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Abstract

In this paper, we study the stability and convergence of a conservative Crank-Nicolson finite difference scheme applied to

the Korteweg-De Vries (KdV) equation endowed with initial data. We design a three-point average scheme associated to the

convective term and the dispersion term is discretized by certain discrete operators along with the Crank-Nicolson scheme for

the temporal discretization to establish that the proposed scheme is L 2 -conservative. The convergence analysis reveals that

utilizing inherent Kato’s local smoothing effect, the proposed scheme converges to a classical solution for sufficiently regular

initial data u 0 [?] H 3 ( R ) and to a weak solution in L 2 ( 0 , T ; L loc 2 ( R ) ) for non-smooth initial data u 0 [?] L 2 ( R

) . Optimal convergence rates in both space and time for the devised scheme are derived. The theoretical results are justified

through several numerical illustrations.
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CONVERGENCE OF A CONSERVATIVE CRANK-NICOLSON FINITE

DIFFERENCE SCHEME FOR THE KDV EQUATION

MUKUL DWIVEDI AND TANMAY SARKAR

Abstract. In this paper, we study the stability and convergence of a conservative Crank-

Nicolson finite difference scheme applied to the Korteweg-De Vries (KdV) equation endowed with

initial data. We design a three-point average scheme associated to the convective term and the
dispersion term is discretized by certain discrete operators along with the Crank-Nicolson scheme

for the temporal discretization to establish that the proposed scheme is L2-conservative. The
convergence analysis reveals that utilizing inherent Kato’s local smoothing effect, the proposed
scheme converges to a classical solution for sufficiently regular initial data u0 ∈ H3(R) and to a

weak solution in L2(0, T ;L2
loc(R)) for non-smooth initial data u0 ∈ L2(R). Optimal convergence

rates in both space and time for the devised scheme are derived. The theoretical results are
justified through several numerical illustrations.

1. Introduction

The Korteweg–de Vries (KdV) equation, a cornerstone in the study of nonlinear dispersive
long waves, finds applications in diverse fields such as inverse scattering methods and plasma
physics [3, 13, 22, 26]. It describes the evolution of weakly nonlinear and weakly dispersive waves
in one spatial dimension. The historical significance of KdV equation stems from its emergence in
analysing surface water waves and its pivotal role in soliton theory. Notably, the KdV equation
supports soliton solutions—persistent, stable solitary waves that arise from a delicate balance
between nonlinearity and dispersion [24, 31]. These solitons play a crucial role in understanding
wave interactions and propagation phenomena. Motivated by this, we consider the following initial
value problem related to the KdV equation:{

ut + uux + uxxx = 0, (x, t) ∈ RT := R× (0, T ),

u(0, x) = u0(x), x ∈ R,
(1.1)

where u : RT −→ R is the unknown solution to be found, T > 0 is fixed, and u0 is the initially
prescribed data at t = 0.

The KdV equation (1.1) is well-posed and it has been the subject of extensive investigation in
the literature. Bona and Smith in [3] made pioneering contributions by establishing the first results
on local and global well-posedness for the KdV equation. Specifically, they demonstrated local
well-posedness for initial data in Hs with s > 3/2 and global well-posedness for s ≥ 2. Building on
this foundation, subsequent research by Kenig et al. [18] and Killip et al. [19] extended the result
of global well-posedness to encompass initial data in negative-order Sobolev spaces. Furthermore,
Zhou [32] proved that the weak solutions of the KdV equation are uniquely determined by their
initial data.
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2 M. DWIVEDI AND T. SARKAR

The numerical computation of solutions for (1.1) presents inherent challenges. It is well-known
that the equation (1.1) exhibits two competing effects that contribute to the difficulties encountered
in the numerical approximation process. The inclusion of the nonlinear convection term uux in
equations like the Burgers equation ut + uux = 0 results in the emergence of shocks within finite
time even for regular initial data [20, 28]. Additionally, the presence of the linear third order
dispersive term uxxx inherent in the KdV equation introduces dispersive waves that are arduous
to compute with high accuracy and efficiency. Consequently, due to the combined effects of the
nonlinear convection term and the dispersive term, accurate and efficient numerical methods for
the KdV equation remain a highly intricate task. However, there are several works related to the
numerical computations of the Cauchy problem (1.1). We will not provide the full literature but
mention those which are relevant to this paper.

Sjöberg [26] initiated the convergence analysis of the KdV equation through a semidiscrete
scheme for the initial data in H3(R). This also yields global well-posedness of (1.1) due to its
conservation in the L2 norm. Afterwards, the numerical treatment with convergence analysis of
the scheme for the KdV equation has also garnered significant attention in the last few decades,
leading to the development of various computational methods. For instance, Amorim and Figueira
[2] introduced a semi-discrete finite difference method designed for L2 initial data by introducing a
fourth order stabilization term. However, the study lacked a fully discrete convergence analysis,
and conclusive evidence from the numerical illustrations. Holden et al. [14] introduced a fully
discrete finite difference scheme for the KdV equation (1.1) applicable to both H3 and L2 initial
data, which is shown to be first order accurate numerically. Recently, Courtès et al. [5] designed
a convergent finite difference scheme considering a 4-point θ scheme for the dispersive term and
demonstrated its first order accuracy. For other finite difference related work involving (1.1), one
can refer to [12, 21, 27, 11, 23, 1, 30] and references therein. Apart from the finite difference
approaches, there are developments in the direction of Galerkin schemes for (1.1). Dutta et al. [7]
proposed a higher-order finite element method tailored for L2 initial data. Holden et al. [13, 15]
devised an operator splitting method which is also first order accurate. This technique is further
generalized in [9]. Additionally, Dutta et al. [8] presented a Crank-Nicolson Galerkin scheme
specifically designed for L2 initial data.

In this paper, our aim is to develop a fully discrete implicit finite difference scheme of (1.1)
which is conservative and provides higher convergence rates. In this regard, we design an efficient
conservative finite difference scheme by discretizing the time derivative using the Crank-Nicolson
method. We demonstrate the following behaviour of the scheme:

(1) The proposed scheme is L2 conservative. However, the implicit nature of the scheme
requires proving its solvability at each time step. This will be accomplished by defining a
suitable iterative scheme.

(2) We prove that the difference approximations obtained by the proposed scheme converge
to a classical solution of the KdV equation (1.1) provided the initial data is sufficiently
regular. The idea of the proof differs significantly from [14]. Whenever the initial data
u0 ∈ L2(R), motivated by the work [7, 10, 8], we utilize the inherent Kato’s type [16] local
smoothing effect. We establish the discrete analogue of this effect for the approximate
solution obtained through our devised finite difference scheme. This ensures the efficacy of
our approach in handling non-smooth initial data, providing a comprehensive framework
for the stability and convergence analysis. More precisely, ensuring the compactness of
the difference approximations through the Aubin-Simon compactness lemma, we show the
convergence of weak solution in the space L2(0, T ;L2

loc(R)).
(3) We investigate the theoretical convergence rates under certain assumptions on the initial

data. We prove that the proposed scheme is second order accurate. Furthermore, these
convergence rates are justified through the numerical experiments of one soliton and two
soliton cases. Since the real solutions of IVP (1.1) possess mainly three conserved quantities:

C1(u) : =

∫
R
u(x, t) dx, C2(u) :=

∫
R
u2(x, t) dx,
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C3(u) : =

∫
R

(
(∂xu)

2 − u3

3

)
(x, t) dx.

As mentioned in [4, 25], a numerical scheme which conserves the discrete version of the
above quantities are considered to be more accurate in compare to the methods which
are not. We shall demonstrate that the proposed numerical scheme conserves a discrete
version of these quantities.

In this paper, C denotes a generic constant whose value can change in each step and it is
independent of both the spatial step ∆x and time step ∆t.

The rest of the paper is organized as follows: In Section 2, we lay the foundation by establishing
preliminary estimates and introducing discrete operators. In addition, we present the proposed a
conservative Crank-Nicolson finite difference scheme for the KdV equation (1.1). Moving on to
Section 3, we analyze the convergence of the approximate solutions for both regular and less regular
initial data. Theoretical insights into the convergence rates are explored in Section 4. Finally, in
Section 5, we validate our theoretical findings through a series of numerical illustrations. This
comprehensive organization ensures a systematic and coherent presentation of our methodology,
analysis, and numerical results.

2. Notations and Preliminary Estimates

2.1. Discrete operators. We use uniform discretization of space and time using the nodal points
xj = j∆x, j ∈ Z and tn = n∆t, n ∈ N0 := N ∪ {0}, where ∆x and ∆t are spatial and temporal
steps respectively. We denote Xj := [xj , xj+1) for j ∈ Z and Tn := [tn, tn+1) for n ∈ N0. The
difference operators for a function v : R → R are defined as

D±v(x) = ± 1

∆x

(
v(x±∆x)− v(x)

)
, D =

1

2
(D+ +D−), D3 = D−DD+. (2.1)

We also introduce the shift operators

S±v(x) = v(x±∆x),

and the averages ṽ(x) and v̄(x) are defined by

ṽ(x) :=
1

3

(
S+v(x) + v(x) + S−v(x)

)
, v̄(x) :=

1

2
(S+ + S−)v(x).

The difference operators satisfy the following identities

D(vw) = v̄Dw + w̄Dv,

D±(vw) = S±vD±w + wD±v = S±wD±v + vD±w.

For any given function v, we define vj = v(xj). Moreover for v, w ∈ ℓ2, we define the usual inner
product and norm as

⟨v, w⟩ = ∆x
∑
j∈Z

vjwj , ∥v∥ = ∥v∥2 = ⟨v, v⟩1/2. (2.2)

It is observed that the difference operators satisfy shifting properties within the inner product

⟨v,Dw⟩ = −⟨Dv,w⟩, ⟨v,D±w⟩ = −⟨D∓v, w⟩.

We define the discrete Sobolev h3-norm of a grid function v as

∥v∥h3 := ∥v∥+ ∥D+v∥+ ∥D+D−v∥+
∥∥D3v

∥∥ . (2.3)

Using the properties of the difference operator, we deduce the following identities

⟨D(vw), w⟩ = ∆x

2
⟨D+vDw,w⟩+

1

2
⟨S−wDv,w⟩, (2.4)

D3(vw) = D−vD+w + S−vD3w +D+vD+w + D3vDw. (2.5)

The difference operator in time for v : [0, T ] → R is given by

∆tD±v(t) = ± (v(t+∆t)− v(t)) , t ∈ [0, T −∆t].
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A fully discrete grid function v∆x : ∆xZ×∆tN0 → R is defined as

v∆x(xj , tn) = vnj , j ∈ Z, n ∈ N0.

We omitted ∆t in the definition of grid function due to the CFL-condition. Furthermore, we denote
vn := {vnj }j∈Z.

2.2. Preliminary estimates. We begin with introducing discrete Sobolev inequality and a pivotal
lemma establishing a relationship between continuous and discrete Sobolev norms. More precisely,
we have the following results:

Lemma 2.1. Let u be a grid function and ∥u∥∞ = max{|uj | : j ∈ Z} be a supremum norm. Then
we have the following estmate:

∥u∥∞ ≤ 2 ∥u∥1/2 ∥D+u∥1/2 (2.6)

Proof. By using Hölder’s inequality

u2j =

j∑
i=−∞

(
u2i+1 − u2i

)
= ∆x

j∑
i=−∞

(ui+1 + ui)
ui+1 − ui

∆x

=

(
∆x

j∑
i=−∞

(ui+1 + ui)
2

)1/2( j∑
i=−∞

(D+ui)
2

)1/2

≤ 2 ∥u∥ ∥D+u∥ .

Hence the result (2.6) is obtained. □

As a consequence, we have

∥v∥∞ ≤ 1

∆x1/2
∥v∥ , ∥Dv∥ ≤ 1

∆x
∥v∥ . (2.7)

Lemma 2.2. Let u ∈ H3(R). Assume that u∆x = {u(xj)}j∈Z. Then for some constant C, we
have

∥u∆x∥h3 ≤ C ∥u∥H3 , (2.8)

where the norm ∥ · ∥h3 is defined by (2.3).

Proof. We observe that∥∥D3u
∥∥2 = ∆x

∑
i

(
1

∆x
(D−Du(xi+1)−D−Du(xi))

)2

= ∆x
∑
i

(∫
Xi

1

∆x
∂xD−Du(x) dx

)2

≤ ∆x
∑
i

(∥∥∥∥ 1

∆x

∥∥∥∥
L2(Xi)

∥∂xD−Du(x)∥L2(Xi)

)2

,

where we have used the Hölder’s inequality. Using the fact that the difference operator commutes
with the continuous operator ∂x, we get∥∥D3u

∥∥2 ≤ ∥D−D∂xu∥2 .

Similar calculations yield

∥D−D∂xu∥2 ≤
∥∥D∂2xu∥∥2 ≤

∥∥∂3xu∥∥2 ≤ ∥u∥2H3 .

Following the similar arguments, we have

∥D+u∥ ≤ ∥∂xu∥L2 , ∥D+D−u∥ ≤ ∥∂2xu∥L2 .

Hence the estimate (2.8) is obtained. □
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2.3. Numerical scheme. We propose the following conservative Crank-Nicolson(CN) fully discrete
finite difference scheme:

un+1
j = unj −∆tũ

n+1/2
j Du

n+1/2
j −∆tD3u

n+1/2
j , n ∈ N0, j ∈ Z. (2.9)

For the initial data, we have

u0j = u0(xj), j ∈ Z.

The scheme (2.9) is L2-conservative in nature. To demonstrate this, let us assume that the
scheme has a unique solution, although we will prove this in a subsequent section. Delving into the
details, we perform an inner product of (2.9) with un+1/2 to obtain

∥un+1∥2 = ∥un∥2 −∆t⟨B(un+1/2), un+1/2⟩ −∆t⟨D3(un+1/2), un+1/2⟩, (2.10)

where the discretized convective term is denoted by B(u) = ũDu. Furthermore, we observe that

⟨B(u), u⟩ = 0, ⟨D3(u), u⟩ = 0.

Subsequently, from (2.10), we end up with ∥un+1∥ = ∥un∥ for all n ∈ N.
The smoothness and non-smoothness of the initial data u0 plays a crucial role in the study of

convergence of the finite difference scheme (2.9). We focus on the convergence of the scheme (2.9)
in the subsequent sections.

3. Convergence analysis of the scheme

Hereby our aim is to prove that the approximate solutions obtained by the CN scheme (2.9)
converges to the unique solution of (1.1) if the given initial data u0 ∈ H3(R) and to the weak
solution in L2([0, T );L2

loc(R)) if the initial data u0 ∈ L2(R). It’s important to note that the
numerical scheme (2.9) is implicit in nonlinear term, hence we have to ensure that there exists
a unique solution. To ensure the solvability of (2.9), we will consider the fixed-point iteration
technique as in [6, 10, 29] and prove the solvability at each time step in the following Lemma 3.1
and Lemma 3.7 for the initial data in H3 and L2 respectively.

We commence by introducing the sequence {ωℓ}ℓ≥0, which solves the following iterative equation:{
ωℓ+1 = un −∆tB

(
un+ωℓ

2

)
−∆tD3

(
un+ωℓ+1

2

)
,

ω0 = un.
(3.1)

The linearity of the iteration in ωℓ+1 allows us to express it in a more structured form:(
1 +

∆t

2
D3

)
ωℓ+1 = un −∆tB

(
un + ωℓ

2

)
− ∆t

2
D3un. (3.2)

Since the matrix obtained by applying the operator ∆t
2 D3 on the vector ωℓ+1 is skew-symmetric,

the resulting coefficient matrix on the left-hand side of (3.2) is positive definite. This is evident
from the skew-symmetric property of the discrete operator D3,

D3ωℓ+1
j =

1

2∆x3
(
ωℓ+1
j+2 − ωℓ+1

j+1 + ωℓ+1
j−1 − ωℓ+1

j−2

)
.

We remark that the positive definiteness of the matrix ensures the existence and uniqueness of the
iterative scheme (3.1).

3.1. Convergence analysis with H3 initial data. Consider the case where the initial data
u0 is sufficiently smooth. In this subsection, we establish the stability of the CN scheme and
demonstrate that the approximate solution obtained by (2.9) converges to the classical solution
of (1.1). The iterative scheme (3.1) is instrumental in handling the non-linearity with an implicit
term. We begin by proving a lemma which ensures that the scheme is solvable at each time step,
whenever the initial data u0 belongs to H3(R). The following lemma sets the foundation for the
subsequent stability and convergence analysis.
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Lemma 3.1. Let K = 4−L
1−L > 4 be a constant with 0 < L < 1 and assume the CFL condition:

λ ≤ L

K∥un∥h3

, (3.3)

where λ = ∆t
∆x . Consider the iteration given by (3.1). Then

lim
ℓ−→∞

ωℓ = un+1

and un+1 solves the equation (2.9). Moreover, the following h3-bound holds:

∥un+1∥h3 ≤ K∥un∥h3 . (3.4)

Proof. To establish the convergence of the iterative sequence ωℓ defined by (3.1), we use the
induction procedure. Starting with the first iteration (3.1), we express ω1 as:

ω1 = un −∆tB(un)−∆tD3
(un + ω1

2

)
. (3.5)

We show that ω1 is h3-bounded by applying the difference operator D3 to (3.5) and performing
the inner product with D3(un + ω1) yields

∥D3ω1∥2 =
∥∥D3un

∥∥2 −∆t⟨D3B(un),D3(un + ω1)⟩
=∥D3un∥2 −∆t⟨D3B(un),D3(ω1)⟩ −∆t⟨D3B(un),D3(un)⟩

≤∥D3un∥2 +∆t2∥D3B(un)∥2 + 1

4
∥D3ω1∥2 +∆t2∥D3B(un)∥2 + 1

4
∥D3un∥2.

In order to estimate the nonlinear part, we apply the Lemma A.1 in [14] and along with the identity
(2.5) to get

∥D3B(un)∥ = ∥D3(ũnDun)∥
≤ ∥D−ũ

nD+Du
n∥+ ∥ũnD3Dun∥+ ∥D+ũ

nD+Du
n∥+ ∥D3ũnDDun∥

≤ ∥D−ũ
n∥∞∥un∥h3 +

1

∆x
∥ũn∥∞∥un∥h3 + ∥D+ũ

n∥∞∥un∥h3 + ∥ũn∥h3∥DDun∥∞

≤ 2

∆x
∥un∥2h3 .

Hence we end up with

∥D3ω1∥ ≤
√

4

3

(
5

4
+ 8λ2∥un∥2h3

)1/2

∥un∥h3 . (3.6)

The choice of L and K implies √
4

3

(
5

4
+ 8λ2∥un∥2h3

)1/2

≤ 2.

Proceeding in a similar way as above, we estimate the lower-order difference operator. Hence we
have

∥ω1∥h3 ≤ 2∥un∥h3 ≤ K∥un∥h3 . (3.7)

Next our aim is to estimate for
∥∥ω2 − ω1

∥∥
h3 . From the iteration (3.1), we have(

1 +
1

2
∆tD3

)
∆ωℓ = −∆t∆B, (3.8)

where ∆ωℓ := ωℓ+1 − ωℓ and ∆B is given by

∆B :=

[
B
(
un + ωℓ

2

)
− B

(
un + ωℓ−1

2

)]
.
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We apply the discrete operator D3 to (3.8) and subsequently performing the inner product with
D3∆ωℓ, we obtain

∥D3∆ωℓ∥2 = ∆t
〈
D3∆B,D3∆ωℓ

〉
≤ ∆t∥D3∆B∥∥D3∆ωℓ∥.

Observe that ∆B can also be represented as

∆B = −1

4

[
∆̃ωℓ−1D(un + ωℓ−1) + ˜(un + ωℓ)D(∆ωℓ−1)

]
.

The term ∥D3∆B∥ can be estimated by applying the Lemma A.1 in [14], and the discrete Sobolev
inequality ∥u∥∞ ≤ ∥u∥h1 along with the identity (2.5). Hence we have

∥D3
(
∆̃ωℓ−1D(un + ωℓ−1)

)
∥

≤ ∥D−∆̃ωℓ−1D+D(un + ωℓ−1)∥+ ∥∆̃ωℓ−1D3D(un + ωℓ−1)∥

+ ∥D+∆̃ωℓ−1D+D(un + ωℓ−1)∥ + ∥D3∆̃ωℓ−1DD(un + ωℓ−1)∥

≤ ∥D−∆̃ωℓ−1∥∞∥(un + ωℓ−1)∥h3 +
1

∆x
∥∆̃ωℓ−1∥∞∥un + ωℓ−1∥h3

+ ∥D+∆̃ωℓ−1∥∞∥un + ωℓ−1∥h3 + ∥∆̃ωℓ−1∥h3∥DD(un + ωℓ−1)∥∞

≤ 1

∆x
max

{
∥un∥h3 , ∥ωℓ∥h3 , ∥ωℓ−1∥h3

}
∥∆ωℓ−1∥h3 ,

and similarly, we also have the following estimate

∥D3
( ˜(un + ωℓ)D∆ωℓ−1

)
∥ ≤ 1

∆x
max

{
∥un∥h3 , ∥ωℓ∥h3 , ∥ωℓ−1∥h3

}
∥∆ωℓ−1∥h3 .

Combining the above estimates together, we conclude that

∥D3∆ωℓ∥ ≤ λmax
{
∥un∥h3 , ∥ωℓ∥h3 , ∥ωℓ−1∥h3

}
∥∆ωℓ−1∥h3 . (3.9)

Furthermore, in a similar manner, one can estimate ∥D+D−∆ω
ℓ∥, ∥D+∆ω

ℓ∥, and ∥∆ωℓ∥ like (3.9).
Summing up all these estimates provides

∥∆ωℓ∥h3 ≤ λmax
{
∥un∥h3 , ∥ωℓ∥h3 , ∥ωℓ−1∥h3

}
∥∆ωℓ−1∥h3 . (3.10)

For ℓ = 1, we can rewrite the estimate (3.10) by leveraging the assumption (3.12) and the CFL
condition (3.3). This yields:

∥∆ω1∥h3 ≤ λmax
{
∥un∥h3 , ∥ω1∥h3

}
∥∆ω0∥h3 ≤ Kλ∥un∥h3∥∆ω0∥h3 ≤ L∥∆ω0∥h3 . (3.11)

Based on the previous estimates (3.7) and (3.11), we carry out the induction argument by assuming
that

∥ωℓ∥h3 ≤ K∥un∥h3 for ℓ = 2, 3, ...,m, (3.12)

∥∆ωℓ∥h3 ≤ L∥∆ωℓ−1∥h3 for ℓ = 2, 3, ...,m. (3.13)

Subsequently, we shall establish (3.12) and (3.13) for ℓ = m+ 1. For this, we observe that

∥ωm+1∥h3 ≤
m∑
ℓ=0

∥∆ωℓ∥h3 + ∥un∥h3

≤ ∥ω1 − un∥h3

m∑
ℓ=0

Lℓ + ∥un∥h3

≤
(
∥ω1∥h3 + ∥un∥h3

) 1

1− L
+ ∥un∥h3

≤ 4− L

1− L
∥un∥h3 = K∥un∥h3 .

Finally, we end up with

∥∆ωm+1∥h3 ≤ λK∥un∥h3∥∆ωm∥h3 ≤ L∥∆ωm∥h3 ,
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where (3.3) and (3.10) are incorporated. Summing up all the above estimates, we have the desired
result (3.4), and by (3.13), it is clear that {ωℓ} is a Cauchy sequence, hence it converges to un+1.
This completes the proof.

□

Remark 3.2. The Lemma 3.1 implies that the solvability of the scheme (3.1) at each time step
under the CFL condition (3.3), where λ depends on the n-th step. We need to show the ratio λ
between spatial and temporal bound depends only on the initial data u0 to demonstrate the stability
of (3.1).

The following lemma establishes local a priori bounds of the approximated solution un under
the h3-norm and along with that we seek for a temporal derivative bound of the approximations
which is crucial for the convergence proof.

Lemma 3.3. Let u0 ∈ H3(R). Assume that ∆t and ∆x satisfies

λ =
∆t

∆x
≤ L

KM
(3.14)

for some M =M(∥u0∥h3). Then there exist a time T > 0, which depends on ∥u0∥h3 , such that

∥un∥h3 ≤ C, for n∆t ≤ T, (3.15)∥∥Dt
+u

n
∥∥ ≤ C, for n∆t ≤ T, (3.16)

where the constant C = C(∥u0∥h3). Estimate (3.16) is a temporal derivative bound.

Proof. Assuming D3un = 0, it follows that un = 0 and un+1 = 0 since both un and un+1 belong
to ℓ2. Consequently, (3.15) holds trivially. Therefore, we proceed under the assumption that
D3un ̸= 0.

We will apply the difference operator D3 to (2.9) and performing the inner product with D3un+1/2

yields:
1

2
∥D3un+1∥2 =

1

2
∥D3un∥2 −∆t⟨D3B(un+1/2),D3un+1/2⟩,

which can be further expressed as:

∥D3un+1∥ − ∥D3un∥ ≤ 2∆t
⟨D3B(un+1/2),D3un+1/2⟩

∥D3un+1∥+ ∥D3un∥
. (3.17)

For the sake of simplicity in notation, we temporarily denote u instead of un+1/2, dropping the
scripted term n+ 1/2. The earlier estimate (2.5) yields

⟨D3B(u),D3u⟩ =⟨D3(ũDu),D3u⟩
=⟨D−ũD+(Du),D3u⟩+ ⟨S−ũD3(Du),D3u⟩

+ ⟨D+ũD+(Du),D3u⟩+ ⟨D3ũDu,D3u⟩
= : I1 + I2 + I3 + I4.

Let us estimate one by one. By employing discrete Sobolev inequality ∥D−ũ∥∞ ≤ 2(∥D3u∥+ ∥u∥),
we have

|I1| ≤ ∥D−ũ∥∞
∥∥D3u

∥∥2 ≤ 2(
∥∥D3u

∥∥+ ∥u∥)
∥∥D3u

∥∥2
≤ 2

∥∥D3u
∥∥ ∥u∥2h3 .

In a similar way, we have the following estimates

|I3| ≤ 2
∥∥D3u

∥∥ ∥u∥2h3 and |I4| ≤ 2
∥∥D3u

∥∥ ∥u∥2h3 .

We are left with the estimate of I2 which can be performed by using (2.4) and (2.7) as follows

I2 = ⟨S−ũD3(Du),D3u⟩
= ⟨DD3u, S−ũD3u⟩ = −⟨D(S−ũD3u),D3u⟩

=
∆x

2
⟨D+(S

−ũ)DD3u,D3u⟩+ 1

2
⟨S−(D3u)D(S−ũ),D3u⟩,
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and consequently, we have the following estimate

|I2| ≤ 2
∥∥D3u

∥∥ ∥u∥2h3 .

Incorporating all the estimates on Ii, i = 1, 2, 3, 4, we obtain

2

∣∣⟨D3B(un+1/2),D3un+1/2⟩
∣∣

∥D3un+1∥+ ∥D3un∥
≤ 4

∥∥D3un+1/2
∥∥∥∥un+1/2

∥∥2
h3

∥D3un+1∥+ ∥D3un∥
≤ 2

∥∥∥un+1/2
∥∥∥2
h3
.

Thus the estimate (3.17) turns into∥∥D3un+1
∥∥ ≤ ∥D3un∥+ 4∆t

⟨D3B(un+1/2),D3un+1/2⟩
∥D3un+1∥+ ∥D3un∥

≤
∥∥D3un

∥∥+ 2∆t
∥∥∥un+1/2

∥∥∥2
h3
.

For the lower-order derivatives, we follow the similar arguments as above, and using the conservation
property, we end up with ∥∥un+1

∥∥
h3 ≤ ∥un∥h3 + 2∆t

∥∥∥un+1/2
∥∥∥2
h3
. (3.18)

Let y(t) solve the differential equation

y′(t) =
1

2
(K + 1)2y(t)2, y(0) = ∥u0∥h3 .

It is observed that y(t) is convex and increasing for all t < T∞/2, where T∞ = ( 12 (K+1)2∥u0∥h3)−1.

In addition, if we choose t < T∞
2 =: T < T∞, then y(t) ≤ y(T ) =:M .

Next we claim that ∥un∥h3 ≤ y(tn) ≤ M for tn ≤ T through mathematical induction. The
claim is evident for n = 0. Now we assume that the estimate holds for n = 1, . . . ,m. As
∥um∥h3 ≤ y(tm) ≤ y(T ) =:M , then the CFL condition (3.14) implies condition (3.3). Thus from
the Lemma 3.1, we have

∥um+1/2∥h3 ≤ (K + 1)

2
∥um∥h3 . (3.19)

Since y is increasing and convex, then (3.18) and (3.19) yield the following estimate

∥um+1∥h3 ≤ ∥um∥h3 +
1

2
∆t((K + 1)∥um∥h3)2 ≤y(tm) +

1

2
∆t((K + 1)y(tm))2

≤y(tm) +

∫ tm+1

tm

1

2
(K + 1)2y(tm)2 dt

≤y(tm) +

∫ tm+1

tm

y′(s) ds = y(tm+1).

This proves that ∥un∥h3 ≤ y(T ) ≤ C(∥u0∥h3), (n+ 1)∆t < T . Hence the estimate (3.15) holds.
From the scheme (2.9), we can rewrite it by taking the ℓ2-norm on both sides:∥∥Dt

+u
n
∥∥ ≤

∥∥∥B(un+1/2)
∥∥∥+ ∥∥∥D3un+1/2

∥∥∥ .
Since we have the estimate

∥∥B(un+1/2)
∥∥ ≤

∥∥ũn+1/2
∥∥
∞

∥∥Dun+1/2
∥∥ ≤

∥∥un+1/2
∥∥
h3 ≤ C and taking

into account the Lemma 3.3, we deduce the temporal derivative bound (3.16). This completes the
proof. □

Now we will state the main result of this section. We shall proof that the approximate solution
converges to the classical solution for t < T . In this regard, we interpolate the approximation un

through two steps.
Interpolation in space and time: we employ the piece-wise quadratic continuous interpolation to
interpolate in space for j ∈ Z,

un(x) =unj +D+u
n
j (x− xj) +

1

2
D+D−u

n
j (x− xj)

2 +
1

6
D3unj (x− xj)

3, x ∈ Xj .
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Afterwards, we perform the interpolation in time

u∆x(x, t) = un(x) +Dt
+u

n(x)(t− tn), t ∈ Tn, for (n+ 1)∆t ≤ T, x ∈ R. (3.20)

We follow the approach of Sjöberg [26] to prove the following result.

Theorem 3.4. Suppose the initial data u0 ∈ H3(R). Let {un} be a sequence of difference
approximations obtained by the numerical scheme (2.9) and u∆x is defined by (3.20). Furthermore
assume that ∆t = O(∆x). Then there exists a finite time T > 0 and a constant C, which depend
only on ∥u0∥h3 such that

∥u∆x(·, t)∥L2(R) ≤ ∥u0∥L2(R), (3.21)

∥∂xu∆x(·, t)∥L2(R) ≤ C, (3.22)

∥∂tu∆x(·, t)∥L2(R) ≤ C, (3.23)∥∥∂3xu∆x(·, t)
∥∥
L2(R) ≤ C. (3.24)

Moreover, the sequence of approximate solutions {u∆x}∆x≥0 converges in C(R× [0, T ]) uniformly
to the unique solution of the KdV equation (1.1) as ∆x −→ 0.

To prove the Theorem 3.4, we need to define a weak solution of (1.1).

Definition 3.5. Let Q > 0 and u0 ∈ L2(R). Then u ∈ L∞(0, T ;L2(R)) is said to be a weak
solution of (1.1) if∫ T

0

∫
R

(
φtu+ φx

u2

2
+ φxxxu

)
dx dt+

∫
R
φ(x, 0)u0(x) dx = 0, (3.25)

for all φ ∈ C∞
c ((−R̄, R̄)× [0, T )).

Proof of Theorem 3.4. We note that the approximation u∆x, as defined by (3.20), exhibits conti-
nuity in both space and time, with continuous differentiability in space. Consequently, for x ∈ Xj

and t ∈ Tn, we have:

∂xu∆x(x, t) =D+u
n
j +D+D−u

n
j (x− xj) +

1

2
D3unj (x− xj)

2

+Dt
+

(
D+u

n
j +D+D−u

n
j (x− xj) +

1

2
D3unj (x− xj)

2

)
(t− tn),

∂2xu∆x(x, t) =D+D−u
n
j + D3unj (x− xj) +Dt

+

(
D+D−u

n
j + D3unj (x− xj)

)
(t− tn),

∂3xu∆x(x, t) =D3unj +Dt
+

(
D3unj

)
(t− tn),

∂tu∆x(x, t) =D
t
+u

n(x).

These identities imply that the estimates (3.21)-(3.24) hold for t ≤ T . Due to (3.16), we have the
boundedness of ∂tu∆x. It further implies u∆x ∈ Lip([0, T ];L2(R)). Incorporating (3.21)-(3.23) and
applying the Arzela-Ascoli theorem, we conclude that the set of approximate solutions, denoted as
{u∆xj}∆xj>0, is sequentially compact in C([0, T ];L2(R)). Then there exists a subsequence ∆xj

k

such that

u∆xj
k
−→ u uniformly in C([0, T ];L2(R)) as ∆xj −→ 0.

We claim that the limit u satisfies (3.25) and this is a weak solution of the equation (1.1).
Applying the Lax-Wendroff type result in Holden et al. [13] with minor modifications, we

conclude that u satisfies (3.25), i.e., u is a weak solution of the equation (1.1).
The bounds (3.21)-(3.24) imply that the weak solution u eventually satisfies the KdV equation

(1.1) as an L2-identity and become a strong solution. We conclude that the limit u is the unique
solution of the KdV equation (1.1) incorporating the initial data u0. Hence the result follows. □



STABILITY AND CONVERGENCE FOR KDV 11

3.2. Convergence analysis with L2 initial data. In this section, we shall establish the conver-
gence of difference approximations generated by the same devised scheme (2.9) to a weak solution
of the KdV equation (1.1) under the condition that the initial data lacks regularity, i.e. u0 ∈ L2(R).
Given the inherent lack of smoothness in the initial data, previous conventional estimates cannot be
readily applied. Nevertheless, we will adopt the Kato’s theory of smoothing effects [16] which asserts
that even in the presence of non-smooth initial data, the solution exhibits localized smoothing
due to its dispersive nature. This property will enable us to derive estimates which are pivotal
for the convergence analysis. In particular, we note that such smoothing effects do not hold for
hyperbolic equations. To elaborate further, Kato [16] established that the solution of the equation
(1.1) satisfies the following smoothing effect (refer to [17, 14])∫ T

−T

∥ux(·, t)∥2L2([−R̄,R̄]) dt ≤ C(T,R), T, R > 0, (3.26)

where R̄ = R− 1.
We briefly explain our approach towards the convergence analysis. With the help of (3.26), we

will show that u∆x ∈W , where the function space W is given by

W =
{
w ∈ L2(0, T ;H1(−R̄, R̄))

∣∣wt ∈ L4/3(0, T ;H−3(−R̄, R̄))
}
.

Afterwards, our approach will rely on the Aubin-Simon compactness lemma [8] which ensures
compactness of the sequence of approximate solutions in the space L2(0, T ;L2(−R̄, R̄)). It is
worth noting that a similar methodology was employed in [14] concerning the Euler implicit
finite difference scheme. However, we wish to establish improved convergence estimates for our
conservative scheme (2.9).

We begin by defining a non-negative function p that is both smooth and compactly supported.
Given R > 0 be a fixed constant, we define the function p(x) as follows:

p(x) = 1 +

∫ x

−∞
ω(s)2 ds, (3.27)

where ω is a non-negative compactly supported smooth function with the following properties:

ω(x) =

{
1, x ∈ (−R,R),
0, x ∈ (−R− 1, R+ 1)

and 0 ≤ ω(x) ≤ 1. The construction of p(x) ensures that it remains bounded. More precisely, it
satisfies

1 ≤ p(x) ≤ 1 + (2 + 2R), px(x) = 1 whenever x ∈ (−R,R),
px(x) = 0 whenever x ∈ (−R− 1, R+ 1), 0 ≤ px(x) ≤ 1,

√
px ∈ C∞

c (R).

Corresponding to the non-negative function p, we define a weighted inner product and associated
norm

⟨v, w⟩p := ⟨v, pw⟩ = ∆x
∑
j

pjvjwj , ∥v∥2p := ⟨v, v⟩p,

where pj = p(xj). Thanks to the properties of p(x), we have

∥v∥2 ≤ ∥v∥2p ≤ (3 + 2R) ∥v∥2 .

We seek to estimate ⟨D3u, u⟩p which will be essential in our further analysis.

Lemma 3.6. Let the function p(x) be defined by (3.27). Then there holds

⟨D3u, u⟩p ≥ −CP ∥u∥2p , (3.28)

where the constant CP is given by

CP = max
{
∥p∥L∞(R) , ∥px∥L∞(R) , ∥pxx∥L∞(R) , ∥pxxx∥L∞(R)

}
. (3.29)
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Proof. Since all the difference operators commute with each other, we have

⟨D3u, u⟩p =⟨D3u, up⟩

=
1

2
⟨Du,D+D−(up)⟩+

1

2
⟨Du,D−D+(up)⟩

=
1

2
⟨Du, pD+D−u+ 2DuD+p+ (D+D−p)S

−u⟩

+
1

2
⟨Du, pD+D−u+ 2DuD−p+ (D+D−p)S

+u⟩

=⟨Du, pD+D−u+ 2DuDp+ ūD+D−p⟩
=⟨DuD+D−u, p⟩+ 2⟨(Du)2, Dp⟩+ ⟨ūDu,D+D−p⟩

=
1

2
⟨D+(D−u)

2, p⟩+ 2
〈
(Du)2, Dp

〉
+

1

2
⟨Du2, D+D−p⟩

=2
〈
(Du)2, Dp

〉
− 1

2

〈
(D−u)

2, D−p
〉
− 1

2
⟨u2,D3p⟩.

Using the properties of p yields

2
〈
(Du)2, Dp

〉
− 1

2

〈
(D−u)

2, D−p
〉
≥ 2∆x

∑
|j∆x|≤R−1

(Duj)
2 − 1

2
∆x

∑
|j∆x|≤R−1

(D−uj)
2 (3.30)

≥ 3

2
∆x

∑
|j∆x|≤R−1

(D−uj)
2 =

3

2
∆x

∑
|j∆x|≤R−1

(D+uj)
2 ≥ 0.

Afterwards, employing (3.29) in the above estimates we have

⟨D3u, u⟩p ≥ −CP ∥u∥2 ≥ −CP ∥u∥2p .

Hence the result follows. □

We state and prove the following lemma to ensure that the scheme (2.9) is solvable at each time
step whenever initial data u0 ∈ L2(R).

Lemma 3.7. Consider the iterative scheme given by (3.1). Assume that the following CFL
condition satisfies

λ ≤ 7L

8K ∥un∥p
, (3.31)

where λ = ∆t
∆x3/2 and K = 5−L

1−L > 5 be a constant with 0 < L < 1. Then there exists a solution

un+1 of the equation (2.9) with limℓ−→∞ ωℓ = un+1. Moreover, the following bound holds:∥∥un+1
∥∥
p
≤ K ∥un∥p . (3.32)

Proof. Let us set ∆ωℓ := ωℓ+1 − ωℓ. Then (2.9) can be represented as(
1 +

∆t

2
D3

)
∆ωℓ = −∆t

[
B
(
un + ωℓ

2

)
− B

(
un + ωℓ−1

2

)]
=: −∆t∆B. (3.33)

Taking inner product of (3.33) with p∆ωℓ, we obtain∥∥∆ωℓ
∥∥2
p
+

∆t

2

〈
D3∆ωℓ,∆ωℓ

〉
p
= −∆t

〈
∆B,∆ωℓ

〉
p
≤ ∆t ∥∆B∥p

∥∥∆ωℓ
∥∥
p
.

Using (3.28), we deduce (
1− CP

∆t

2

)∥∥∆ωℓ
∥∥2
p
≤ ∆t ∥∆B∥p

∥∥∆ωℓ
∥∥
p
. (3.34)

As earlier, we observe that

∆B = −1

4

[
∆̃ωℓ−1D(un + ωℓ−1) + ˜(un + ωℓ)D∆ωℓ−1

]
.



STABILITY AND CONVERGENCE FOR KDV 13

The terms involved in ∥∆B∥p can be estimated by applying the Lemma A.1 in [14] along with
identity (2.5) ∥∥∥∆̃ωℓ−1D(un + ωℓ−1)

∥∥∥
p
≤
∥∥√pD(un + ωℓ−1)

∥∥
∞

∥∥∆ωℓ−1
∥∥
p

≤ 1

∆x3/2
(
∥un∥p +

∥∥ωℓ−1
∥∥
p

) ∥∥∆ωℓ−1
∥∥
p

≤ 2

∆x3/2
max

{
∥un∥p ,

∥∥ωℓ−1
∥∥
p

}∥∥∆ωℓ−1
∥∥
p
,

and similarly ∥∥∥ ˜(un + ωℓ)D∆ωℓ−1
∥∥∥
p
≤ 2

∆x3/2
max

{
∥un∥p ,

∥∥ωℓ
∥∥
p

}∥∥∆ωℓ−1
∥∥
p
.

Combining the above estimates and choosing ∆t sufficiently small such that CP∆t ≤ 1
4 , the

estimate (3.34) reduces to∥∥∆ωℓ
∥∥ ≤ 8

7
λmax

{
∥un∥p ,

∥∥ωℓ
∥∥
p
,
∥∥ωℓ−1

∥∥
p

}∥∥∆ωℓ−1
∥∥
p
. (3.35)

Afterwards, we use the induction argument to prove that the sequence {ωℓ} is Cauchy. We know
that ω1 satisfies

ω1 = un −∆tB(un)−∆tD3
(un + ω1

2

)
. (3.36)

By taking the inner product with p(un + ω1) we get

∥ω1∥2p +
∆t

2

〈
D3(un + ω1), p(un + ω1)

〉
= ∥un∥2p −∆t

〈
B(un), p(un + ω1)

〉
which further becomes

∥ω1∥2p − CP
∆t

2

∥∥un + ω1
∥∥2
p
≤ ∥un∥2p +∆t2 ∥B(un)∥2p +

1

4

∥∥un + ω1
∥∥2
p
.

Taking into account the estimate

∥B(un)∥2p = ∥ũnDun∥2p ≤ ∥√pun∥2∞ ∥Dun∥2p ≤ 1

(∆x3/2)2
∥un∥4p ,

we have (
1

2
− CP∆t

)
∥ω1∥2p ≤

(
3

2
+ CP∆t

)
∥un∥2p + λ2 ∥un∥4p

which turns into ∥∥ω1
∥∥2
p
≤ 4

(
7

4
+ λ2∥un∥2p

)
∥un∥2p

provided ∆t is sufficiently small such that CP∆t ≤ 1
4 . Choice of L and K implies

2

(
7

4
+ λ2∥un∥2p

)1/2

≤ 3.

Finally, we end up with

∥ω1∥p ≤ 3∥un∥p ≤ K∥un∥p.
For the induction argument, we assume

∥ωℓ∥p ≤ K∥un∥p for ℓ = 2, 3, ...,m, (3.37)

∥∆ωℓ∥p ≤ L∥∆ωℓ−1∥p for ℓ = 2, 3, ...,m. (3.38)

We have estimated (3.37) for m = 1. We show the estimate (3.38) for m = 1. Due to (3.35), we
have the following estimate

∥∆ω1∥p ≤ 8

7
λmax

{
∥un∥p, ∥ω1∥p

}
∥∆ω0∥p ≤ 8

7
λK∥un∥p∥∆ω0∥p ≤ L∥∆ω0∥p.
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After that we show (3.37) for m > 1,

∥ωm+1∥p ≤
m∑
ℓ=0

∥∆ωℓ∥p + ∥un∥p ≤ ∥ω1 − un∥p
m∑
ℓ=0

Lℓ + ∥un∥p

≤
(
∥ω1∥p + ∥un∥p

) 1

1− L
+ ∥un∥p ≤ 5− L

1− L
∥un∥p = K∥un∥p.

Moreover, we also get

∥∆ωm+1∥p ≤ 8

7
λK∥un∥p∥∆ωm∥p ≤ L∥∆ωm∥p

provided (3.3) holds. Summing up all the above estimates, we obtain the desired estimate (3.32)
and by (3.38), the sequence {ωℓ} is Cauchy, hence converges to un+1. This completes the proof. □

Remark 3.8. It is observed that the CFL condition (3.31), imposed in the Lemma 3.7, depends
on the approximate solution at time step n. However, it is necessary to have the CFL condition
dependent only on the initial data u0. Hence we need to derive a priori bound for the approximate
solution un.

Lemma 3.9. Let u0 ∈ L2(R). Assume that ∆t satisfies

λ =
∆t

∆x3/2
≤ 7L

8KM
(3.39)

for a constant M =M(∥u0∥L2(R)). Then there exist T > 0 depending on ∥u0∥L2(R) such that

∥un∥ ≤ C
( ∥∥u0∥∥ , R) for tn ≤ T, (3.40)

for some constant C = C(∥u0∥L2(R)).

Moreover, there holds H1
loc bound of the approximate solution

∆t∆x

N−1∑
n=0

∑
|j∆x|≤R−1

(
D+u

n
j

)2 ≤ C. (3.41)

Proof. Taking the inner product with pun+1/2 of (2.9) and further using the estimates (3.30) and
(3.28), we get

1

2

∥∥un+1
∥∥2
p
+

3

2
∆t∆x

∑
|j∆x|≤R−1

(
D+u

n+1/2
j

)2 − CP
∆t

2

∥∥∥un+1/2
∥∥∥2
p

≤ 1

2
∥un∥2p −∆t⟨B(un+1/2), un+1/2⟩p. (3.42)

In order to estimate ⟨B(un+1/2), un+1/2⟩p, we drop the superscript n+ 1/2 for the moment

⟨B(u), u⟩p = ⟨ũDu, up⟩ = 1

3

〈
(S+u+ u+ S−u)Du, up

〉
=

1

3
⟨uDu, up⟩+ 1

3
⟨Du2, up⟩

= −1

3
⟨u,D(u2p)⟩+ 1

3
⟨Du2, up⟩ = −1

3
⟨u2u,Dp⟩ − 1

3
⟨u, pDu2⟩+ 1

3
⟨Du2, up⟩

= −1

3
⟨u2u,Dp⟩ − 1

3
⟨uDu2, p− p⟩ = −1

3
⟨u2u,Dp⟩ − 1

3

∆x2

2
⟨uDu2, D−D+p⟩

≤ ∆x

3
∥u∥2∞ ∥u∥ ∥D−D+p∥+

1

3

∆x2

2

∥∥Du2∥∥∞ ∥u∥ ∥D−D+p∥

≤ 1

3
CP ∥u∥3p +

1

3

∆x

2
∥u∥2∞ ∥u∥ ∥D−D+p∥

≤ 1

2
CP ∥u∥3p .
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Omitting the non-negative second term from the left hand side in (3.42) and substituting the above
estimate, we have

∥∥un+1
∥∥
p
− ∥un∥p ≤ 2CP

∆t

2

∥∥un+1/2
∥∥2
p
+
∥∥un+1/2

∥∥3
p

∥un+1∥p + ∥un∥p

≤ CP
∆t

2

( ∥∥∥un+1/2
∥∥∥
p
+
∥∥∥un+1/2

∥∥∥2
p

)
≤ CP

∆t

2
K
(
∥un∥p +K ∥un∥2p

)
,

where we have used (3.32). Set an = ∥un∥p. Then the above estimate can be represented by

an+1 ≤ an + CP
∆t

2
K
(
an +Ka2n

)
. (3.43)

Let y(t) satisfy the differential equation

y′(t) = CP
K

2

(
y(t) +Ky(t)2

)
, y(0) = ∥u0∥ .

It is straightforward to observe that the solution of this equation will blow up at some finite time,

say T̂ . Also for t < T := T̂
2 , y(t) is strictly increasing and convex.

Next, our aim is to show that an ≤ y(tn) for all tn ≤ T under the assumption that (3.39) holds.
We proceed by mathematical induction, clearly a0 ≤ y(0) holds for n = 0. Let us assume that the
claim an ≤ y(tn) is true for n = 0, 1, 2, . . . ,m. Since 0 < am ≤ M := y(T ), then (3.39) implies
that λ also satisfies the CFL condition (3.31) in Lemma 3.7. Applying the Lemma 3.7, we have
am+1/2 ≤ Kam. Then (3.43) yields

am+1 ≤ y(tm) + CP
∆t

2
K
(
y(tm) +Ky(tm)2

)
≤ y(tm) +

∫ tm+1

tm

CP
K

2

(
y(tm) +Ky(tm)2

)
dt

≤ y(tm) +

∫ tm+1

tm

CP
K

2

(
y(t) +Ky(t)2

)
dt

≤ y(tm) +

∫ tm+1

tm

y′(t) dt ≤ y(tm+1).

Hence the claim is established. Since 1 ≤ p ≤ (3 + 2R), we have the required estimate

∥un∥ ≤M ≤ C
( ∥∥u0∥∥ , R).

Now dropping the first term from the left-hand side in (3.42) and summing it over n, we have

∆t∆x

N−1∑
n=0

∑
|j∆x|≤R−1

(
D+u

n+1/2
j

)2 ≤ C
( ∥∥u0∥∥ , R).

Hence H1
loc-estimate is obtained. □

Since the initial data is in L2(R), we use the bilinear interpolation for the approximation un.
First we take the interpolation in space

un(x) =unj +D+u
n
j (x− xj), x ∈ Xj .

Afterwards, we perform the interpolation in time

u∆x(x, t) = un(x) +Dt
+u

n(x)(t− tn), t ∈ Tn, for (n+ 1)∆t ≤ T, x ∈ R. (3.44)

Before proceeding with the convergence proof, we estimate the temporal derivative of the approxi-
mate solution u∆x.
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Lemma 3.10. Let {un} be a sequence of approximate solutions generated by the numerical scheme
(2.9), {u∆x} is obtained by interpolation (3.44). Furthermore, provided that the assumption of
Lemma 3.9 holds. Then the following estimate holds

∥∂tu∆x∥L4/3(0,T ;H−3(−R̄,R̄)) ≤ C(
∥∥u0∥∥ , R). (3.45)

Proof. From the scheme (2.9) we have

Dt
+u

n
j = ũ

n+1/2
j Du

n+1/2
j − D3u

n+1/2
j , n ∈ N0, j ∈ Z. (3.46)

Since ∂tu∆x(x, t) = Dt
+u

n(x) for x ∈ [xj , xj+1) and t ∈ [tn, tn+1), we estimate the terms in the
right-hand side of (3.46) by repetitive use of the Hölder’s inequality and simple use of truncation
analysis. Let ψ ∈ H3

0 (−R̄, R̄) be any test function∣∣∣∣ ∫ R̄

−R̄

(D3un+1/2)ψ(x) dx

∣∣∣∣
≤

∑
|j∆x|≤R̄

|Dun+1/2
j |

∫ xj+1

xj

|ψ′′(x)| dx+
∑

|j∆x|≤R̄

|Dun+1/2
j |

∫ xj+1

xj

|D−D+ψ(x)− ψ′′(x)| dx

≤
∑

|j∆x|≤R̄

|Dun+1/2
j |

√
∆x ∥ψ′′∥L2(xj ,xj+1)

+
1

∆x2

∑
|j∆x|≤R̄

∣∣Dun+1/2
j

∣∣(∫ xj+1

xj

∫ x+∆x

x

∫ z

z−∆x

∫ τ

x

|ψ′′′(θ)| dθ dτ dz dx

)

≤

 ∑
|j∆x|≤R̄

∆x
∣∣Dun+1/2

j

∣∣21/2 ∑
|j∆x|≤R̄

∥ψ′′∥2L2(xj ,xj+1)

1/2

+∆x3/2
∑

|j∆x|≤R̄

∣∣Dun+1/2
j

∣∣ ∥ψ′′′(θ)∥L2(xj ,xj+1)

≤
∥∥∥D+u

n+1/2
∥∥∥
L2(−R̄,R̄)

∥ψ′′∥L2(−R̄,R̄) +∆x
∥∥∥D+u

n+1/2
∥∥∥
L2(−R̄,R̄)

∥ψ′′′∥L2(−R̄,R̄)

≤C
∥∥∥D+u

n+1/2
∥∥∥
L2(−R̄,R̄)

.

Therefore, we derive the following estimate∥∥∥D3un+1/2
∥∥∥
H−3(−R̄,R̄)

≤ C
∥∥∥D+u

n+1/2
∥∥∥
L2(−R̄,R̄)

.

By using the Lemma 3.9 and Hölder’s inequality, it provides

∆t

N∑
n=0

∥∥∥D3un+1/2
∥∥∥4/3
H−3(−R̄,R̄)

≤ CT 1/3

∆t∆x

N∑
n=0

∑
|j∆x|≤R̄

∣∣∣D+u
n+1/2
j

∣∣∣2
2/3

≤ C
( ∥∥u0∥∥

L2(R) , R).

Let us define a C∞
c cut-off function ξ such that 0 ≤ ξ ≤ 1 and

ξ(x) =

{
1, |x| ≤ R̄,

0, |x| ≥ R̄+ 1.

Set ξj = ξ(xj) and consider ũ
n+1/2
j Du

n+1/2
j as a piecewise constant function on Xj × Tn. Using

the Hölder’s inequality, we deduce

∆t

N−1∑
n=0

(
∆x

∑
|j∆x|≤R̄

∣∣ξj ũn+1/2
j Du

n+1/2
j

∣∣2)2/3
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≤ ∆t

N−1∑
n=0

∥∥∥ξũn+1/2
∥∥∥4/3
∞

∆x
∑

|j∆x|≤R̄

∣∣Dun+1/2
j

∣∣22/3

≤

(
∆t

N−1∑
n=0

∥∥∥ξũn+1/2
∥∥∥4
∞

)1/3
∆t∆x

N−1∑
n=0

( ∑
|j∆x|≤R̄

∣∣Dun+1/2
j

∣∣2)2/3

≤ C
( ∥∥u0∥∥ , R)(∆tN−1∑

n=0

∥∥∥ξũn+1/2
∥∥∥4
∞

)1/3

.

By the inequality (2.6), and using the properties of ξ and the Lemma 3.9, we derive

∆t

N−1∑
n=0

∥∥∥ξun+1/2
∥∥∥4
∞

≤ 2∆t

N−1∑
n=0

∥∥∥ξun+1/2
∥∥∥2 ∥∥∥D+(ξu

n+1/2)
∥∥∥2

≤ 2∆t

N−1∑
n=0

∥∥∥ξun+1/2
∥∥∥2(∥∥∥un+1/2D+ξ

∥∥∥2 + ∥∥∥S+ξD+u
n+1/2

∥∥∥2)

≤ 2∆t

N−1∑
n=0

∥∥∥un+1/2
∥∥∥4 + 2∆t

N−1∑
n=0

∥∥∥D+u
n+1/2

∥∥∥2
≤ C

( ∥∥u0∥∥ , R).
It implies that

ũnDun ∈ L4/3(0, T ;L2(−R̄, R̄)) ⊂ L4/3(0, T ;H−3(−R̄, R̄)),
where ũnjDu

n
j is a piecewise constant function in Xj × Tn. As a consequence, from (3.46), we

conclude that Dt
+u

n
j ∈ L4/3(0, T ;H−3(−R̄, R̄)). Hence the result follows. □

Theorem 3.11. (Convergence to a weak solution)
Let {unj } be a sequence of difference approximations generated by (2.9) and {u∆x} be defined by
(3.44). Assume that all the hypothesis of Lemma 3.9 holds and ∥u0∥L2(R) is finite. Then there

exists a constant C such that

∥u∆x∥L∞(0,T ;L2(−R̄,R̄)) ≤ C, (3.47)

∥u∆x∥L2(0,T ;H1(−R̄,R̄)) ≤ C, (3.48)

∥∂tu∆x∥L4/3(0,T ;H−3(−R̄,R̄)) ≤ C. (3.49)

Furthermore, there exists a sequence {u∆xj} converges to a weak solution u ∈ L2(0, T ;L2(−R̄, R̄))
of (1.1), i.e. as ∆xj

j−→∞−−−−→ 0,

u∆xj −→ u in L2(0, T ;L2(−R̄, R̄)). (3.50)

Proof. By (3.44), we can rewrite

u∆x(x, t) = (1− ρn(t))u
n(x) + ρn(t)u

n+1(x), t ∈ [tn, tn+1), (n+ 1)∆t ≤ T,

where ρn(t) =
t−tn
∆t ∈ [0, 1). Thus, by the Lemma 3.9, we have

∥u∆x(·, t)∥L2(R) ≤ ∥un∥L2(R) +
∥∥un+1

∥∥
L2(R) ≤ C, for all t ∈ [tn, tn+1), (n+ 1)∆t ≤ T.

as ∥(1− ρn(t))∥L∞(R) ≤ 1 and ∥ρn(t)∥L∞(R) ≤ 1. Hence (3.47) is obtained.

To prove (3.48), we observe that

∂xu∆x(x, t) = (1− ρn(t))∂xu
n(x) + ρn(t)∂xu

n+1(x), t ∈ [tn, tn+1), (n+ 1)∆t ≤ T.

From (3.44) we obtain

∂xu
n = D+u

n
j , x ∈ [xj , xj+1), j ∈ Z.
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As a consequence, we have the following estimate

∥∂xu∆x∥L2(0,T ;L2(−R̄,R̄)) =

∫ T

0

∥∂xu∆x(·, t)∥2L2(−R̄,R̄) dt

=
∑

|n∆t|≤T

∫ tn+1

tn

∥∥(1− ρn(t))∂xu
n + ρn(t)∂xu

n+1
∥∥2
L2(−R̄,R̄)

dt

≤2
∑

|n∆t|≤T

∫ tn+1

tn

(1− ρn(t))
2 ∥∂xun∥2L2(−R̄,R̄) dt

+ 2
∑

|n∆t|≤T

∫ tn+1

tn

ρn(t)
2
∥∥∂xun+1

∥∥2
L2(−R̄,R̄)

dt

≤2
∑

|n∆t|≤T

1

∆t2

∫ tn+1

tn

(tn+1 − t)2 ∥∂xun∥2L2(−R̄,R̄) dt

+ 2
∑

|n∆t|≤T

1

∆t2

∫ tn+1

tn

(t− tn)
2
∥∥∂xun+1

∥∥2
L2(−R̄,R̄)

dt

≤2∆t
∑

|n∆t|≤T

∥∂xun∥2L2(−R̄,R̄) +
∥∥∂xun+1

∥∥2
L2(−R̄,R̄)

≤2∆t
∑

|n∆t|≤T

∆x
∑

|j∆x|≤R̄

(D+u
n
j )

2 + (D+u
n+1
j )2

≤C
(
∥u0∥L2(R) , R).

Hence (3.48) holds. Again form (3.44) we obtain

∂tu∆x = (1− η(x))Dt
+u

n
j + η(x)Dt

+S
+unj , x ∈ [xj , xj+1), j ∈ Z, (n+ 1)∆t ≤ T.

where η(x) =
x−xj

∆x . Thus, the estimate (3.49) follows from the Lemma 3.10.

Since the space H1(−R̄, R̄) is compactly embedded in L2(−R̄, R̄) and L2(−R̄, R̄) is continuously
embedded in H−3(−R̄, R̄), and the estimates (3.47)-(3.49) holds, we are in position to apply the
Aubin-Lions-Simon compactness Lemma (one can refer to [24], [14, Lemma 4.4]). Hence we can
extract a subsequence of {u∆x}, still denoted by {u∆x}, which converges strongly to a function u in
L2(0, T ;L2(−R̄, R̄)). The strong convergence allows us to pass the limit in the non-linearity. Hence,
we can employ the Lax-Wendroff type result from [13] to establish that the limit u constitutes a
weak solution of (1.1). Hence we establish (3.50). This completes the proof. □

4. Convergence rate of the scheme

In this section, we derive the error estimates in both time and space for the classical solution
of KdV equation (1.1) assuming that u0 is sufficiently smooth. We start with the consistency of
nonlinear term uux, which is approximated by B(u) = ũDu. It is observed that

B(u) = ũDu =
1

3
(S+u+ u+ S−u)Du =

1

3
uDu+

1

3
D(u2). (4.1)

A simple use of truncation error analysis and smoothness of u implies that as ∆x −→ 0,

B(u)− uux = O(∆x2).

Now we derive the error estimate in the following theorem:

Theorem 4.1. (Convergence Rate)
Let un be the approximate solution obtained through the CN scheme (2.9) and consider a classical
solution u of the KdV equation (1.1) . For tn ≤ T , the following estimate holds:

∥un − u(tn)∥ ≤ C(u, T )
(
∆x2 +∆t2

)
, (4.2)

where C(u, T ) is a constant depending on u and T .
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Proof. Let us define en := un − u(tn). Since u is a classical solution of (1.1), then from (2.9) we
deduce

en+1 − en
∆t

+ D3en+1/2 := −B(un+1/2) + B(u(tn +∆t/2))−Rn, (4.3)

where Rn is given by

Rn :=
u(tn+1)− u(tn)

∆t
+ B(u(tn +∆t/2)) + D3u(tn +∆t/2)

−
(
ut + uux + uxxx

)
(tn +∆t/2).

Again by performing the truncation error analysis, we have∥∥∥∥u(tn+1)− u(tn)

∆t
− ut(tn +∆t/2)

∥∥∥∥+ ∥B(u(tn +∆t/2))− uux(tn +∆t/2)∥ ≤ C(u)(∆x2 +∆t2),∥∥D3u(tn +∆t/2)− uxxx(tn +∆t/2)
∥∥ ≤ C(u)∆x2. (4.4)

By taking the inner product with en+1/2, the equation (4.3) becomes〈
en+1 − en

∆t
, en+1/2

〉
+ ⟨D3en+1/2, en+1/2⟩ (4.5)

= ⟨B(u(tn +∆t/2))− B(un+1/2), en+1/2⟩ − ⟨Rn, en+1/2⟩ := K1 +K2.

We estimate the terms Ki, i = 1, 2. For convenience, dropping the subscript from en+1/2 and

superscript from un+1/2 and denoting u(tn +∆t/2) =: uex, we have

K1 =− ⟨B(u)− B(uex), e⟩ = −1

3

〈
D
(
u2 − u2ex

)
, e
〉
− 1

3
⟨uDu− uexDuex, e⟩

=− 2

3

〈
D
(
uexe

)
, e
〉
− 1

3

〈
De2, e

〉
− 1

3
⟨eDuex, e⟩ −

1

3
⟨uexDe, e⟩ −

1

3
⟨eDe, e⟩

=
1

3
⟨uexDe, e⟩ −

1

3
⟨eDuex, e⟩ − ⟨B(e), e⟩

=
1

3
⟨uex, eDe⟩ −

1

3

〈
Duex, e

2
〉
≤ C ∥e∥2 ,

where C = C(∥Duex∥∞) and we have used the fact that

u2 − u2ex = (e+ 2uex)e.

We have observed that ⟨D3en+1/2, en+1/2⟩ = 0 and following estimate holds

K2 = −⟨Rn, en+1/2⟩ ≤ ∥Rn∥
∥∥en+1/2

∥∥ .
As a consequence, (4.5) reduces to

∥en+1∥2 − ∥en∥2 ≤ C∆t
∥∥en+1/2

∥∥2 + C∆t ∥Rn∥
∥∥en+1/2

∥∥ ,
implies

∥en+1∥ − ∥en∥ ≤ C∆t (∥en+1∥+ ∥en∥) +
1

2
C∆t ∥Rn∥ .

This further implies, for small ∆t such that 1− C∆t ≥ 1
2 ,

∥en+1∥ ≤ 2(1 + C∆t) ∥en∥+ C∆t(∆t2 +∆x2),

where we have taken into account (4.4). Since e0 = 0, we have the following estimate for tn ≤ T ,

∥en+1∥ ≤ e4CT ∥e0∥+ Cn∆t(∆t2 +∆x2) ≤ CT (∆t2 +∆x2),

where the constant C may depend on u but independent of ∆x and ∆t. Hence the result follows. □
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5. Numerical Experiments

In our analysis, we provide a series of numerical illustrations of the fully discrete scheme (2.9)
associated with (1.1). The conventional approaches typically involve employing a numerical scheme
to the periodic case of the initial value problem with periodic initial data, considering a large
enough domain such that the reference solutions have compact support inside it, for instance,
kindly refer to [14, 6]. However, in particular, our theoretical study in this paper focuses on the
convergence of the approximated solution on the real line. To address this, we discretize the
domain that is large enough in space for the reference solutions (exact or higher-grid solutions) to
be nearly zero outside of it. Exact solutions are available for some cases, facilitating a rigorous
assessment. Additionally, we evaluate our scheme’s performance when dealing with initial data
lacking smoothness and cases where the exact solution is unknown. In such instances, we employ
a reference solution obtained with a significantly higher number of grid points. We validate the
presented theoretical results and obtain better convergence rates compared to [14].

We introduce the relative error as

E :=
∥u∆x − u∥L2

∥u∥L2

,

where the L2-norms were computed at the points xj using the trapezoidal rule with the higher
number of grid points under consideration. Hereby we examine the first three specific quanti-
ties, namely, mass, momentum, and energy as introduced in [17]. These quantities, subject to
normalization, are expressed as follows:

C∆
1 :=

∫
R u∆x dx∫
R u0 dx

, C∆
2 :=

∥u∆x∥L2(R)

∥u0∥L2(R)
, C∆

3 :=

∫
R

(
(∂xu∆x)

2 − (u∆x)
3

3

)
dx∫

R

(
(∂xu0)2 − (u0)3

3

)
dx

.

Our objective is to preserve these quantities in our discrete setup. It is noteworthy that within the
domain of completely integrable partial differential equations, maintaining a greater number of
conserved quantities through numerical methodologies generally results in more accurate approxi-
mations compared to those preserving fewer quantities. Furthermore, we analyze the convergence
rates of the numerical scheme (2.9), denoted as RE , with varying numbers of nodes N1 and N2.
This is represented by the expression

ln(E(N1))− ln(E(N2))

ln(N2)− ln(N1)
,

where E is considered as a function of the number of elements N .

5.1. A one-soliton solution. The family of exact solutions (one soliton) is given by [7, 14]:

v(x, t) = 9
(
1− tanh2

(√
3/2(x− ct)

))
. (5.1)

This solution represents a single ‘bump’ propagating to the right with a velocity of c = 3. Our
numerical scheme has been tested using the initial data u0 = v(x,−1), where the solution at t = 2
is denoted by v(x, 1). The solution of (1.1) is computed on a uniform grid with ∆x = 20/N over
the interval [−10, 10]. Figure 5.1 illustrates the convergence of the approximated solution. The
Table 5.1 presents the corresponding error analysis. It is observed that the relative errors are
converging to zero at the expected rates.

5.2. Two soliton solution. From a physical viewpoint, solitons with different shapes demonstrate
different speeds, establishing a connection between the height and speed of a soliton. A taller
soliton moves faster than a shorter one. When two solitons move across a surface, the taller soliton
overtakes the shorter one, and both solitons remain unchanged after the collision. This situation
introduces a significantly more complex computational challenge than solving for a solitary soliton
solution.
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N E C∆
1 C∆

2 C∆
3 RE

2000 1.998 1.00 1.01 1.00
1.10

4000 0.931 1.00 1.00 1.00
1.31

8000 0.377 1.00 1.00 1.00
1.95

16000 0.097 1.00 1.00 1.00
1.956

32000 0.025 1.00 1.00 1.00

Table 5.1. Relative errors for one soliton solutions at t = 2 with the initial data
v(x,−1).

Figure 5.1. The exact and approximate solution at t = 2 with the initial data
v(x,−1) and N = 2000 grid points.

In the case of two soliton, the family of exact solutions (see [7, 14, 10]) of the KdV equation is
given by

w(x, t) = 6(c2 − c1)
c2 csch

2
(√

c2/2(x− 2c2t)
)
+ c1 sech

2
(√

c1/2(x− 2c1t)
)

(√
c1 tanh

(√
c1/2(x− 2c1t)

)
−√

c2 coth
(√

c2/2(x− 2c2t)
))2 . (5.2)

for some constants parameters c1 and c2. We have considered the parameters c1 = 0.5 and c2 = 1,
and the initial data u0(x) = w(x,−10). We compared the computed approximate solution at t = 20
with the exact solution w(x, 10). The Figure 5.2 represents the exact solution at t = −10, t = 0
and t = 10 along with numerical solution at t = 0, t = 10 and t = 20. Since the wave is relatively
narrow, the L2-error assumes significant proportions. Table 5.2 demonstrates the relative L2-errors
for the two soliton simulations and ensure the second order convergence of the proposed scheme.
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N E C∆
1 C∆

2 C∆
3 RE

500 6.010 1.01 1.00 1.00
1.70

1000 1.848 1.00 1.00 1.00
1.92

2000 0.488 1.00 1.00 1.00
1.93

4000 0.128 1.00 1.00 1.00
2.04

8000 0.031 1.00 1.00 1.00

Table 5.2. Relative errors for two soliton solutions at t = 20 with the initial data
u0(x) = w(x,−10).

Figure 5.2. The exact and approximate solution obtained at t = 40 with the
initial data u(x,−20) and N = 1000 grid points.

5.3. Non smooth Initial data. In this numerical experiments, we consider the initial data which
resides in L2 but does not belong to any Sobolev space with a positive index. To illustrate, we
specifically consider two L2 initial data, u0 and v0, given by [7, 14]:

u0(x) =

{
1
2 (x+ 1), for x ∈ [−1, 1],

0, otherwise,
and v0(x) =


0, for x ≤ 0,

x−1/3, for 0 < x < 1,

0, for x ≥ 1.

The initial data u0 and v0 are considered in the interval [−5, 5] and both can be periodically
extended beyond this interval. It is crucial to note that u0 has discontinuity at one point and v0
has discontinuity at two points and in these specific cases, an exact solution is not known. In order
to carry out the error analysis, we consider the approximate solution with N = 32000 grid points as
a reference solution at time T = 0.5. The Table 5.3 and 5.4 represent the L2-errors corresponding



STABILITY AND CONVERGENCE FOR KDV 23

N E C∆
1 C∆

2 C∆
3 RE

250 0.4730 0.016 0.12 0.597
-0.032

500 0.4836 0.032 0.18 0.551
0.186

1000 0.4250 0.062 0.25 0.574
-0.050

2000 0.4399 0.127 0.35 0.553
0.119

4000 0.4050 0.254 0.50 0.530
0.195

8000 0.3539 0.496 0.71 0.552

Table 5.3. Relative errors with L2 the initial data u0.

Figure 5.3. The reference (with N = 32000) and approximate solution at t = 0.5
with the L2 initial data u0 and N = 16000 grid points.

the initial data u0 and v0 respectively. The low convergence rates and notable errors indicate that
we are yet to reach at the asymptotic zone. Increasing grid points was impractical and did not
yield better results compared to our current reference solutions as the reference solution may not
be close to the exact solution.

In Figures 5.3 and 5.4, we have plotted the approximate solution using N = 16000 grid points
against the computed reference solution. It has been noted that the reference solution comprises
numerous high-frequency waves, specifically at discontinuity, characterized by a very high speed.
Our devised numerical scheme captures the shapes and features but struggles to resolve the finer
details of the solution.

In conclusion, our study addresses the computational challenges inherent in solving the KdV
equation and develops an efficient numerical scheme. The proposed conservative scheme performs
reasonably well in practice and has proven to converge. The inherent smoothing effect plays a very
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N E C∆
1 C∆

2 C∆
3 RE

500 0.7738 0.032 0.15 0.45
0.097

1000 0.7234 0.065 0.23 0.49
0.213

2000 0.6239 0.134 0.36 0.53
0.020

4000 0.6150 0.280 0.53 0.51
0.422

8000 0.4590 0.590 0.77 0.48

Table 5.4. Relative errors with L2 the initial data v0.

Figure 5.4. The reference (with N = 32000) and approximate solution at t = 0.5
with the L2 initial data v0 and N = 16000 grid points.

crucial role in the convergence analysis for irregular initial data. The second order convergence
signifies a substantial advancement in accurate and efficient computing solutions of KdV equation.
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