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Abstract

Gummy stem blight (GSB), a severe and widespread disease causing great losses to cucurbit production, is
a major threat to melon production. However, the melon-GSB interaction remains largely unknown, which
significantly impedes the genetic improvement of melon for GSB resistance. Here, full-length transcriptome



and widely targeted metabolome were used to reveal the early defense responses of resistant (P1511890) and
susceptible (Payzawat) melon to GSB. Differentially expressed genes were specifically enriched in the sec-
ondary metabolite biosynthesis and MAPK signaling pathway in P1511890, while in carbohydrate metabolism
and amino acid metabolism in Payzawat. More than 1000 novel genes were identified in PI511890, which
were enriched in the MAPK signaling pathway. There were 11,793 alternative splicing events identified and
involved the defense response to GSB. A total of 910 metabolites were identified, with flavonoids as the domi-
nant metabolites. Integrated full-length transcriptome and metabolome analysis showed that eriodictyol and
oxalic acid may be used as marker metabolites for GSB resistance in melon. Moreover, post-transcription
regulation was widely involved in the defense response of melon to GSB. These results improve our under-
standing of the interaction between melon and GSB and may facilitate the genetic improvement of GSB
resistance of melon.
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Introduction

Melon ( Cucumis melo L.), an important horticultural crop with great economic significance, is widely grown
for fresh consumption. According to the statistics of Food and Agriculture Organization, the global melon
production reached 28.6 million tons in 2021 (FAOSTAT, www.fao.org/faostat). China is the leading produc-
ing country of melon, accounting for approximately half of the total production (14.1 million tons), followed
by Turkey, India, and Kazakhstan, whose annual production was 1.4-1.6 million tons in 2021. However, the
yield and quality of melon are faced with serious threats of diseases caused by pathogen attack.

Gummy stem blight (GSB) caused by Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae ) is a
prevalent and devastating fungal disease of melon throughout the world (Li et al., 2017; Stewart et al., 2015).
It has been reported that GSB pathogens can attack 37 species of the Cucurbitaceae family (Rennberger
& Keinath, 2018). Under favorable environmental conditions, the pathogen can infect all aboveground
parts of susceptible plants throughout the whole growth period, causing the formation of necrotic spots and
serious reduction of yield and quality. The incidence of GSB can reach up to 80% for melon cultivated
in greenhouse, and the yield loss can reach 100% once infected (Rennberger & Keinath, 2018; Virtuoso et
al., 2022). Currently, chemical control, particularly fungicides, is the most widely used method to control
GSB. However, excessive application of fungicides inevitably causes negative impacts on the environment
and food safety. In addition, the effect is declining due to increasing resistance of certain pathogenic isolates
to chemicals (Keinath & Zitter, 1998; Hassan et al., 2018).

Breeding of resistant cultivars is the most efficient approach for disease control. In recent years, some research
efforts have been devoted to screening GSB-resistant melon germplasm (Wolukau et al., 2007; Zhang et al.,
1997). A review has summarized the currently identified melon GSB-resistant resources (Luo et al., 2022).
Another study investigated the inheritance of GSB-resistant traits, resulting in the identification of five
independent monogenic resistance loci from PI accessions of P1140471, PI157082, P1511890, P1482398, and
P1482399, which were designated as Gsb-1 , Gsb-2 , Gsb-3 ,Gsb-4 , and gsb-5 , respectively (Frantz & Jahn,
2004). Ouly a limited number of molecular markers associated with GSB resistance have been developed
for maker-assisted selection of melon (Hassan, Rahim et al., 2018; Hassan, Robin et al., 2018; Wolukau et
al., 2009). By using an ultra-dense genetic map, a previous study mapped GSB resistance QTLs from an
inbred line of Cucumis melo spp.conomon into a 108-kb interval on chromosome 4 and proposed a candidate
gene (Hu et al., 2018). Recently, Gsb-7(t) conferring GSB resistance was mapped on chromosome 7 and
MELO3C010408-T2 was proposed as the candidate gene (Ma et al., 2023). However, functions of these
candidate genes have not been validated yet (Seblani et al., 2023).

Clarifying the defense response of host to pathogen infection is important for understanding the disease
resistance mechanism. High-throughput omics technologies have become powerful tools for studying plant
defense response to biotic stresses, among which transcriptome is widely employed to identify the genes,
signal transduction pathways, and regulatory networks involved in plant-pathogen interaction. For example,
a transcriptomic analysis in a recent study demonstrated that an apyrase-like gene plays an important



role in the defense response of pumpkin to GSB (Zhao et al., 2022). Alternative splicing (AS), which is
usually identified by full-length transcriptome, is an important post-transcriptional regulatory mechanism
that increases the diversity of transcripts and proteins (Ule & Blencowe, 2019). Several studies have shown
that many genes undergo AS in response to biotic stresses in plants (Zhang et al., 2019). Functional analysis
of alternative transcripts has become a powerful tool to develop new strategies for improvement of plant
tolerance to environmental stress (Kufel et al., 2022). Metabolome can act as a bridge between genotypes
and phenotypes, and is also a powerful tool for decoding plant-pathogen interaction (Serag et al., 2023).
Disease infection can cause great perturbation on plant metabolism. The widely targeted metabolome
allows comprehensive metabolic profiling of plants during pathogen attack. It is known that plant secondary
metabolites, including phenolic compounds, alkaloids, glycosides, and terpenoids, play pivotal roles in plant-
pathogen interaction (Anjali et al., 2023). However, gene expression profiles, AS landscape, and metabolites
involved in the defense response of melon to GSB remain largely unknown.

In this study, we selected two melon accessions with contrasting resistance to GSB, and determined their
defense responses to GSB based on full-length transcriptome and widely targeted metabolome. We also char-
acterized the novel genes, AS events, differentially expressed genes (DEGs), and differentially accumulated
metabolites (DAMs) involved in the defense response of melon to GSB. The results are expected to provide
a comprehensive understanding on the defense response of melon to GSB at transcriptomic and metabolic
levels, as well as valuable information for elucidating the mechanism for the resistance of melon to GSB.

Materials and methods
Plant materials and artificial inoculation

PI511890 (C. melo var. chito ) from Mexico and Payzawat from China (C. melo var. inodorus ) were
used as the plant materials in this study. PI511890 is a wild melon accession and exhibits resistance to
GSB (Frantz & Jahn, 2004). Payzawat is a widely cultivated landrace and susceptible to GSB. The seeds
were firstly sterilized with 1.5% sodium hypochlorite, and then sown in pots containing sterilized peat-
perlite substrate (2: 1, v/v). The pots were placed in a greenhouse and seedling management followed the
commercial production practices. At the third true leaf stage, uniform and healthy seedlings were selected
for subsequent experiments.

Pathogenic fungi were isolated from melon stem with typical GSB symptoms and identified as Stagonosporop-
sis cucurbitacearum . Purified fungi were inoculated on potato dextrose agar (PDA) culture medium, cultured
at 25 under darkness for three days, then treated with 12 h photoperiod under ultra-violet light (280-360
nm) for five days, and maintained at darkness for two days to obtain the spores. The spores on the medium
were washed off and filtered to obtain the spore suspension. The inoculum suspension was adjusted to 5
x 10°spores/mL by adding ddH2O. For inoculation, the spore solution was sprayed on the seedlings until
reaching the point of runoff. After inoculation, the seedlings were covered with a plastic tunnel and the re-
lative humidity was kept over 90% with the temperature varying from 25 to 30. At the same time, spraying
of distilled water was performed for the other seedlings to be used as the controls. Completely randomized
block experimental design with three biological replicates was adopted for the treatments and controls, with
each replicate consisting of 20 seedlings. Leaves were sampled at 0, 12, 24, 36, 48, 60, 72 h after inoculation
(hpi) for subsequent analyses. For transcriptome and metabolome analyses, the leaves were immediately
frozen in liquid nitrogen and then stored in a refrigerator (-80degC).

Histochemical staining

Trypan Blue staining was performed for the leaves to determine the growth of spores and hyphae according
to the previous reports (Bhadauria et al., 2010; van Wees, 2008). Briefly, the leaves were punched to discs
with a diameter of 10 mm and soaked in the Trypan Blue staining solution, then immediately heated in 90
water for 10 min. After the solution was allowed to cool down to room temperature, the staining solution was
discarded and the leaf discs were decolorized using 2.5 mg/mL chloral hydrate solution, which was replaced
after every 24 h until the leaf discs were completely decolorized.



Accumulation of HoOz and O% in leaves was measured using 3,3’-diaminobenzidine (DAB) and nitro blue
tetrazolium chloride (NBT) staining methods, respectively (Daudi & O’Brien, 2012). In brief, the leaves were
punched into several discs with a diameter of 10 mm. For each biological replicate, 10 discs were selected
and immersed in 1 mg/mL DAB solution under 25 /light for 5 h and 0.5 mg/mL NBT solution under 25
/dark for 5 h, respectively. Then, the leaf discs were decolorized with 95% ethanol under 95 for 20 min and
immersed in anhydrous ethanol for store and photo. The staining results were observed under a light optical
microscope (OLYMPUS C x 41) with an ocular magnification lens at 40 x (400 um scale). The staining
areas were calculated using Image J with the formula of (stained leaf area/leaf disc area) x 100% (Schneider
et al., 2012). The larger staining area means higher accumulation of HyOo or O%. ANOVA was used to test
the differences in staining areas among treatments and the least significant difference was used for multiple
comparisons of the means. The agricolae package of R was used for statistical analysis.

Full-length transcriptome analysis

Samples at 24 hpi were selected for full-length transcriptome analysis, which included GSB-inoculated sam-
ples of PI511890 (TRT) and Payzawat (TST), and controls of PI511890 (TRC) and Payzawat (TSC). Extrac-
tion of RNA and construction of sequencing libraries were performed according to the protocols providing
by the Oxford Nanopore Technologies (ONT). The libraries were sequenced on a PromethION platform to
obtain the full-length transcriptome according to the standard protocol of ONT.

The pipeline for full-length transcriptome analysis is shown in Supplementary Figure 1. The short
fragments and low-quality reads (length < 100 bp, Qscore < 7) were filtered out using NanoFilt
(v2.8.0; Coster et al., 2018). The clean data were then processed with Pychopper (v2.4.0) to iden-
tify and orient full-length sequences. The melon genome of DHL92 (v4.0) was used as the reference
(http://cucurbitgenomics.org/v2/organism/23). The full-length sequences were mapped to the reference
genome using minimap2 (v2.17-r941; Li, 2018). Samtools (v1.7) was used to extract the uniquely mapped
reads with a minimum quality score of 10. After polishing and clustering the full-length sequences, the
consensus sequence was obtained using Pinfish pipeline (v0.1.0; Chen et al., 2021). The resulting consensus
transcripts were then mapped to the reference genome using minimap2.

Transcript isoforms were identified for the full-length transcriptome. All consensus transcripts were merged
and assembled to obtain a non-redundant transcript set using StringTie (Pertea et al., 2015). The assembled
transcripts were compared with the reference genome using gffcompare (v0.12.1; Pertea & Pertea, 2020).
After filtering transcripts with single exon, transcripts with class codes ("u”, ”x”, 71”, ”j”, 70”) and length
longer than 200 bp were defined as novel transcripts. The novel transcripts were further classified into
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isoforms of novel genes ("u”, ”x”, ”1”) and novel isoforms of known genes (7j”, 70”).

Ballgown was used to estimate transcript abundance (v2.26.0; Pertea et al., 2016). DEGs were identified
using DEseq2 with [logoFoldChange| > 1 and adjusted p < 0.05 (Liu et al., 2021). Enrichment analyses of
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for DEGs were performed
using clusterProfiler with the cutoff of p < 0.05 (Yu et al., 2012).

AS events and fusion genes were identified. SUPPA2 (v2.3) was used to generate seven main types of the
local AS events, including retained intron (RI), alternative 5’ splice-site (A5), alternative 3’ splice-site (A3),
skipping exon (SE), alternative first exon (AF), alternative last exon (AL), and mutually exclusive exons
(MX) (Trincado et al., 2018). Salmon (v0.13.1) was used to calculate the transcript abundance (TPM),
which was then used to calculate the value of percentage spliced-in (PSI) by SUPPA2 (Patro et al., 2017).
Furthermore, diffSplice was applied to identify differentially alternative splicing events with the cutoff of
p < 0.05 (Hu et al., 2013). Candidate fusion genes were identified using the ToFU (fusion_finder.py) in
¢DNA _Cupcake program (v29.0.0, https://github.com/Magdoll/cDNA_Cupcake).

Widely targeted metabolome analysis

The samples at 24 hpi were further selected for widely targeted metabolome analysis, which included GSB-
inoculated samples of PI511890 (MRT) and Payzawat (MST), and controls of PI511890 (MRC) and Payzawat



(MSC). Extraction, detection, identification, and quantification of metabolites were performed according to
the reported methods (Chen et al. 2013). Briefly, the freeze-dried sample was crushed using a mixer
mill (MM 400, Retsch) with a zirconia bead for 1.5 min at 30 Hz, and approximately 100 mg of powder was
extracted with 70% aqueous methanol. The sample extracts were analyzed using an ultra-performance liquid
chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) system (UPLC, Shim-pack
UFLC SHIMADZU CBMB30A system; MS, Applied Biosystems 4500 Q TRAP). The analytical conditions
were as follows, UPLC: column, Agilent SB-C18 (1.8 um, 2.1 mm x 100 mm); column temperature, 40°C;
flow rate, 0.35 mL/min; injection volume, 4 pL. LIT and triple quadrupole (QQQ) scans were acquired on
a triple quadrupole-linear ion trap mass spectrometer (Q TRAP). Instrument tuning and mass calibration
were performed with 10 and 100 ymol/L polypropylene glycol solutions in QQQ and LIT modes, respectively.
A specific set of MRM transitions were monitored for each period according to the metabolites eluted within
this period.

Based on the detected metabolites, principal component analysis (PCA) was performed to reveal the rela-
tionships among the samples using FactoMineR and factoextra packages in R. The orthogonal partial least
squares-discriminant analysis (OPLS-DA) was performed to determine the DAMs with |logoFoldChange| >
1 and variable importance in project (VIP) [?]1 (Eriksson et al., 2006). Enrichment analysis for DAMs was
conducted using the Metabolites Biological Role (MBROLE) (v2.0; Lépez-Ibéiez et al., 2016).

3. Results
3.1 Growth of GSBpathogenic fungi on melon leaves

The growth process of S. cucurbitacearum on the leaves of PI511890 and Payzawat was observed at 0, 12,
24, 36, 48, 60, and 72 hpi using trypan blue staining method. The results showed that the growth process of
S. cucurbitacearum consisted of germination of conidia, formation and elongation of germ tube, production
of appresorium, as well as growth and spread of hyphae (Figure 1A). On the leaves of Payzawat (GSB-
susceptible), germ tubes and hyphae were observed at 12 hpi, followed by appressoria at 24 hpi. The hyphae
were apparently elongated at 60 hpi and even began to invade into epidermis of Payzawat leaves at 72 hpi.
However, on the leaves of PI511890 (GSB-resistant), germ tubes and appressoria appeared until 24 hpi and
36 hpi, respectively. Hyphae were observed at 60 hpi, which grew slowly thereafter. These results indicated
that the spore germination and hyphal growth of S. cucurbitacearum on PI511890 leaves were inhibited
compared with those on Payzawat leaves. Moreover, 24 hpi was the key time point to determine the different
responses of PI511890 and Payzawat to S. cucurbitacearum infection.

3.2 Accumulation of H;O05 and O? in melon leaves after GSB infection

Accumulation of HyOy and O? in the leaves of PI511890 and Payzawat was determined using DAB and
NBT staining methods at 12, 24, 36, and 48 hpi, respectively. The results of DAB staining showed that
H305 accumulation in infected leaves was higher than that in the control for both Payzawat and P1511890,
indicating that GSB promotes HoOsaccumulation (Figure 1B). Compared with the control, significantly
higher accumulation of HoOs was observed in Payzawat after 24 hpi (Figure 1D). However, significantly
higher accumulation of HoO5 was only observed at 24 hpi in infected leaves of P1511890 compared with the
control. Moreover, HoOs accumulation in infected leaves of Payzawat was consistently higher than that of
PI511890. Similar accumulation patterns of O were also observed in the leaves of Payzawat and P1511890,
indicating that GSB also induces the accumulation of O% (Figure 1C). Additionally, O% accumulation in
infected leaves of Payzawat was significantly higher than that of PI511890 at 24 hpi (Figure 1E). The lower
accumulation of H,O, and O? in PI511890 suggested that reactive oxygen homeostasis is possibly involved
in the resistance to GSB.
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Figure 1 Growth of GSB pathogenic fungi and accumulation of HoOy and O% in leaves of PI511890 and
Payzawat. A : Growth of GSB pathogens on the leaves of Payzawat and PI511890 (40 x). Co, Gt, Ap, Hy,
Th, and S represent conidium, germ tube, appresorium, hyphae, infection hyphae, and stoma, respectively.
B : Leaves of Payzawat and PI511890 stained by diaminobenzidine at different time points aftersS. cucurbi-
tacearum inoculation. Payzawat-control and PI511890-control are the control groups sprayed with ddH,O.
Payzawat-treatment and PI511890-treatment are the treatment groups sprayed with the GSB suspension
of 5 x 10° spores/mL. C : Leaves of Payzawat and PI511890 stained by nitroblue tetrazolium at different
time points afterS. cucurbitacearum inoculation. D : Boxplots for HoO5 accumulation quantified by Image
J at different time points after S. cucurbitacearum inoculation.E : Boxplots for O accumulation quantified
by Image J at different time points after S. cucurbitacearuminoculation. Least significant difference method
was used for multiple comparisons of the means after ANOVA analysis. Ns represents no significance (p >
0.05). * represents p < 0.05. ** represents p < 0.01. *** represents p < 0.001.

3.3 Identification and functional enrichment analysis of DEGs

Both the growth of fungi and accumulation of H,Oy and O% indicated that 24 hpi is the key point to differen-
tiate the defense responses of susceptible and resistant accessions to GSB pathogen infection. Therefore, the
samples at 24 hpi were selected for full-length transcriptome sequencing. A total of 118.2 Gb clean data with
an average read length of 1229.3 bp were obtained (Supplementary Table 1). The ONT reads were mapped



onto the reference genome. The expression abundance of the annotated genes was quantified using Ballgown
and then DEGs were determined using DESeq2 (Figure 2A). Compared with their respective controls, 958
DEGs (457 up-regulated and 501 down-regulated) were identified for Payzawat, and 380 DEGs (344 up-
regulated and 36 down-regulated) were identified for PI1511890 after GSB pathogen infection. Additionally,
a total of 663 DEGs were identified between Payzawat and PI1511890 after GSB pathogen infection.

GO enrichment analysis showed that four terms of biological process were specifically enriched in P1511890
after infection relative to Payzawat, including hydrogen peroxide catabolic process, cell wall organization, re-
sponse to wounding, and defense response (Figure 2B, Supplementary Figure2). KEGG enrichment analysis
showed that three pathways (pyruvate metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism)
were enriched in both PI511890 and Payzawat after infection, demonstrating that these pathways are the
common defense responses of melon to GSB (Figure 2C). Moreover, there were five pathways specifically
enriched in PI511890 after infection, including biosynthesis of other secondary metabolites (flavonoid bio-
synthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, flavone and flavonol biosynthesis), MAPK
signaling pathway-plant, and galactose metabolism. The DEGs enriched in the pathway of secondary meta-
bolite synthesis were all up-regulated in GSB pathogen infected PI511890. On the other hand, 18 pathways
were specifically enriched in Payzawat after infection, which included carbohydrate metabolism (glyoxylate
and dicarboxylate metabolism, citrate cycle, pentose phosphate pathway, and glycolysis/gluconeogenesis),
amino acid metabolism (glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabo-
lism, glutathione metabolism, arginine biosynthesis, phenylalanine metabolism, phenylalanine, tyrosine and
tryptophan biosynthesis), and HIF-1 signaling pathway. These results indicated that PI511890 and Payzawat
exhibit contrasting defense responses to GSB by regulating different pathways. PI511890 coped with GSB
by regulating biosynthesis of secondary metabolites and MAPK signaling pathway. However, the defense
response of Payzawat to GSB mainly involved carbohydrate metabolism and amino acid metabolism.
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Figure 2 Identification and functional enrichment analysis of DEGs. A : Volcanic plots of DEGs. Red and
blue points represent the up-regulated and down-regulated DEGs, respectively. B : GO enrichment analysis
of the DEGs detected in GSB pathogen infected PI511890 compared with its control. * represents p < 0.05.
C: KEGG enrichment analysis for the DEGs. TRT and TST represent GSB pathogen inoculated samples
of PI511890 and Payzawat, respectively. TRC and TSC represent the controls of PI511890 and Payzawat,
respectively.

3.4 Identification of isoforms and novel genes

The full-length and consensus sequences were identified and mapped onto the reference genome, resulting
in over 96.37% mapping ratios (Supplementary Table 2). The mapped sequences were assembled using
Stringtie, resulting in approximately 40,000 transcripts for each sample. The novel isoforms and novel genes
were identified by comparing the assembled transcripts with the annotated transcripts of reference genome
(Table 1). Similar numbers of isoforms of known genes were identified for the four samples. However, a
larger number of novel isoforms of known genes were identified in GSB pathogen infected P1511890. More



novel genes and their isoforms were observed in GSB pathogen infected PI511890 and Payzawat compared
with their controls. These results indicated that GSB infection induces the transcription of more isoforms
and novel genes, particularly in the resistant genotype.

Considering their potentially important roles in regulating the defense response of melon to GSB, the novel
genes were further analyzed (Figure 3A). A total of 1,071 and 1,138 novel genes were specifically identified in
Payzawat and PI511890 after infection, respectively. GO enrichment analysis showed that ATP hydrolysis
activity was specifically enriched in infected Payzawat, while catalytic activity was specifically enriched in
infected PI511890 (Supplementary Figure 3). Moreover, KEGG enrichment analysis showed that MAPK
signaling pathway was specifically enriched for the novel genes in PI511890 but not for those in Payzawat
(Figure 3B). These novel genes provide new insights into the defense response of melon to GSB.

Table 1.Numbers of isoforms and novel genes identified in the full-length transcriptome.

Types TSC TST TRC TRT
Isoforms of known genes 22566 22251 22390 22509
Novel isoforms of known genes 15687 15224 15420 16375
Novel genes 1468 1535 1448 1534
Isoforms of novel genes 1946 2062 1996 2070
Total transcripts 40199 39537 39806 40954

* TRT and TST represent GSB pathogen inoculated samples of PI511890 and Payzawat, respectively. TRC
and TSC represent the controls of PI511890 and Payzawat, respectively.

3.5 Identification of AS events and fusion genes

AS serves as an important regulatory mechanism to fine-tune plant response to environmental stimuli by
producing diverse transcripts. In this study, a total of 11,793 AS events including seven AS types were de-
tected (Supplementary Figure 4). A3 and A5 were the dominant types of AS events, accounting for 43.44%
and 38.86%, respectively (Figure 3C). Differential AS events were identified by calculating PSI (Supplemen-
tary Table 3). A total of 158 differential AS events were induced by GSB pathogen infection in Payzawat,
which were generated by 48 annotated genes and 80 novel genes. Moreover, 117 differential AS events pro-
duced by 59 annotated genes and 46 novel genes were identified in GSB pathogen inoculated PI511890.
KEGG enrichment analysis showed that the genes involved in differential AS events of Payzawat were sig-
nificantly enriched in pathways related to carbohydrate metabolism, including glyoxylate and dicarboxylate
metabolism, ascorbate and aldarate metabolism, and pyruvate metabolism. The pathway of RNA transport
was significantly enriched for the genes involved in differential AS events in PI511890 (Supplementary Table
4). These results suggested that AS events participate in the defense responses to GSB pathogen infection
in melon and exhibit significant differences between Payzawat and P1511890.

The candidate fusion genes were identified for each sample (Figure 3D). A total of 137 and 104 fusion genes
were identified in the control groups of Payzawat and PI511890, respectively. After GSB pathogen infection,
129 and 118 fusion candidates were identified in Payzawat and PI511890, respectively. No significant differ-
ences were observed for the number and functional annotation of the fusion genes between the treatment and
control groups. These results demonstrated that the fusion genes are probably not involved in the defense
response to GSB.
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3.6 Identification and functional enrichment analysis of DAMs

The samples at 24 hpi were further selected for widely targeted metabolome analysis. A total of 910
metabolites were identified, which could be divided into 11 classes (Figure 4A and Supplementary Table 5).
Among them, flavonoids were the largest group, accounting for 22.53% of the total identified metabolites.
Less variations were observed among biological replicates for each sample, but there were great variations
between samples of Payzawat and PI511890 based on PCA analysis (Figure 4B).

A total of 132 DAMs (83 up-regulated and 49 down-regulated) were induced in PI511890 by GSB pathogen
inoculation (Figure 4C), and 153 DAMs (73 up-regulated and 80 down-regulated) were detected in Payzawat.
There were 36 DAMs commonly detected in PI511890 and Payzawat after GSB pathogen infection (Figure
4D). Interestingly, there were six DAMs showing completely opposite accumulation patterns in Payzawat
and PI511890 (Figure 5A). Among them, oxalic acid and methyl caffeate were reported to be involved in
disease resistance. The accumulation of oxalic acid was increased in resistant PI5111890 while decreased in
susceptible Payzawat after GSB pathogen inoculation. An opposite accumulation pattern was observed for
methyl caffeate. These results suggested that methyl caffeate is probably not directly involved in the GSB
resistance. However, oxalic acid has the potential to be used as a marker metabolite for GSB resistance in
melon, especially at the early stage.
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Several flavonoids were found to be specifically accumulated in Payzawat and PI511890 after GSB infection,
respectively (Figure 5B). A total of 20 flavonoids (15 up-regulated and 5 down-regulated) were specifically
induced in Payzawat, among which apigenin and its derivatives were the most abundant. Moreover, there
were 23 flavonoids (17 up-regulated and 6 down-regulated) specifically induced in PI511890. Among them,
chrysoeriol and its derivatives were the most abundant. These results suggested that GSB pathogen infection
induces significant changes in the species and content of flavonoids in Payzawat and PI511890. Moreover,
chrysoeriol and its derivatives also have the potential to be used as marker metabolites for GSB resistance
in melon.

KEGG enrichment analysis of DAMs showed that seven pathways were enriched in both PI511890 and
Payzawat after infection, including amino acid metabolism (alanine, aspartate and glutamate metabolism,
phenylalanine metabolism), carbohydrate metabolism (C5-Branched dibasic acid metabolism, glyoxylate and
dicarboxylate metabolism), biosynthesis of other secondary metabolites (flavonoid biosynthesis), chemical
structure transformation maps (biosynthesis of plant hormones, and biosynthesis of phenylpropanoids) (Fig-
ure 5C). The results indicated that these pathways are involved in the common defense response of melon to
GSB. Moreover, there were nine pathways specifically enriched in PI511890 after infection, including amino
acid metabolism (tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis), membrane
transport (phosphotransferase system, ABC transporters), carbohydrate metabolism (ascorbate and aldarate
metabolism), biosynthesis of secondary metabolites, metabolism of cofactors and vitamins. On the other
hand, 11 pathways were specifically enriched in Payzawat after infection, such as biosynthesis of other
secondary metabolites (flavone and flavonol biosynthesis), carbohydrate metabolism (pentose phosphate
pathway, butanoate metabolism), lipid metabolism (linoleic acid metabolism), amino acid metabolism (ly-
sine biosynthesis, glutathione metabolism), metabolism of cofactors and vitamins (vitamin B6 metabolism),

11



and PPAR signaling pathway. These results demonstrated that PI511890 and Payzawat exhibit contrasting
defense responses to GSB by regulating different metabolic pathways.
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Figure 5 KEGG enrichment analysis of DAMs and in-depth analysis of key metabolites. A : Six DAMs (a-f)
with opposite accumulation patterns in Payzawat and PI511890. The horizontal axis indicates the value of
logoFoldChange. Blue bars represent the down-regulated DAMs. Orange bars represent up-regulated DAMs.
B : Flavonoids specifically accumulated in Payzawat and P1511890 after GSB pathogen infection. C : KEGG
enrichment analysis for DAMs. MRT and MST represent the samples of GSB pathogen inoculated P1511890
and Payzawat, respectively. MRC and MSC represent the controls of PI511890 and Payzawat, respectively.

3.7 Integration of transcriptome and metabolome profiles

To systematically understand the defense response of melon to GSB at both transcriptomic and metabolic
levels, an integrated transcriptome and metabolome analysis was performed. A total of eight and 18 KEGG
pathways were significantly enriched in transcriptome and metabolome in PI511890 after infection, respec-
tively (Figure 6A). However, only phenylpropanoid biosynthesis and flavonoid biosynthesis were commonly
enriched for both DEGs and DAMs in PI511890 after infection. Similarly, a total of 21 and 20 KEGG
pathways were enriched for DEGs and DAMs in Payzawat after infection, respectively (Figure 6A). Several
pathways, including amino acid metabolism (alanine, aspartate and glutamate metabolism, phenylalanine
metabolism, butanoate metabolism, glutathione metabolism), carbohydrate metabolism (pentose phosphate
pathway, glyoxylate and dicarboxylate metabolism), and biosynthesis of other secondary metabolites (phenyl-
propanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, flavone and flavonol biosyn-
thesis), were commonly enriched in transcriptome and metabolome in Payzawat after infection.

Since phenylpropanoid biosynthesis was the only pathway commonly enriched for DEGs and DAMs in both
PI511890 and Payzawat after GSB pathogen infection, the profiles of genes and metabolites in this pathway

12



were further analyzed (Figure 6). Except for the gene encoding chalcone isomerase (MELO3C016680.2
) that was down regulated in PI511890, the other genes were mainly upregulated in both PI511890 and
Payzawat after GSB pathogen infection. Accumulation of lignins decreased in PI511890 but not changed
in Payzawat. Accumulation of eriodictyol specifically increased in PI511890, while apigenin specifically
increased in Payzawat. Furthermore, glyoxylate and dicarboxylate metabolism and metabolic pathways
were also enriched in transcriptome and metabolome, in which the accumulation of oxalic acid in PI511890
was significantly upregulated in glyoxylate cycle and citric acid cycle (TCA cycle) (Supplementary Figure 5,
Supplementary Figure 6). These results demonstrated that eriodictyol and oxalic acid have the potential to
be used as marker metabolites for GSB resistance in melon. Moreover, the inconsistency of gene expression
patterns and the related metabolite accumulation patterns suggested that post-transcription regulation is
widely involved in the defense response of melon to GSB.
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Figure 6Integrated analysis of transcriptome and metabolome. A: Venn diagram of KEGG pathways
enriched for DEGs and DAMs in Payzawat and PI511890. B: Diagram of partial regulatory pathways for
genes and metabolites. Yellow nodes are metabolites, and purple nodes are genes. The values of LFC for key
DEGs and DAMs are marked. MRT and MST represent the samples of GSB pathogen inoculated P1511890
and Payzawat, respectively. MRC and MSC represent the controls of PI511890 and Payzawat, respectively.

4. Discussion

GSB is a prevalent fungal disease not only for melon but also for most commonly cultivated cucurbits, which
is also considered as a potential risk in the global movement of plant pathogens as it can be on or in seeds
and transplants (Seblani et al., 2023). Several GSB resistant resources and related inheritance of resistant
genes have been identified in melon (Luo et al., 2022). However, the interaction between melon and GSB and
the related disease resistance mechanism are still unknown, which impedes genetic improvement of melon
with GSB resistance. To address these problems, full-length transcriptome, metabolome, and histochemical
staining methods were used in this study to reveal the early defense response of melon to GSB.

Plants cope with pathogen attack through the innate immune response initiated by cell surface-localized
pattern-recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat con-
taining receptors (NLRs), which trigger pattern-triggered immunity (PTI) and effector-triggered immunity
(ETT), respectively (Yuan et al., 2021). Upon recognition of pathogen or microbe-associated molecular pat-
terns (PAMPs/MAMPs), cell surface-localized PRRs recruit co-receptors to form receptor complexes and
activate downstream phosphorylate receptor-like cytoplasmic kinases (Liang & Zhou, 2018), which subse-
quently phosphorylate downstream components to trigger ROS burst, Ca?* influx, MAPK activation, phy-
tohormone production, and transcriptional reprograming. NLRs form resistosomes upon activation, which
eventually leads to multiple immune responses (Yuan et al., 2021). Several studies have also shown that
plant MAPK cascades play pivotal roles in signaling plant defense against pathogen attack (Zhang & Zhang,
2022). In this study, through staining experiments, we found that the growth of S. cucurbitacearum was
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significantly inhibited in P1511890, and O?% and H»O, were accumulated significantly at 24 hpi. DEGs in-
cluding novel genes were specifically enriched in the MAPK signaling pathway in PI511890, indicating that
the MAPK signaling pathway is involved in the resistance of melon to GSB pathogen infection. Additionally,
GO enrichment analysis showed that hydrogen peroxide catabolic process, cell wall organization, response to
wounding, and defense response were significantly enriched in PI511890, suggesting that PI511890 inhibits
S. cucurbitacearum invasion probably by catabolizing hydrogen peroxide and preventing pathogenic fungi to
destroy cell wall.

The inherent advantage of full-length transcriptome makes it possible to understand the complexity of AS
events at the whole genome scale. AS is an important modulator of gene expression that can increase pro-
teome diversity (Ule & Blencowe, 2019). In this study, 11793 AS events including seven types were detected,
which followed an order of A3 > A5 > RI > SE > AF > AL > MX in the number of members. Moreover, 158
differential AS events were related to carbohydrate metabolism in Payzawat after GSB pathogen infection,
while 117 differential AS events were related to RNA transport in PI511890 after infection. These results
demonstrated that AS events are widely involved in the early response of melon to GSB infection.

It has been reported that oxalic acid has a protective effect against pathogen attack (Palmieri et al., 2019;
Schmalenberger et al., 2015). In this study, oxalic acid was positively accumulated in PI1511890, while
decreased in Payzawat after GSB pathogen infection. In the pathway of glyoxylate and dicarboxylate
metabolism enriched by DEGs, the positively accumulated oxalic acid was derived from the glyoxylate cycle.
Moreover, the pathway of chloroalkane and chloroalkane degradation, which promotes the accumulation of
oxalic acid, was also enriched by DAMs in PI511890 after GSB pathogen infection. The pathways enriched
by both DEGs and DAMSs, as well as the significantly increased accumulation of oxalic acid induced by GSB
in PI511890, demonstrated that oxalic acid can be used as a metabolite mark for GSB resistance in melon.

Lignin acts as a passive physical barrier (Lee et al., 2019; Vanholme et al., 2019), and reduction of its synthesis
can relax cell wall structure to facilitate the release of DAMPs by pathogens (Savatin et al., 2014; Xiao et al.,
2021), thereby initiating the immune response of plants to enhance disease resistance. In this study, lignin
content in PI511890 was lower than that in Payzawat after GBS pathogen infection, suggesting that lignin is
also involved in the GSB resistance in melon. Additionally, flavonoid metabolites have multifaceted roles in
mediating plant-microbe interactions (Wang et al., 2022). The differentially accumulated flavonoids differed
between PI511890 and Payzawat after GSB pathogen infection. Eriodictyol was specifically accumulated in
infected PI511890 and apigenin was specifically accumulated in infected Payzawat. It is currently unknown
how these two metabolites contribute to the GSB resistance, but the discrepancy between them must be
related to the difference in GSB resistance between PI511890 and Payzawat.

Combined transcriptome and metabolome analysis provides an important approach for the mining of
metabolic networks and key genes (Gong et al., 2021; Wei et al., 2016). In this study, we established
the relationship between DEGs and DAMs, and found that eriodictyol and oxalic acid have the potential
to be used as marker metabolites for GSB resistance in melon. However, no significant correlations were
observed between accumulation patterns of DAMs and expression profiles of DEGs in the same enriched
pathways. These results demonstrated that post-transcription regulation is widely involved in the defense
response of melon to GSB. This study provides some insights and theoretical basis for understanding the
resistance mechanism of melon to GSB. However, the specific disease resistance mechanism and relevant
effectors remain to be further explored. Thus, other multi-omics studies should be incorporated to establish
a more comprehensive metabolic regulatory network for understanding the resistance of melon to GSB.
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