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Abstract

Population size is a key parameter for the conservation of animal species. Close-kin mark-recapture (CKMR) relies on the

observed frequency and type of kinship among individuals sampled from the population to estimate population size. This

approach requires being able to determine the age of sampled individuals. One common approach, particularly in fish studies,

is to measure animal length and using an assumed age-length relationship (a ‘growth curve’). We used simulation to test the

effect of misspecifying the length measurement error and the growth curve on population size estimation. Simulated populations

represented two fictional shark species, one with a relatively simple life history and the other with a more complex life history

based on the grey reef shark (Carcharhinus amblyrhynchos). We estimated sex-specific adult abundance, which we assumed

to be constant in time. We observed small median biases in these estimates ranging from 1.35 to 2.79% when specifying the

correct measurement error and growth curve, with true coefficients of variation between 21.56 and 28.50%. Introducing error

via misspecified growth curves resulted in changes in the magnitude of the estimated total population, with upwards shifts

negatively biasing abundance estimates. Over- and underestimating the length measurement error did not introduce a bias and

had negligible effect on the variance in the estimates. Our findings show that assuming an incorrect length measurement error

has little effect on estimation, but having an accurate growth curve is crucial for CKMR whenever ageing is based on length

measurements. If ageing could be biased, researchers should be cautious when interpreting CKMR results and consider the

potential biases arising from inaccurate age inference.
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Abstract10

Population size is a key parameter for the conservation of animal species. Close-kin mark-11

recapture (CKMR) relies on the observed frequency and type of kinship among individuals sampled12

from the population to estimate population size. This approach requires being able to determine13

the age of sampled individuals. One common approach, particularly in fish studies, is to measure14

animal length and using an assumed age-length relationship (a ‘growth curve’). We used simulation15

to test the effect of misspecifying the length measurement error and the growth curve on population16

size estimation. Simulated populations represented two fictional shark species, one with a relatively17

simple life history and the other with a more complex life history based on the grey reef shark18

(Carcharhinus amblyrhynchos).19

We estimated sex-specific adult abundance, which we assumed to be constant in time. We20

observed small median biases in these estimates ranging from 1.35 to 2.79% when specifying the21

correct measurement error and growth curve, with true coefficients of variation between 21.56 and22

28.50%. Introducing error via misspecified growth curves resulted in changes in the magnitude of23

the estimated total population, with upwards shifts negatively biasing abundance estimates. Over-24

and underestimating the length measurement error did not introduce a bias and had negligible effect25

on the variance in the estimates.26

Our findings show that assuming an incorrect length measurement error has little effect on es-27

timation, but having an accurate growth curve is crucial for CKMR whenever ageing is based on28
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length measurements. If ageing could be biased, researchers should be cautious when interpreting1

CKMR results and consider the potential biases arising from inaccurate age inference.2

Keywords: Grey reef shark, Carcharhinus amblyrhynchos, abundance estimation, simulation, mea-3

surement error, von Bertalanffy growth function4

1 Introduction5

Close-kin mark-recapture (CKMR) is a method for estimating population size and other key parameters6

such as fecundity using data on the relatedness of individuals sampled from the population (Skaug, 2001;7

Bravington et al., 2016b). The key rationale is that small populations will tend to contain a higher8

proportion of closely-related individuals than large populations.9

One of the main advantages of CKMR over capture-recapture (Otis et al., 1978) and its extensions10

such as spatial capture-recapture (Borchers and Efford, 2008), is that it can be applied in cases when11

sampling is necessarily lethal, such as fisheries, where alternative metrics are often relative (e.g., catch-12

per-unit-effort) and potentially unreliable (Bravington et al., 2016a). This is because CKMR does not13

require the recapturing of individuals, but rather their genetic markers. Offspring share genetic informa-14

tion with their parents (hence ‘kin’), thus they ‘mark’ their parents when born; through modern genetics15

we can compare sampled individuals with one another to see if these marks are ‘recaptured’. So far,16

CKMR has been developed for parent-offspring pairs (POPs; e.g., Bravington et al., 2016a; Ruzzante17

et al., 2019; Trenkel et al., 2022), half-sibling pairs (HSPs; e.g., Hillary et al., 2018; Bravington et al.,18

2019; Patterson et al., 2022), and the combination of both (e.g., Bradford et al., 2018). Regardless of19

the type of kinship used, CKMR on its own can only ever be used to estimate abundance of the breeding20

population. Here, we focus only on POPs. For any comparison between two individuals, the probability21

that a potential offspring truly is the offspring of the parent is inversely related to the number of mature22

animals alive in the birth year of the offspring. Probabilities of finding a kin pair are expressed as a23

function of the expected relative reproductive output (ERRO) of the parent in the year that the offspring24

was conceived. This approach is parent-centric, as it starts from the point that the parent is sampled25

and then formulates a probability for a PO relationship (an alternative, offspring-centric formulation26

was proposed by Skaug (2017)). In the simplest scenario, the probability of any adult being the parent27

of a juvenile reduces to one over the number of potential parents; in reality, this probability is often28

more complicated, e.g., when reproductive output is related to age, or when there is stock structure or29

population trend.30

To use relatedness to estimate adult population abundance, it is therefore essential to accurately age31

the studied animals because birth year is derived from their age. However, ageing can be challenging:32

for example, epigenetic ageing requires calibration using individuals of known age (Polanowski et al.,33
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2014; De Paoli-Iseppi et al., 2017), which is not always possible. Ageing via otoliths, which are calcium1

carbonate structures in the inner ear, can be relatively accurate (Campana, 2001) but requires lethal2

sampling. Alternatively, length can sometimes be used to infer age through growth curves, and length3

is often recorded during sampling. Accurate estimates for growth curves of the studied species are not4

always available, and age as a function of length (age-at-length) can vary substantially between pop-5

ulations of the same species (e.g., Bradley et al., 2017). Moreover, length measurements often involve6

measurement error. Through simulation, we explore the effects of incorrect ageing on the CKMR esti-7

mator. Error is introduced in two ways: i) through misspecified growth curves, and ii) through incorrect8

length measurement, i.e., measurement error. In reality, error could also be (and almost surely is) in-9

troduced through natural variation in length-at-age. In this study we assume that all sharks follow the10

growth curve perfectly; however, one could readily interpret the length measurement error as the joint11

error of length measurement and length-at-age variation, or even solely as length-at-age variation if that12

is more appropriate for a particular case study. Simulation is an important tool to assess the robustness13

of statistical methods to violations of model assumptions (DiRenzo et al., 2023) and their performance14

more generally (Morris et al., 2019). Previously, Conn et al. (2020) used simulation to study the effects15

of unmodelled spatial heterogeneity on CKMR estimation and found that this can induce a negative bias16

in the abundance estimates.17

18

Our simulation study uses two fictional shark species, that are based on a grey reef shark population19

(Carcharhinus amblyrhynchos) at Palmyra Atoll, in the central Pacific Ocean (Bradley et al., 2017;20

Papastamatiou et al., 2018). This case study was motivated by genetic samples that were collected from21

this population in 2013 and 2014. One fictional species is a simplification of the real species (hereafter22

referred to as the ‘simple species’), and was included to test the basic performance of the model. The23

other fictional species has more realistic life history traits (hereafter referred to as the ‘complex species’),24

and was included to more closely match a real empirical study. We also compare the results for both25

species. It is paramount to first explore the feasibility of CKMR, for example through simulation, before26

committing the resources and time required for analysis of the samples. Moreover, the findings will be27

be relevant to other CKMR studies when age is uncertain.28

2 Materials and Methods29

We first present our setup of the simulations for the two fictional shark species. Simulated time series30

are 100 years long, with sampling assumed to occur in the final two years (mimicking the two years of31

sampling at Palmyra). Following that, we present the POP-based CKMR models for our two species,32

followed by our estimation method and performance diagnostics. We assume that kinship relationships33
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are known with certainty; in real life situations, one would need to account for uncertainty in this process1

(Bravington et al., 2016b). All variables and quantities used in this study are summarised in Table 2.1.2

Code for the simulation and fitting of models was written in R and C++ (R Core Team, 2021; Eddelbuettel,3

2013).4

Table 2.1: Summary of notation.

Symbol Description Type

General
n Number of sampled individuals (individuals can be sampled

more than once)
Observed

p Detection probability of an individual Function
f Probability density/mass function Function
K Kinship category Latent/observed
NA

s Adult abundance of sex s Parameter

Quantities related to a captured individual
y Birth year Latent
c Capture/sampling year Observed
ℓ Length (when captured) Observed
σℓ Standard deviation of the length measurement error Parameter
a Age (when captured) Latent
s Sex Observed
z Vector of observed covariates at time of capture/sampling Observed

Population dynamics and demography
ϕ Survival probability from one year to the next Parameter
r Growth rate parameter from one year to the next Parameter
α Age of maturity Parameter

Subscript
i, j Individual i and j
♀,♂ Sex, either female or male
t Year

2.1 Simulation5

We used stochastic individual-based (‘agent-based’) simulation. Two different ‘species’ were simulated6

separately, one with simple life history characteristics, and one with a more complex life history. For7

each simulation, sampling in the last two years was random, and mating occurred at random as well, i.e.,8

mothers and fathers were matched at random, where all non-gestating mothers mated and mature males9

could father multiple litters in the same mating cycle. Females of the simple species always produced10

two offspring, whereas the litter size for the complex species ranged from 3 to 6, with equal probability.11

Females of the simple species reproduced every year as gestation was negligible; females of the complex12

species gestated for a year and therefore reproduced every other year. Newborns had age zero and sex13

was assigned at random with an expected sex ratio of 50:50. The survival process was Bernoulli where the14

annual survival probability ϕ was the same for all ages and sexes, but different between the two species15

4



Start

Initialise population

1. Birth/mate: mature fe-
males give birth (if pregnant)
or mate (if not pregnant)

4. Age: add one year
to age of all individuals

3. Survival: individuals survive
according to a survival probability

2. Sample: sample/capture
some individuals (if specified)

Figure 2.1: Flowchart representing the different stages of the life-cycle for the simulation. A population
is initialised at the start of a simulation. Following that, it loops through stage 1–4 every year the
simulation runs.

and empirically set at a level that resulted in the yearly population growth rate equaling approximately1

one, i.e., no growth. Natural mortality was the only source of mortality we considered, and all individuals2

that reached the maximum age perished at the next survival event, i.e., animals could go through at3

most amax + 1 yearly cycles. The maximum age for sharks of the simple species was 19 years and 634

years for the complex species, where the latter matches the results from Bradley et al. (2017). For a5

given species, all individuals of the same sex matured in the same year: males and females in the simple6

species matured at 10 years old, whereas in the complex species males matured at 17 years and females7

matured at 19 years of age. The length of an animal was the same for all individuals of a certain age,8

irrespective of sex and species. After the initialisation of a population in year zero, the simulation looped9

through four distinct events: a birthing/mating event, a sampling event (only in the final two years of10

the simulation), a survival event, and an ageing event (Figure 2.1).11

For both species, we ran the simulations for one hundred years, to ensure that all animals of the initial12

populations would have died off. Every simulation started with 8500 individuals. At each sampling event,13

375 individuals were non-lethally sampled, where re-captures were possible between sampling events,14

which resulted in at most 750 unique sampled individuals across the two years of sampling. For every15

sampled individual, the age, year of capture, and sex were recorded; true length was derived through a16

von Bertalanffy growth function (VBGF; von Bertalanffy, 1938; Francis, 1988), that was specified as17

l(a) = l∞ × (1− e−k(a−a0)), (1)

5



where ℓ∞ = 163 cm is the asymptotic length, a0 = −8.27 the theoretical age at length zero, and1

k = 0.0554 denotes the growth coefficient. These values match the estimates of the best model in2

Table 2 of Bradley et al. (2017). Gaussian noise was added to reflect length measurement error with3

variance σ2
ℓ = 2.892, after which length was rounded to the nearest integer. Based on these parameters,4

we generated 1000 different realisations of a 100-year-long population history for each species, using5

functions based on those from the fishSim-package (Baylis, 2022).6

2.2 POP-based estimator7

In this study, we developed estimators for both populations based only on POPs. CKMR models use a8

pseudo-likelihood, which is constructed from the joint distribution of all pairwise comparisons between9

the samples, i.e., the product of approximately n2 Bernoulli trials for a POP, where n is the number of10

samples. It is not a true likelihood as we only consider pairwise comparisons and treat these as indepen-11

dent, whereas they clearly are not: an offspring can only have one parent of each sex. Working with the12

pseudo-likelihood does not affect the point estimates but could affect other properties of likelihood-based13

estimation, such as variance estimation, although this effect is likely minor or even negligible provided14

that a small proportion of the total population is sampled, i.e., n ≪ N (Skaug, 2001; Bravington et al.,15

2016b). Because length is measured with error and age is inferred from length, age is uncertain and16

hence we cannot assume directionality in the comparison, i.e., who is the parent and who is the off-17

spring. Therefore, for any comparison for individual i and j, we test both directions (parent-offspring18

and offspring-parent), denoted PO/OP. The pseudo-log-likelihood is given by19

logLP (θ|x) =ℓP (θ|x) =∑
i

∑
j

log
{
Pr(Kij = PO/OP|zi, zj)

ωij (1− Pr(Kij = PO/OP|zi, zj))
1−ωij

}
,

(2)

where θ is the parameter vector, x denotes the observed data, Kij is the kinship between i and j,20

Pr() is the probability function, ωij is an indicator that is 1 if the kinship between i and j is observed to21

be PO/OP and 0 otherwise, and z denotes the information recorded about a captured individual, such22

as length. Age is required to calculate the probability of observing kinship, and therefore we sum over23

all potential ages for i, j and multiply by the probability density of that age given the measured length,24

f(a|l∗):25

ℓP (θ|x) =
∑
i

∑
j

log
{∑

ai

∑
aj

Pr(Kij = PO/OP|zi, zj , ai, aj)
ωij×

(1− Pr(Kij = PO/OP|zi, zj , ai, aj))
1−ωij × f(ai|l∗i )f(aj |l∗j )

}
.

(3)

We will now specify the two main elements of Equation (3), namely the probability of observing the26

PO/OP kinship, and the probability density of age given length.27
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2.2.1 Probability of kinship1

We modelled the female and male abundance separately, and thus for every PO/OP comparison between2

two individuals, we had to consider four scenarios, which were all combinations of which individual is3

older and thus the potential parent, and whether this parent was male or female. We will first present4

the formulae for the simple species, followed by those for the complex species. The probability of5

any comparison between i and j being PO/OP is the same as the product of the testing for PO and6

OP separately (or the sum as we are working with the log-likelihood), thus we only present the PO7

probabilities. For the simple species this became8

Pr(Kij = FO|zi, zj , ai, aj) =

I(yi + α♀ ≤ yj)×
(
NA
♀,yj

)−1

×


1; if ci ≥ yj

ϕi(ci, yj); if ci < yj


(4)

for the males, and9

Pr(Kij = MO|zi, zj , ai, aj) =

I(yi + α♂ ≤ yj)×
(
NA
♂,yj

)−1

×


1; if ci ≥ yj

ϕi(ci, yj); if ci < yj


(5)

for the females. Here, I() is an indicator function that returns 1 if its argument is true and 0 otherwise,10

FO and MO refer to father-offspring and mother-offspring, respectively, y denotes the birth year, α the11

age of maturity, NA
s,t the total adult abundance of sex s in year t, c the year of capture, and ϕi(t1, t2) the12

survival function for individual i from t1 to t2; as survival was assumed constant, ϕi(t1, t2) was defined as13

ϕt2−t1 . Even though females could only have one litter whereas males could father multiple litters, their14

ERROs were formulated similarly, i.e., the reciprocal of the total mature abundance of their respective15

sexes. For the complex species, the probability of an MO pair thus became16

Pr(Kij = MO|zi, zj , ai, aj) =

I(yi + α♀ ≤ yj − 1)×
(
NA
♀,yj−1 × ϕ

)−1

×


1; if ci ≥ yj

ϕi(ci, yj); if ci < yj


(6)
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and the probability of an FO pair became1

Pr(Kij = FO|zi, zj , ai, aj) =

I(yi + α♂ ≤ yj − 1)×
(
NA
♂,yj−1

)−1

×


1; if ci ≥ yj − 1

ϕi(ci, yj − 1); if ci < yj − 1

 .
(7)

The two key differences between the complex species relative to the simple one were that 1) a potential2

father only needed to have been alive the year before the birth of the offspring, whereas a potential3

mother needed to have survived until birthing, and 2) the potential parents needed to have matured at4

least one year before the birth year. To illustrate this, imagine that we are comparing two individuals5

from the complex species, where the parent is female, and we know the individuals’ ages. The offspring6

was caught in year 50 at age 3, and thus born in year 47. The potential parent was female, and caught7

in year 45 and would have needed to survive for at least two years in order to be a potential parent; she8

was 36 years old at the time of capture, and thus born in year 9. The ERRO for this parent in the year9

of mating, i.e., the year before the birth year of j, is the reciprocal of the number of females alive in that10

year who also survived one year of gestation, which is ϕ. Therefore, the probability that i is the mother11

of j would be:12

Pr(Kij = MO|zi, zj , ai, aj) = I(9 + 19 ≤ 47− 1)×
(
NA
♀,yj−1 × ϕ

)−1

× ϕ47−45

=1×
(
NA
♀,yj−1 × ϕ

)−1

× ϕ2

=ϕ
(
NA
♀,yj−1

)−1

(8)

Every comparison, given ai and aj , contains a signal about the adult population in a specific year.13

We assumed a constant population size, and thus NA
s,t = NA

s . We also developed and tested a model14

that included sex-specific growth parameters. This model was internally inconsistent and therefore not15

included in the main body of this manuscript for any formal inference. However, we did include the16

derivations and some results in Appendix C.17

2.2.2 Probability density of age given length18

We had an assumed true length-at-age curve l(a) (Equation (1)) and we knew that there was measurement19

error on lengths. We denote the measured length as l∗. With this information we derived the probability20

density f(a|l∗) using Bayes’ rule as follows:21

f(a|l∗) =f(l∗|a)f(a)f(l∗)−1. (9)
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Measured length given age l∗|a was assumed to follow a discretised Normal distribution, as lengths were1

rounded to the nearest centimetre. We followed Roy (2003) in defining this distribution as2

f(l∗|a) = Φ

(
l∗ − µ− 0.5

σl

)
− Φ

(
l∗ − µ+ 0.5

σl

)
, (10)

where Φ denotes the standard normal cumulative distribution function, the expectation µ is given by3

Equation (1), and standard error σl captures the measurement error. As the sampling probability in the4

simulation was unrelated to age, the age distribution of sampled individuals was the same as the age5

distribution in the whole population, and we did not need to distinguish between the two. We assumed6

that the population had a stable age distribution with no growth, which meant that the distribution of7

ages, had we not imposed a maximum age, would have been geometric with shape parameter being equal8

to the mortality rate, which is 1 − ϕ. Acknowledging that there was a maximum age, amax, we needed9

to condition on the age being at most this age, and thus10

f(a) =


(ϕ)a(1−ϕ)

1−(ϕ)amax+1 ; if 0 ≤ a ≤ amax

0; otherwise

, (11)

where the numerator and denominator were the geometric probability mass and cumulative distribution11

functions, respectively. Note here that we used the definition of a geometrically distributed variable12

being the number of failures (survival) until a success (death) occurs. Finally, the probability density13

function on measured length became14

f(l∗) =

amax∑
a=0

f(l∗|a)f(a). (12)

2.3 Fitting15

The parameters in the CKMR model were estimated by maximising the pseudo-likelihood, which can16

involve prohibitively long computation time. To resolve this, we restricted the number of pairwise17

comparisons. Many pairwise comparisons resulted in identical probabilistic statements, and thus in18

practice only needed to be derived once. As we considered abundance for both sexes separately, we19

estimated two parameters: NA
♀ and NA

♂. All other parameters, such as ϕ, were assumed known and20

fixed. To each of the 2000 population realisations (1000 for each species) we fitted the appropriate POP-21

model with varying length measurement errors and growth curves, which was achieved by altering some22

of the fixed parameters. Specifically, we considered five different assumed length measurement errors:23

the correct one, a 33% and 67% underestimate, and a 33% and 67% overestimate. We also considered five24

growth curves: the correct one, two that were shifted upwards by 5% and 10%, and two that were shifted25

downwards by 5% and 10%. This resulted in a total of 25 combinations, or scenarios. We labelled these26

9



Figure 2.2: The left panel shows the five growth curves that were used in the scenarios tested in this
study. The true growth curve is indicated in red; the black dotted-lines show the incorrect ones, which
were constructed by shifting the growth curve up and down in steps of 5 percent. The right panel
shows five measurement errors used in this study. The true simulated error was 2.89 cm, and the other
measurements errors were chosen by deviating from this error in both directions.

scenarios using the format ‘ME±XX:GC±YY’, where ME refers to the measurement error, XX denotes1

the percentage over- or underestimate, GC stands for growth curve, and YY denotes the percentage2

of up- or downwards shifting; for example, the scenario with a 33% overestimated length measurement3

error and a 5% downshifted growth curve had the label ME+33:GC-5. These errors and growth curves4

are visualised in more detail in Figure 2.2. Considering 25 scenarios for every simulation resulted in5

the fitting of 50,000 models in total. To keep computation time to a minimum, we implemented most6

of the fitting process in C++, which was linked with R through the Rcpp-library (R Core Team, 2021;7

Eddelbuettel, 2013).8

2.4 Variance and performance9

To evaluate the performance of the estimator, we present the following metrics: i) mean error and10

mean relative error to evaluate a potential bias; ii) median error and median relative error to evaluate11

the median bias, which uses the median instead of the mean, as the median is often more appropriate12

when distributions are skewed. In addition, the mean absolute error (MAE) and root mean squared13

error (RMSE) are presented in supplemental tables. Furthermore, we evaluated the performance of the14

uncertainty estimator by comparing the average estimated (model-based) coefficient of variation (CV)15

with the true (empirical) CV. We evaluated the CV as opposed to the variance or standard deviation16

as we believed a relative measure of variation was more valuable in this study. However, we appreciated17

that a bias in the estimator would have induced a bias of opposite direction in estimated CV; thus, we18

also included the true and estimated standard deviation in supplemental tables. The average estimated19

variance was estimated from the Hessian matrix produced by the maximum likelihood estimation, and20

10



averaged over these 1000 estimated variances. We can treat the pseudo-likelihood as a true likelihood1

as long as sampling was sparse (see Section 2.2). We sampled at most 750 unique individuals out of2

a population with an expected size of 8,500 individuals, so it is unclear if these meets that criterion.3

The occurrence of recaptures, i.e., that some individuals were sampled at more than one sampling event,4

suggests that it has not, as this clearly indicates that the samples are not independent. Consequently5

the estimated variance will be negatively biased as the pairwise comparisons are not approximately6

independent. To explore the extent of this bias, we compared the average estimated variance to the true7

variance, which was the empirical variance in population estimates across the 1000 simulations for each8

species.9

3 Results10

The mean number of POPs for all sampling realisations was 48.6 (range: 25–76) for the simple species11

and 55.6 (range: 31–90) for the complex species. Mean simulated adult abundances in the final year of12

the simulation were 794 and 793 (range: 630–992 and 600–1019; ♀ and ♂) for the simple species and 51413

and 650 (range: 400–683 and 516–824; ♀ and ♂) for the complex species. Small numbers of recaptures14

occurred in every simulation, ranging from 4 to 25 recaptured individuals for the simple species and 5 to15

30 individuals for the complex species. The simulated mean annual growth rate was 0.999 for both sexes16

of the simple species, and 1.001 and 0.998 for the males and females of the complex species, respectively;17

the mean annual growth for any simulation was always within 0.3 percent point from the mean across all18

simulations. The fitting algorithm did not always converge when the measurement error and/or growth19

curve was (very) negatively biased. Whenever this happened, it happened for the most of the simulations20

in that scenario. Therefore, we excluded the scenarios where this happened from the analysis, which led21

to the exclusion of scenarios ME-67:GC-10, ME-67:GC-5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5,22

and ME+0:GC-10.23

For the simple species, median errors for N̂A when using correct measurement error and growth curve24

specification (ME+0:GC+0) were 20.83 and 22.52 (relative: 2.57% and 2.79%; ♀ and ♂) individuals25

(Figure 3.1; Tables A.1 and A.2). For the complex species, median errors for N̂A when using correct26

measurement error and growth curve specification were 6.48 and 10.28 (relative: 1.35% and 1.59%; ♀27

and ♂) individuals (Figure 3.2; Tables A.3 and A.4). For the simple species, median relative errors in28

abundance estimates were positive but close to zero for all deviations from the true length measurement29

error provided that the growth curve was correctly specified, although they were slightly larger for the30

females (Figure 3.1, also Tables A.1–4). For any given measurement error, we observed a trend from a31

positive median error to a negative median error as we shifted the growth curve upwards (Figures 3.132

and 3.2). When growth curves were shifted down 5%, this resulted in median relative errors of around33
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30% for the simple species, and between 30 and 60% for the complex species. Shifting growth curves up1

by 5% resulted in median relative errors of -30% for the simple species, and between -30 and -40% for2

the complex species.3

True CVs for the same estimates ranged from 21.56 to 28.50% for the simple species, and 20.17 to4

33.97% for the complex species (Table B.4). Given a measurement error, the true CV increased as the5

growth curve was shifted away from the truth, in either direction. Given a growth curve, changing the6

length measurement error had a negligible effect on the CV. Overall, little difference in true CV was7

noted between the two species. Estimated CVs for adult abundance estimates ranged from 20.57 to8

20.67% for the simple species, and 18.67 to 19.64% for the complex species (Table B.2). Overall spread9

was higher for the complex species compared to the simple species. Moreover, the estimated CV was10

always lower than the true CV, for all parameters. Averaged over the scenarios, estimated CVs exhibited11

a negative bias in N̂A
♂ of 11.2% and in N̂A

♀ of 14.3% for the simple species, and a negative bias of N̂A
♂12

of 16.3% and in N̂A
♀ of 21.1%.13

4 Discussion14

In this study, we explored the effects of incorrect age inference from length measurements on CKMR15

estimates through misspecifying the length measurement error and the growth curve in various ways.16

Overall, an incorrect measurement error mostly impacted the convergence likelihood of the fitting algo-17

rithm, whenever the measurement error was assumed to be smaller in the fitting than was true for the18

simulation. Whenever the measurement error was high enough to allow for convergence, it made little19

difference whether it was the true error or if a much higher error was assumed. This would suggest that,20

if researches are ever unsure about whether their assumed length measurement error is correct, it is safer21

to overestimate it. A misspecified growth curve, on the other hand, had drastic effects on the estimation22

of all parameters, both through the point and the uncertainty estimates.23

The model performed well under correct specification (scenario ME+0:GC+0), although the positive24

median relative error in adult abundance estimates suggest a positive median bias. This error was more25

extreme for the simple than for the complex species. A bias in the estimates is not uncommon for max-26

imum likelihood methods when sample size is small, which could be true in our study as the number27

of sampled POPs never surpassed 76 for the simple species and 90 for the complex species. However,28

it could also be that this shows a slight bias in the method, especially as a previous CKMR simulation29

study by Conn et al. (2020) found positive biases in the abundance estimates too.30

In this study, we assumed that all individual sharks followed the specified growth curve perfectly, and31

any variation in lengths for a given age came from measurement error. This is a simplification of reality,32

and future research could focus on ways to accommodate natural variation in length at a given age,33

12



Figure 3.1: Box plots for estimated sex-specific adult abundance for the simple species. We only present
the results for scenarios in which the optimiser consistently converged; this meant that some scenarios
were left blank. Box plots show the interquartile range (IQR) and the median; the mean is indicated
by the darker filled circle; the vertical lines cover five times the IQR; and all values outside of that are
indicated as outliers. The scenarios were labelled using the format ‘ME±XX:GC±YY’, where ME refers
to the measurement error, XX denotes the percentage over- or underestimate, GC stands for growth
curve, and YY denotes the percentage of up- or downwards shifting; for example, the scenario with a
33% overestimated length measurement error and a 5% downshifted growth curve had label ME+33:GC-
5.
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Figure 3.2: Box plots for estimated sex-specific adult abundance for the complex species. We only present
the results for scenarios in which the optimiser consistently converged; this meant that some scenarios
were left blank. Box plots show the interquartile range (IQR) and the median; the mean is indicated
by the darker filled circle; the vertical lines cover five times the IQR; and all values outside of that are
indicated as outliers. The scenarios were labelled using the format ‘ME±XX:GC±YY’, where ME refers
to the measurement error, XX denotes the percentage over- or underestimate, GC stands for growth
curve, and YY denotes the percentage of up- or downwards shifting; for example, the scenario with a
33% overestimated length measurement error and a 5% downshifted growth curve had label ME+33:GC-
5.
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which could be a function of age in itself. As an incorrect length measurement error seemed to have1

little effect on point estimates, we believe that, when in doubt, it is preferable to assume a higher length2

measurement error as this improves how likely it is that the fitting algorithm converges.3

The effects of deviating from the true growth curve on the abundance estimates were substantial. When4

growth curves were shifted by only 5%—an amount that we considered small—we often observed median5

relative errors of over 30%. This strongly highlights the sensitivity of the method to correct age esti-6

mation. The estimated CVs were consistent for any given parameter throughout the various scenarios.7

As the true CVs increased when the growth curve was misspecified, irrespective of direction, this meant8

that shifting the growth curve away from the truth increased the underestimation of the CV.9

The true CVs we observed in this study were generally acceptable, especially when the correct scenario10

was selected. However, occasionally true CVs were over 25%, which we believe is mostly due to the11

relatively small number of POPs detected in our sample, as these positive detections contain most of12

the information for parameter estimation. The complex species had slightly higher CVs in the scenarios13

that were closer to the truth. We believe that this could be due to the randomness in reproduction of14

the complex species, which resulted in more variation in the population dynamics, which likely inflated15

the CVs.16

Even though CKMR models normally assume that recaptures do not occur, they did occur in our17

simulations. This violation of the independence assumption resulted in underestimated average CVs18

and standard deviations on the parameter estimates, for all scenarios. Averaged over the scenarios,19

estimated CVs exhibited a negative bias in N̂A
♂ of 11.2% and in N̂A

♀ of 14.3% for the simple species,20

and a negative bias in N̂A
♂ of 16.3% and in N̂A

♀ of 21.1%. When the correct scenario (ME+0:GC+0)21

was used, the degree of underestimation was below 5% for the simple species, which is a difference that22

could be acceptable; for the complex species, however, the CV for N̂A
♂ was underestimated by 13.7%,23

which is substantially higher. We believe that this difference in underestimation of spread is mainly24

due to the longer-lived nature of the complex species. The violation of independence could therefore25

be more severe for that species, resulting in a increased difference between model and empirical CVs.26

Nonetheless, the presence of recaptures does create the potential for extending CKMR by incorporating27

some form of capture-recapture into the method (Otis et al., 1978). Additionally, it could also allow us to28

fit the growth curve jointly with the CKMR model, instead of assuming it to be known by extrapolating29

from other studies. This could create a situation where one collects new samples every year, thereby30

continuously improving the estimates not only of the abundance and trend, but also of the growth curve:31

in a Bayesian framework, one could use the initial growth curve as prior information, and then update32

the posterior every year as more information is collected.33

In our model, we did not allow for any growth or decline in the population size over time. Our34

simulated populations exhibited no systematic growth, but the stochastic nature of the process did lead35
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to some random growth/decline. One could consider estimating a growth rate, or assume a small range1

of growth rates (see Hillary et al. (2018) for an example with white sharks (Carcharodon carcharias)).2

The main challenge would be to understand how including a growth rate parameter affects the assumed3

age distribution. We can imagine three general population growth scenarios. If a population is stable4

but growing or in decline, the assumed age distribution will be geometric and depend on a combination5

of survival and growth rate (Caswell, 2000, Section 4.5.2.1). The second scenario is when a population6

exhibits changing growth or decline, in which case there is no stable age structure. We believe that this7

scenario is intractable, and it would make a good subject for a robustness study to see how much it8

affects estimation. The third scenario would be where there is no expected population growth or decline9

but there is demographic stochasticity, which in practice could result in deviations from the stable age10

structure. For this scenario, an option could be to use the method described by Hillary et al. (2018),11

where the measured lengths were binned and a multinomial distribution was fit to these binned data to12

estimate the distribution of sampled ages. Still, this could be a topic for future research to see what13

other methods exist to find the distribution of (sampled) ages.14

CKMR involves many pairwise comparisons, which often involves many identical probabilistic state-15

ments. To limit computation time, we only unique probabilistic statements once. If further computational16

improvements are required, it is possible to reduce the number of pairwise comparisons that are evaluated17

by excluding a subset of comparisons from the analysis. For example, the length-age relationships are18

often much clearer for younger animals, and therefore one could choose to only consider animals up to a19

certain size as potential offspring (Trenkel et al., 2022).20

In our simulation and model, we assumed some life history traits to be fixed and known, but this is not21

always required for CKMR. We estimated only abundance in our model and assumed quantities such as22

survival to be known and fixed. In order to relax the assumption of a fixed and known survival parameter23

ϕ, one could estimate it by including half-sibling pairs alongside parent-offspring pairs (Bravington et al.,24

2016b). Parent-offspring pairs can be used to model fecundity as long as the parameter appears explicitly25

in the model, which could be the case when fecundity varies with the size or age of animals (Bravington26

et al., 2016b, Section 3.1.4) We are unaware of any attempts to estimate time-varying fecundity or27

survival, and we believe this to be a potential direction for future research. Moreover, we assumed28

maturity to be knife-edge as it slightly reduces complexity of the model. However, if maturity occurs29

more gradually, then this can be accommodated by adding a fecundity curve to the model (e.g., a logistic30

curve; Conn et al., 2020). We also imposed a fixed and known maximum age in the simulation, mostly31

to reduce computation time. In reality, animals do not always have a maximum age; in such cases, one32

could set the maximum age equal to an age that the animal has practically zero probability of reaching.33

When a promising method like CKMR is first presented, one can see the appeal to start studying34

populations as quickly as possible. Benchmark comparisons could be useful (e.g., Ruzzante et al., 2019)35
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to compare a new method to some ‘truth’. However, these comparisons can be ambiguous when it is1

unclear how accurate the benchmark truly is. Simulation studies, such as this one (and see Conn et al.2

(2020) for the effects of unmodelled spatial heterogeneity on CKMR), are a key part of understanding3

when the CKMR method works well and when it does not. We believe the CKMR method has great4

potential and, in some cases, is an improvement over other methods, but our study confirms that care5

that needs to be taken when ageing is biased. In such cases epigenetic ageing could be preferable, even6

though epigenetic ageing can still involve substantial uncertainty (e.g., Larison et al., 2021; Prado et al.,7

2021) and relies strongly on the quality of the training data (Mayne et al., 2023).8
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Appendix A Performance metrics1

Table A.1: Performance metrics for the estimation of parameter NA
♀ , extracted from 1000 simulations of

the simple shark population. The columns are, from left to right: scenario, median relative error, mean
relative error, median error, mean error, mean absolute error, and root mean square error. Scenarios
ME-67:GC-10, ME-67:GC-5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not
included as (most of) the simulations did not fit successfully. Scenario 3-3 uses the correct measurement
error (2.89) and growth curve specification.

Scenario Mdn. Rel. Err Mean Rel. Err. Mdn. Err. Mean Err. MAE RMSE

ME-67:GC+5 -28.48 -25.66 -223.83 -203.94 220.61 245.14
ME-67:GC+10 -62.69 -61.36 -495.14 -487.72 487.72 495.50
ME-33:GC+0 2.88 7.32 22.72 58.23 142.91 201.11
ME-33:GC+5 -28.54 -25.71 -224.94 -204.40 220.93 245.38
ME-33:GC+10 -62.78 -61.34 -495.26 -487.58 487.58 495.28
ME+0:GC-5 31.80 37.56 252.60 298.59 304.39 390.33
ME+0:GC+0 2.57 7.14 20.83 56.78 142.47 200.48
ME+0:GC+5 -28.72 -25.85 -227.03 -205.50 221.78 246.05
ME+0:GC+10 -62.70 -61.23 -494.06 -486.74 486.74 494.33
ME+33:GC-10 43.85 50.21 343.32 399.15 400.98 488.70
ME+33:GC-5 30.59 36.34 243.51 288.88 295.53 381.69
ME+33:GC+0 2.23 6.76 18.13 53.74 141.65 199.10
ME+33:GC+5 -29.21 -26.29 -230.69 -209.01 224.53 248.47
ME+33:GC+10 -62.81 -61.25 -494.00 -486.85 486.85 494.26
ME+67:GC-10 41.04 47.21 320.66 375.24 377.73 466.13
ME+67:GC-5 29.16 34.90 232.41 277.39 285.22 371.65
ME+67:GC+0 1.79 6.12 13.53 48.64 140.45 196.86
ME+67:GC+5 -29.80 -26.97 -235.30 -214.35 228.79 252.27
ME+67:GC+10 -62.85 -61.37 -495.30 -487.84 487.84 495.04
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Table A.2: Performance metrics for the estimation of parameter NA
♂, extracted from 1000 simulations for

the simple shark population. The columns are, from left to right: scenario, median relative error, mean
relative error, median error, mean error, mean absolute error, and root mean square error. Scenarios
ME-67:GC-10, ME-67:GC-5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not
included as (most of) the simulations did not fit successfully. Scenario 3-3 used the correct measurement
error (2.89) and growth curve specification.

Scenario Mdn. Rel. Err Mean Rel. Err. Mdn. Err. Mean Err. MAE RMSE

ME-67:GC+5 -28.40 -25.93 -223.56 -206.14 217.13 243.78
ME-67:GC+10 -62.28 -61.38 -488.98 -487.42 487.42 494.97
ME-33:GC+0 2.96 6.74 24.43 52.92 144.84 189.98
ME-33:GC+5 -28.53 -25.99 -224.78 -206.64 217.45 244.05
ME-33:GC+10 -62.41 -61.37 -489.77 -487.34 487.34 494.79
ME+0:GC-5 31.59 36.63 247.66 289.87 297.53 374.35
ME+0:GC+0 2.79 6.55 22.52 51.44 144.49 189.38
ME+0:GC+5 -28.72 -26.14 -226.29 -207.83 218.33 244.83
ME+0:GC+10 -62.30 -61.28 -489.39 -486.58 486.58 493.89
ME+33:GC-10 43.72 49.00 341.71 387.75 390.42 470.34
ME+33:GC-5 30.62 35.41 238.47 280.12 289.00 365.82
ME+33:GC+0 2.34 6.16 19.50 48.30 143.76 188.06
ME+33:GC+5 -29.16 -26.59 -228.60 -211.41 221.07 247.38
ME+33:GC+10 -62.32 -61.30 -489.56 -486.78 486.78 493.90
ME+67:GC-10 40.98 46.03 320.23 364.13 367.87 448.20
ME+67:GC-5 29.36 33.96 229.31 268.62 279.08 355.90
ME+67:GC+0 1.72 5.51 13.73 43.13 142.59 185.95
ME+67:GC+5 -29.89 -27.27 -233.68 -216.81 225.38 251.36
ME+67:GC+10 -62.58 -61.44 -490.18 -487.86 487.86 494.77

Table A.3: Performance metrics for the estimation of parameter NA
♀ , extracted from 1000 simulations of

the complex shark population. The columns are, from left to right: scenario, median relative error, mean
relative error, median error, mean error, mean absolute error, and root mean square error. Scenarios
ME-67:GC-10, ME-67:GC-5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not
included as (most of) the simulations did not fit successfully. Scenario 3-3 used the correct measurement
error (2.89) and growth curve specification.

Scenario Mdn. Rel. Err Mean Rel. Err. Mdn. Err. Mean Err. MAE RMSE

ME-67:GC+5 -38.21 -35.96 -194.00 -185.43 187.72 199.33
ME-67:GC+10 -69.41 -68.34 -355.48 -352.09 352.09 356.40
ME-33:GC+0 1.89 5.30 9.12 26.84 82.06 112.47
ME-33:GC+5 -38.37 -36.07 -194.96 -185.99 188.23 199.71
ME-33:GC+10 -69.34 -68.26 -354.98 -351.70 351.70 355.94
ME+0:GC-5 55.54 61.97 282.61 318.31 318.38 365.22
ME+0:GC+0 1.35 4.64 6.48 23.44 81.55 111.32
ME+0:GC+5 -38.63 -36.31 -195.61 -187.25 189.38 200.68
ME+0:GC+10 -69.19 -68.16 -353.91 -351.15 351.15 355.29
ME+33:GC-10 109.97 119.20 556.22 612.37 612.37 666.21
ME+33:GC-5 53.20 59.79 270.34 307.08 307.24 354.45
ME+33:GC+0 0.57 3.70 2.63 18.60 80.97 109.82
ME+33:GC+5 -39.05 -36.72 -197.27 -189.35 191.32 202.37
ME+33:GC+10 -69.23 -68.08 -353.09 -350.72 350.72 354.71
ME+67:GC-10 105.31 114.40 534.45 587.65 587.65 641.11
ME+67:GC-5 50.39 57.13 258.11 293.33 293.59 341.34
ME+67:GC+0 -0.63 2.49 -3.03 12.36 80.40 108.17
ME+67:GC+5 -39.51 -37.25 -200.26 -192.09 193.91 204.65
ME+67:GC+10 -69.15 -68.02 -352.44 -350.42 350.42 354.27
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Table A.4: Performance metrics for the estimation of parameter NA
♂, extracted from 1000 simulations for

the complex shark population. The columns are, from left to right: scenario, median relative error, mean
relative error, median error, mean error, mean absolute error, and root mean square error. Scenarios
ME-67:GC-10, ME-67:GC-5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not
included as (most of) the simulations did not fit successfully. Scenario 3-3 used the correct measurement
error (2.89) and growth curve specification.

Scenario Mdn. Rel. Err Mean Rel. Err. Mdn. Err. Mean Err. MAE RMSE

ME-67:GC+5 -31.74 -29.79 -203.73 -194.20 201.00 220.13
ME-67:GC+10 -61.34 -60.03 -393.89 -390.66 390.66 397.78
ME-33:GC+0 2.13 5.35 12.74 34.22 113.74 152.24
ME-33:GC+5 -31.95 -29.89 -204.63 -194.80 201.48 220.51
ME-33:GC+10 -61.30 -59.99 -393.09 -390.44 390.44 397.48
ME+0:GC-5 45.75 51.88 297.86 336.61 337.30 401.99
ME+0:GC+0 1.59 4.91 10.28 31.35 113.06 151.03
ME+0:GC+5 -32.33 -30.13 -206.50 -196.36 202.81 221.63
ME+0:GC+10 -61.23 -59.98 -392.55 -390.36 390.36 397.27
ME+33:GC-10 88.97 98.09 579.49 636.75 636.75 703.85
ME+33:GC-5 44.11 50.38 288.00 326.83 327.73 392.72
ME+33:GC+0 1.05 4.24 6.59 27.01 112.18 149.32
ME+33:GC+5 -32.61 -30.56 -208.75 -199.14 205.21 223.70
ME+33:GC+10 -61.30 -60.04 -392.71 -390.76 390.76 397.51
ME+67:GC-10 85.75 94.83 559.04 615.54 615.54 682.57
ME+67:GC-5 42.24 48.54 276.01 314.85 316.10 381.44
ME+67:GC+0 0.14 3.35 0.95 21.20 111.13 147.24
ME+67:GC+5 -33.16 -31.13 -211.30 -202.85 208.45 226.55
ME+67:GC+10 -61.38 -60.19 -394.36 -391.68 391.68 398.23
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Appendix B Variance estimates1

Table B.1: Likelihood-based estimates for the standard deviation of the estimated parameters, averaged
over 1000 simulations. The first number in a scenario label refers to the assumed measurement error
on length; the second number refers to the used growth function. Scenarios ME-67:GC-10, ME-67:GC-
5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not included as (most of) the
simulations did not successfully fit. Scenario 3-3 used the correct measurement error (2.89) and growth
curve specification.

Simple species Complex species

Scenario NA
♂ NA

♀ NA
♂ NA

♀

ME-67:GC+5 125.31 123.96 62.82 92.58
ME-67:GC+10 64.96 64.47 30.90 52.52
ME-33:GC+0 181.21 178.88 103.71 139.35
ME-33:GC+5 125.23 123.87 62.73 92.47
ME-33:GC+10 65.01 64.50 30.99 52.58
ME+0:GC-5 232.63 229.27 160.18 201.50
ME+0:GC+0 180.93 178.60 103.08 138.79
ME+0:GC+5 125.01 123.64 62.51 92.17
ME+0:GC+10 65.21 64.68 31.11 52.61
ME+33:GC-10 254.39 250.33 217.42 263.40
ME+33:GC-5 230.61 227.25 158.05 199.53
ME+33:GC+0 180.33 177.97 102.19 137.94
ME+33:GC+5 124.30 122.90 62.13 91.63
ME+33:GC+10 65.21 64.66 31.20 52.54
ME+67:GC-10 249.34 245.36 212.67 259.08
ME+67:GC-5 228.22 224.87 155.44 197.12
ME+67:GC+0 179.28 176.91 101.03 136.79
ME+67:GC+5 123.19 121.79 61.63 90.90
ME+67:GC+10 65.02 64.45 31.28 52.38
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Table B.2: Likelihood-based estimates for the coefficient of variation (CV; %) of the estimated parame-
ters, averaged over 1000 simulations. Here, CV is defined as the Hessian-based estimated of the standard
error divided by the parameter estimate. The first number in a scenario label refers to the assumed mea-
surement error on length; the second number refers to the used growth function. Scenarios ME-67:GC-10,
ME-67:GC-5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not included as (most
of) the simulations did not successfully fit. Scenario 3-3 used the correct measurement error (2.89) and
growth curve specification.

Simple species Complex species

Scenario NA
♂ NA

♀ NA
♂ NA

♀

ME-67:GC+5 20.66 20.59 18.70 19.83
ME-67:GC+10 20.64 20.57 18.67 19.81
ME-33:GC+0 20.66 20.60 18.71 19.84
ME-33:GC+5 20.66 20.59 18.70 19.83
ME-33:GC+10 20.64 20.58 18.67 19.82
ME+0:GC-5 20.66 20.60 18.72 19.84
ME+0:GC+0 20.66 20.60 18.71 19.84
ME+0:GC+5 20.66 20.59 18.70 19.83
ME+0:GC+10 20.65 20.58 18.68 19.82
ME+33:GC-10 20.67 20.60 18.72 19.84
ME+33:GC-5 20.66 20.60 18.72 19.84
ME+33:GC+0 20.66 20.60 18.72 19.84
ME+33:GC+5 20.66 20.59 18.71 19.83
ME+33:GC+10 20.65 20.58 18.68 19.82
ME+67:GC-10 20.67 20.60 18.72 19.84
ME+67:GC-5 20.66 20.60 18.72 19.84
ME+67:GC+0 20.66 20.60 18.72 19.84
ME+67:GC+5 20.66 20.60 18.71 19.83
ME+67:GC+10 20.65 20.59 18.69 19.82

25



Table B.3: Empirical estimates for the standard deviation of the estimated parameters, derived over 1000
simulations. The first number in a scenario label refers to the assumed measurement error on length; the
second number refers to the used growth function. Scenarios ME-67:GC-10, ME-67:GC-5, ME-67:GC+0,
ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10 were not included as (most of) the simulations did not
successfully fit. Scenario 3-3 used the correct measurement error (2.89) and growth curve specification.

Simple species Complex species

Scenario NA
♂ NA

♀ NA
♂ NA

♀

ME-67:GC+5 130.20 136.09 103.71 73.15
ME-67:GC+10 86.14 87.54 74.95 55.27
ME-33:GC+0 182.56 192.59 148.42 109.27
ME-33:GC+5 129.92 135.83 103.38 72.79
ME-33:GC+10 85.56 87.02 74.51 54.80
ME+0:GC-5 237.00 251.53 219.86 179.16
ME+0:GC+0 182.35 192.36 147.82 108.88
ME+0:GC+5 129.46 135.38 102.81 72.22
ME+0:GC+10 84.72 86.31 73.85 54.06
ME+33:GC-10 266.36 282.11 300.08 262.50
ME+33:GC-5 235.40 249.59 217.85 177.10
ME+33:GC+0 181.85 191.81 146.93 108.29
ME+33:GC+5 128.52 134.44 101.96 71.47
ME+33:GC+10 83.65 85.30 72.97 53.13
ME+67:GC-10 261.46 276.67 295.13 256.41
ME+67:GC-5 233.59 247.46 215.43 174.64
ME+67:GC+0 180.97 190.85 145.77 107.51
ME+67:GC+5 127.23 133.08 100.93 70.62
ME+67:GC+10 82.44 84.13 71.95 52.10
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Table B.4: Empirical estimates for the coefficient of variation (CV; %) of the estimated parameters,
derived from 1000 simulations. Here, CV is defined as the standard deviation of the error parameter
estimates divided by the mean estimate for that scenario. The first number in a scenario label refers
to the assumed measurement error on length; the second number refers to the used growth function.
Scenarios ME-67:GC-10, ME-67:GC-5, ME-67:GC+0, ME-33:GC-10, ME-33:GC-5, and ME+0:GC-10
were not included as (most of) the simulations did not successfully fit. Scenario 3-3 used the correct
measurement error (2.89) and growth curve specification.

Simple species Complex species

Scenario NA
♂ NA

♀ NA
♂ NA

♀

ME-67:GC+5 22.16 23.03 22.74 22.21
ME-67:GC+10 28.12 28.50 28.88 33.97
ME-33:GC+0 21.56 22.58 21.68 20.17
ME-33:GC+5 22.13 23.01 22.70 22.14
ME-33:GC+10 27.92 28.32 28.68 33.60
ME+0:GC-5 21.87 23.00 22.28 21.50
ME+0:GC+0 21.57 22.59 21.69 20.23
ME+0:GC+5 22.10 22.97 22.65 22.05
ME+0:GC+10 27.58 28.01 28.42 33.03
ME+33:GC-10 22.54 23.63 23.32 23.29
ME+33:GC-5 21.92 23.03 22.30 21.55
ME+33:GC+0 21.60 22.60 21.70 20.30
ME+33:GC+5 22.07 22.95 22.60 21.96
ME+33:GC+10 27.25 27.70 28.13 32.38
ME+67:GC-10 22.58 23.65 23.32 23.26
ME+67:GC-5 21.99 23.08 22.32 21.61
ME+67:GC+0 21.62 22.63 21.71 20.39
ME+67:GC+5 22.05 22.92 22.56 21.88
ME+67:GC+10 26.95 27.40 27.83 31.69
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Appendix C Modelling population growth1

In an alternative version of this model we included a growth parameter r, which allowed for the estimation2

of exponential growth or decline in the population size. Including growth in the model meant that the3

distribution of age given measured length f(a|ℓ∗) is no longer defined exclusively by survival parameter4

ϕ but rather by a combination of ϕ and r (Caswell, 2000, Section 4.5.2.1), given that the population5

reached a new stable age distribution. Hillary et al. (2018) estimated f(a|ℓ∗) by grouping the data and6

fitting a multinomial distribution, however this was beyond the scope of our research. We did run our7

simulation study with yearly growth parameters r♀ and r♂ assuming that the f(a|ℓ∗) as presented in8

Chapter 4 was approximately correct. We decided not to include this part of the study in the main9

body of this thesis, as we did not believe that the results could be used to accurately assess the effect of10

incorrect ageing on parameter estimation. Nonetheless, we included these results here for completeness11

as they could contain some valuable insight and form the basis for future research. As we considered12

abundance for both sexes separately, we estimated the following four parameters: NA
♀,y0

, NA
♂,y0

, r♀ and13

r♂, where y0 is some reference year.. The kinship probabilities remained the same as presented in the14

Equations (4.4)–(4.7). As population size was no longer assumed equal for all years, abundances in15

different years are linked through a geometric population dynamics model:16

Ny = Ny0
ry−y0 , (13)

where r ∈ (0,∞) denotes the yearly growth rate. We set y0 = 2014 to match Bradley et al. (2017) as17

closely as possible.18

C.1 Estimated abundance through time19

We fit our 25 scenarios, consisting of all combinations of 5 different measurement errors and 5 different20

growth curves, to both populations. We modelled the male and female side of the population separately21

resulting in four figures, each containing 19 population history plots — six plots are blank since the22

models in these scenarios did not (all) fit correctly. In Figures C.1– C.4 we notice a similar pattern of23

over- and underestimation related to shifting the growth curves. However, as we also model exponential24

growth or decline, we also notice effects of shifting the growth curves on the direction and magnitude of25

this trend. Albeit potentially informative, due to the inconsistency between modelling growth and the26

assumed age distribution we believe that these results can not be directly used for inference.27
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Figure C.1: Plots of the 1000 simple female adult population trends for the simple species for the last
twenty years of the simulation, for the 19 scenarios that resulted in successful fits. The median of
these 1000 trends is indicated in dark grey, and the truth adult abundance is indicated in red. The
scenarios were labelled using the format ‘ME±XX:GC±YY’, where ME refers to the measurement error,
XX denotes the percentage over- or underestimate, GC stands for growth curve, and YY denotes the
percentage of up- or downwards shifting; for example, the scenario with a 33% overestimated length
measurement error and a 5% downshifted growth curve had label ME+33:GC-5.
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Figure C.2: Plots of the 1000 estimated male adult population trends for the simple species for the
last twenty years of the simulation, for the 19 scenarios that resulted in successful fits. The median of
these 1000 trends is indicated in dark grey, and the truth adult abundance is indicated in red. The
scenarios were labelled using the format ‘ME±XX:GC±YY’, where ME refers to the measurement error,
XX denotes the percentage over- or underestimate, GC stands for growth curve, and YY denotes the
percentage of up- or downwards shifting; for example, the scenario with a 33% overestimated length
measurement error and a 5% downshifted growth curve had label ME+33:GC-5.
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Figure C.3: Plots of the 1000 estimated female adult population trends for the complex species for the
last twenty years of the simulation, for the 19 scenarios that resulted in successful fits. The median of
these 1000 trends is indicated in dark grey, and the truth adult abundance is indicated in red. The
scenarios were labelled using the format ‘ME±XX:GC±YY’, where ME refers to the measurement error,
XX denotes the percentage over- or underestimate, GC stands for growth curve, and YY denotes the
percentage of up- or downwards shifting; for example, the scenario with a 33% overestimated length
measurement error and a 5% downshifted growth curve had label ME+33:GC-5.
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Figure C.4: Plots of the 1000 estimated male adult population trends for the complex species for the
last twenty years of the simulation, for the 19 scenarios that resulted in successful fits. The median of
these 1000 trends is indicated in dark grey, and the truth adult abundance is indicated in red. The
scenarios were labelled using the format ‘ME±XX:GC±YY’, where ME refers to the measurement error,
XX denotes the percentage over- or underestimate, GC stands for growth curve, and YY denotes the
percentage of up- or downwards shifting; for example, the scenario with a 33% overestimated length
measurement error and a 5% downshifted growth curve had label ME+33:GC-5.
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