 16.729 0.4250
CLAHE [35] 17.228 0.3205

Unified Way
U2D2Net [42] 23.634 0.5335
Ours 24.531 0.5634

Table 2. Analysis of denoising stage and contrast improvement stage.
D denotes denoising stage and CI denotes contrast improvement
stage.

Variants PSNR SSIM

D Stage 16.309 0.4958
CI Stage 15.969 0.4877
CI Stage + D Stage 20.0487 0.4842
D Stage + CI Stage (Ours) 24.531 0.5634

implementation is shown in our released code. Drawing inspiration from
the effective FFDNet [26], known for its adeptness in balancing noise
reduction and detail preservation by incorporating noise level maps into
its input, denoising stage follows suit by concatenating the thermal
image with the denoising guide map.

Contrast Improvement Stage: The contrast improvement stage takes
the denoised thermal image and detail information from the preceding
denoising stage as input and produces the final output after contrast
restoration. In the contrast improvement stage, we initially decompose
the input image 𝐼 (𝑥, 𝑦) ∈ R3 into a low-frequency contrast component
𝐿 (𝑥, 𝑦) ∈ R3 and a high-frequency detail component 𝑅 (𝑥, 𝑦) ∈ R3

according to [40]. For detail restoration, our U-shaped model learns
a mapping function 𝐹𝑅 to enhance details by capturing the relation-
ship between the original detail component 𝐷original and the reference
image’s detail component 𝑅ref. Extracted detail information from the
denoising stage minimizes losses in the contrast improvement stage. For
contrast improvement, we train a Contrast Improvement Encoder and
Decoder to map the input low-contrast thermal image’s 𝐶original to that
of the reference image.

Experiments: For the purpose of thermal image restoration, we gath-
ered high-quality thermal images utilizing the InfiRay M600F thermal
imager to construct our dataset. The implementation of our network was
carried out in the Python programming language and the PyTorch frame-
work. The system employed for this task was equipped with an NVIDIA
GeForce RTX 3090 and ran on Ubuntu 20.04. All our implementations
can be found here: https://github.com/ChickenEating/Two-stage-TIR.

Quantitative Comparison: In Table 1, denoising techniques improve
PSNR but compromise SSIM. Our network excels with the high-
est PSNR and second-highest SSIM. Compared to the second-highest
PSNR on our dataset, there’s a 0.897 dB improvement. our network’s
SSIM decreases marginally by 0.0082, negligible compared to the high-
est value.

Qualitative Comparison: In Fig.2, noisy and low-contrast input images
are addressed by contrast restoration and denoising methods. While con-
trast restoration methods (e.g., SLP [21], DehazeNet [39]) improve con-
trast, they retain noise artifacts. Denoising methods (e.g., FFDNet [26],

Input
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DnCNN [7]FFDNet [10]

IRCNN [9]SST [11]

DCP [5]

CLAHE [13]

DehazeNet [15]

RefineDNet [12]

Ours Ground Truth

Fig 2 Qualitative comparisons on our Dataset.

DnCNN [23]) effectively reduce noise but may compromise detail. Our
network outperforms, consistently delivering a visually favorable impact
with a noise-free appearance and well-suited contrast.

Ablation Studies: Table 2 presents the statistical results of the ablation
studies on denoising stage and contrast improvement stage. It is evident
from the table that our network outperforms single denoising stage and
single contrast improvement stage, highlighting the synergistic effective-
ness of both modules. Notably, the performance of Contrast Improve-
ment Stage before denoising stage appears less robust compared to our
network, affirming our hypothesis that arranging the sequence of denois-
ing before contrast restoration yields superior results.

Conclusion: This letter presents an innovative strategy for enhancing
infrared (IR) images, effectively addressing the challenge of detail loss
during concurrent denoising and contrast improvement procedures. Our
proposed network consists of two distinct stages: the denoising stage and
the contrast improvement stage. Both stages are meticulously designed
to capture intricate interactions and correlations between noise and con-
trast within thermal images. Through extensive experimentation, our
approach demonstrates superior performance when compared to exist-
ing methods dedicated to denoising, contrast restoration, and unified
approaches on the our dataset.
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