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Abstract

Community assembly provides the foundation for applications in biodiversity conservation, climate change, invasion ecology,

restoration ecology, and synthetic ecology. Predicting and prioritizing community assembly outcomes remains challenging.

We address this challenge via a mechanism-free LOVE (Learning Outcomes Via Experiments) approach suitable for cases

where little data or knowledge exist: we carry out actions (randomly-sampled combinations of species additions), measure

abundance outcomes, and then train a model to predict arbitrary outcomes of actions, or prioritize actions that would yield

the most desirable outcomes. When trained on <100 randomly-selected actions, LOVE predicts outcomes with 2-5% error

across datasets, and prioritizes actions for maximizing richness, maximizing abundance, or minimizing abundances of unwanted

species, with 94-99% true positive rate and 12-83% true negative rate across tasks. LOVE complements existing approaches for

community ecology by providing a foundation for additional mechanism-first study, and may help address numerous ecological

applications.
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Abstract 43 

Community assembly provides the foundation for applications in biodiversity conservation, 44 

climate change, invasion ecology, restoration ecology, and synthetic ecology. Predicting and 45 

prioritizing community assembly outcomes remains challenging. We address this challenge via a 46 

mechanism-free LOVE (Learning Outcomes Via Experiments) approach suitable for cases where 47 

little data or knowledge exist: we carry out actions (randomly-sampled combinations of species 48 

additions), measure abundance outcomes, and then train a model to predict arbitrary outcomes of 49 

actions, or prioritize actions that would yield the most desirable outcomes. When trained on <100 50 

randomly-selected actions, LOVE predicts outcomes with 2-5% error across datasets, and 51 

prioritizes actions for maximizing richness, maximizing abundance, or minimizing abundances 52 

of unwanted species, with 94-99% true positive rate and 12-83% true negative rate across tasks. 53 

LOVE complements existing approaches for community ecology by providing a foundation for 54 

additional mechanism-first study, and may help address numerous ecological applications.  55 
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Introduction 56 

There has been a focus in community ecology on understanding community assembly and 57 

coexistence mechanisms (Chesson 2000; Letten et al. 2017; Ellner et al. 2019). However, 58 

predicting and prioritizing community assembly outcomes (Allen-Perkins et al. 2023; Houlahan 59 

et al. 2017; Keddy 1992; Laughlin & Laughlin 2013) is also relevant to applied challenges. 60 

Applications include restoration (Palmer et al. 1997; Wainwright et al. 2018), control or 61 

screening of invasive species (Gallien & Carboni 2017; Shea & Chesson 2002), disease ecology 62 

(Johnson et al. 2015), agriculture (Malézieux 2012; Vandermeer 1995), microbiome engineering 63 

and synthetic ecology (Clark et al. 2021; Lindemann et al. 2016; Nalley et al. 2014), and gut 64 

microbiome health (Widder et al. 2016). Here we focus on advancing these applications when 65 

mechanistic insight or data are limited. 66 

 67 

We define an outcome as the abundance of species present in a community after a certain amount 68 

of time (Figure 1a). The outcome does not have to represent stable coexistence (Chesson 2000), 69 

but could. In prediction, we assume a community is in an initial state 𝑆!"!#!$% (defined as the 70 

abundances of each species present or absent), and that an action (‘experiment’) A occurs (e.g., 71 

adding a species); then we predict the final state 𝑆&'#(&)* (outcome) (Figure 1b). In 72 

prioritization, we also assume 𝑆!"!#!$% and indicate a desired 𝑆&'#(&)*; we then determine which 73 

A should be implemented to yield 𝑆+!"$% (Figure 1c). That is, we find the action is most likely to 74 

yield a desired outcome. Under this framework, effective prediction would enable effective 75 

prioritization. If the desirability of an outcome can be estimated, then prioritization proceeds by 76 

first, predicting outcomes over all experimental actions; second, enumerating the desirability for 77 

each; then third, identifying which action(s) would yield the highest desirability. 78 

https://www.zotero.org/google-docs/?mm15bZ
https://www.zotero.org/google-docs/?mm15bZ
https://www.zotero.org/google-docs/?mm15bZ
https://www.zotero.org/google-docs/?mm15bZ
https://www.zotero.org/google-docs/?mm15bZ
https://www.zotero.org/google-docs/?yMUmmI
https://www.zotero.org/google-docs/?yMUmmI
https://www.zotero.org/google-docs/?yMUmmI
https://www.zotero.org/google-docs/?yMUmmI
https://www.zotero.org/google-docs/?yMUmmI
https://www.zotero.org/google-docs/?yMUmmI
https://www.zotero.org/google-docs/?hMhTX0
https://www.zotero.org/google-docs/?hMhTX0
https://www.zotero.org/google-docs/?hMhTX0
https://www.zotero.org/google-docs/?hMhTX0
https://www.zotero.org/google-docs/?hMhTX0
https://www.zotero.org/google-docs/?8AKodx
https://www.zotero.org/google-docs/?N2pFk5
https://www.zotero.org/google-docs/?N2pFk5
https://www.zotero.org/google-docs/?N2pFk5
https://www.zotero.org/google-docs/?iWIm0C
https://www.zotero.org/google-docs/?f4vsir
https://www.zotero.org/google-docs/?f4vsir
https://www.zotero.org/google-docs/?f4vsir
https://www.zotero.org/google-docs/?f4vsir
https://www.zotero.org/google-docs/?f4vsir
https://www.zotero.org/google-docs/?f4vsir
https://www.zotero.org/google-docs/?f4vsir
https://www.zotero.org/google-docs/?CZW5jP
https://www.zotero.org/google-docs/?CZW5jP
https://www.zotero.org/google-docs/?CZW5jP
https://www.zotero.org/google-docs/?mq8rCj
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 79 

Some approaches to prediction rely on temporal dynamics. Fitting parametric models to time 80 

series data (e.g., the generalized Lotka-Volterra (‘GLV’) model (Bucci et al. 2016; Stein et al. 81 

2013; Ushio et al. 2018) is limited by the need to identify the mechanistic processes to include in 82 

the model, and by the need for long datasets, which are hard to obtain especially for long-lived 83 

organisms. Alternative approaches to parameterize these models through assembling low-84 

richness communities (e.g. singlets and pairs of species across a density gradient), e.g. (Kraft et 85 

al. 2015; Levine & HilleRisLambers 2009; Vandermeer 1969), or high-richness ‘dropout’ 86 

communities (Bai et al. 2022; Carlström et al. 2019) neglect higher-order species interactions 87 

(Mayfield & Stouffer 2017; Pistón et al. 2019). Fitting non-parametric forecasting models 88 

(Perretti et al. 2013; Ye et al. 2015) is also possible and avoids mechanism uncertainty. 89 

However, these methods require longer time series than typically available (Chang et al. 2017) as 90 

do other machine learning methods (Baranwal et al. 2021; Clark et al. 2021; Kong et al. 2020; 91 

Rammer & Seidl 2019), e.g. >37,000 observations for (Civantos-Gómez et al. 2021). 92 

 93 

The limitations of these approaches to prediction and prioritization may be overcome if 94 

outcomes, rather than temporal dynamics, are of interest. This outcome-focused approach would 95 

reduce understanding of community dynamics but potentially have more tractable data 96 

requirements, and help when mechanistic insight is not yet available. Several mechanism-free 97 

approaches have been developed. For example, studies of observational species co-occurrence 98 

outcomes have yielded checkerboard ‘assembly rules’ (Diamond 1975) and joint species 99 

distribution models (Pollock et al. 2014). However, these methods make strong linearity 100 

assumptions or conflate environmental factors with species interactions (Blanchet et al. 2020; 101 

https://www.zotero.org/google-docs/?zNMrIZ
https://www.zotero.org/google-docs/?zNMrIZ
https://www.zotero.org/google-docs/?zNMrIZ
https://www.zotero.org/google-docs/?zNMrIZ
https://www.zotero.org/google-docs/?zNMrIZ
https://www.zotero.org/google-docs/?zNMrIZ
https://www.zotero.org/google-docs/?zNMrIZ
https://www.zotero.org/google-docs/?zNMrIZ
https://www.zotero.org/google-docs/?BygKJF
https://www.zotero.org/google-docs/?BygKJF
https://www.zotero.org/google-docs/?BygKJF
https://www.zotero.org/google-docs/?BygKJF
https://www.zotero.org/google-docs/?7iJ5fs
https://www.zotero.org/google-docs/?7iJ5fs
https://www.zotero.org/google-docs/?7iJ5fs
https://www.zotero.org/google-docs/?7iJ5fs
https://www.zotero.org/google-docs/?7iJ5fs
https://www.zotero.org/google-docs/?UuEjpy
https://www.zotero.org/google-docs/?UuEjpy
https://www.zotero.org/google-docs/?UuEjpy
https://www.zotero.org/google-docs/?x2fIRl
https://www.zotero.org/google-docs/?x2fIRl
https://www.zotero.org/google-docs/?x2fIRl
https://www.zotero.org/google-docs/?x2fIRl
https://www.zotero.org/google-docs/?x2fIRl
https://www.zotero.org/google-docs/?JtOLEs
https://www.zotero.org/google-docs/?JtOLEs
https://www.zotero.org/google-docs/?JtOLEs
https://www.zotero.org/google-docs/?MrUHRq
https://www.zotero.org/google-docs/?MrUHRq
https://www.zotero.org/google-docs/?MrUHRq
https://www.zotero.org/google-docs/?MrUHRq
https://www.zotero.org/google-docs/?MrUHRq
https://www.zotero.org/google-docs/?MrUHRq
https://www.zotero.org/google-docs/?MrUHRq
https://www.zotero.org/google-docs/?MrUHRq
https://www.zotero.org/google-docs/?BmxN4o
https://www.zotero.org/google-docs/?BmxN4o
https://www.zotero.org/google-docs/?BmxN4o
https://www.zotero.org/google-docs/?9oJ2ZU
https://www.zotero.org/google-docs/?2m3NCt
https://www.zotero.org/google-docs/?2m3NCt
https://www.zotero.org/google-docs/?2m3NCt
https://www.zotero.org/google-docs/?jrlWvJ
https://www.zotero.org/google-docs/?jrlWvJ
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Connor et al. 2013). Studies of experimental co-occurrence outcomes have yielded matrix 102 

pseudo-inversion (Maynard et al. 2020) or compressive sensing (Arya et al. 2023) methods, 103 

which are successful primarily when higher-order species interactions are rare. Machine learning 104 

has been applied to the design of synthetic microbial communities with more flexibility 105 

(Baranwal et al. 2022; Chang et al. 2021; Clark et al. 2021; Connors et al. 2023; Lindemann et 106 

al. 2016; Pacheco & Segrè 2021). Restoration and agriculture applications exist (Fremout et al. 107 

2022; Hou et al. 2022; Laughlin 2014), but with simpler algorithms and limited consideration of 108 

species interactions. 109 

 110 

Several conceptual questions around mechanism-free prediction and prioritization exist: (1) How 111 

does prediction skill for a mechanism-free approach compare to a mechanistic approach? 112 

Augmenting a mechanism-free approach with information from expert knowledge or partially-113 

correct mechanisms (e.g., a GLV model) might enhance a mechanism-free model. (2) How much 114 

training data are needed to reach an acceptable skill level? (3) Does the experimental design for 115 

gathering training data matter? Many studies have focused on pairwise assembly experiments, 116 

but other experimental designs exist, e.g. randomly selected experiments, or active learning 117 

(sequential design of experiments). (4) What properties of a dataset make it suitable for 118 

mechanism-free prediction, e.g., the strength and sparsity of species interactions? (5) Which 119 

types of prioritization tasks are tractable? (6) What properties of a dataset make it suitable for 120 

prioritization? 121 

 122 

https://www.zotero.org/google-docs/?jrlWvJ
https://www.zotero.org/google-docs/?jrlWvJ
https://www.zotero.org/google-docs/?jrlWvJ
https://www.zotero.org/google-docs/?6T23SC
https://www.zotero.org/google-docs/?6T23SC
https://www.zotero.org/google-docs/?6T23SC
https://www.zotero.org/google-docs/?WpCZnX
https://www.zotero.org/google-docs/?WpCZnX
https://www.zotero.org/google-docs/?WpCZnX
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?3HucvZ
https://www.zotero.org/google-docs/?HHHbD1
https://www.zotero.org/google-docs/?HHHbD1
https://www.zotero.org/google-docs/?HHHbD1
https://www.zotero.org/google-docs/?HHHbD1
https://www.zotero.org/google-docs/?HHHbD1
https://www.zotero.org/google-docs/?HHHbD1
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We address these questions using a prediction and prioritization approach called LOVE 123 

(Learning Outcomes Via Experiments) applied to seven community assembly datasets. We also 124 

discuss the practical and ethical considerations relevant to applied ecology challenges. 125 

 126 

Methods 127 

Concepts 128 

The overall LOVE workflow is (Figure 1d): (1) define a problem with relevant people, (2) carry 129 

out a set of ethical experimental actions and then wait, (3) use the outcomes to train a 130 

mechanism-free model; (4) use the model to predict outcomes and/or prioritize actions that 131 

would yield the desired outcome; (5) after ethics assessment, test predictions or prioritizations; 132 

(6) potentially refine the model with more data. Mathematical components are below; ethical 133 

components, in the Discussion. 134 

 135 

LOVE approximates a function 𝑓: {𝑆!"!#!$% , 𝐴} → 𝑆&'#(&)* (Figure 1b). This is a surrogate 136 

modeling problem (Forrester et al. 2008; Gramacy 2020). In the community assembly problem 137 

considered here, we assume that n is the species richness of the regional pool, that 𝑆!"!#!$% ∈ ℜ", 138 

which describes the abundance of species, is empty; that 𝐴 ∈ {0,1}" describes an action (species 139 

addition) carried out a common environment, with 0 indicating absence and 1 presence for each 140 

species; and that 𝑆&'#(&)* ∈ ℜ" is the abundances of species in the outcome. There are 2n 141 

possible unique actions, but an actual study might replicate the same experimental action 142 

multiple times with varying outcomes (e.g., due to stochasticity, or uneven success implementing 143 

the action) (Table 1, Text S1). 144 

https://www.zotero.org/google-docs/?7t9WYQ
https://www.zotero.org/google-docs/?7t9WYQ
https://www.zotero.org/google-docs/?7t9WYQ
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 145 

Mechanism-free methods for learning f 146 

Naïve 147 

In a null approach, we obtained outcome predictions using a heuristic. We assumed the 148 

abundance of each species in 𝑆&'#(&)* was equal to its mean abundance in the training data, 149 

elementwise-multiplied by 𝑆!"!#!$%. 150 

 151 

Random forest 152 

Random forest classifiers were used because they allow for nonlinear and multiple interactions 153 

among predictors, often avoid overfitting, and are suitable for sparse datasets (Breiman 2001). 154 

Models were trained using the randomForestSRC R package (Ishwaran & Kogalur 2019) 155 

(version 2.12.1). Models were fit using num.trees=500, mtry=ceiling(sqrt(n)), and nodesize=5. 156 

To reduce the impact of zero-inflation and skewness, abundances were binned into ten classes, 157 

comprising 0, eight quantiles of the non-zero abundance values (over the whole dataset), and the 158 

maximum abundance. Predicted class values were transformed back into abundances as either 0 159 

or the bin-mean value. The number of bins did not have a large impact on results (not shown).  160 

 161 

Sequential random forest 162 

We assessed the value of active learning, where training cases are selected sequentially to 163 

maximize information gain. We developed a sequential random forest method adapted from (Gu 164 

et al. 2015) that selects action vectors that would yield the greatest information gain. We 165 

performed 10 active learning iterations, sequentially collecting an additional 1/10th of the data in 166 

https://www.zotero.org/google-docs/?osrofj
https://www.zotero.org/google-docs/?R3g7zV
https://www.zotero.org/google-docs/?LV8jRp
https://www.zotero.org/google-docs/?LV8jRp
https://www.zotero.org/google-docs/?LV8jRp
https://www.zotero.org/google-docs/?LV8jRp
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each iteration to create a full training dataset. For each iteration of active learning, we selected 167 

the actions with the highest score, with score defined as the sum of: 168 

● Uncertainty: the variance of the bootstrap predictions for the candidate action, for 5 169 

bootstrap samples of the data collected until that step. 170 

● Diversity: the sum of the Hamming (L1) distance between the candidate action and the 10 171 

closest action vectors within the training set. 172 

● Density: the Hamming distance between the candidate action vector and other unsampled 173 

action vectors. 174 

 175 

GLV model 176 

We also compared our method to EPICS, a GLV fit to outcome data (Ansari et al. 2021). To 177 

enable EPICS to handle missing data and duplicate training data points common to our datasets, 178 

we developed a modified version, gEPICS. In the original approach, their 𝐴!←-*++ matrix was 179 

calculated by solving 1	 + 𝑣𝑒𝑐(𝐴!←-*++) ∗ 𝑣𝑒𝑐(1" 	× 	𝑁.) = 0	where 𝑁. is their notation for 180 

species abundance. By calculating the matrix inverse 𝑣𝑒𝑐(𝐴!←-*++) = 𝑣𝑒𝑐(1" 	× 	𝑁.)
/0

, 181 

which is guaranteed to exist in the original problem formulation, they obtained the outcome 182 

abundance. In gEPICS, we instead calculated the generalized Penrose pseudoinverse (†), 183 

𝑣𝑒𝑐(𝐴!←-*++) = 𝑣𝑒𝑐(1" 	× 	𝑁.)1 . With the estimated 𝑣𝑒𝑐(𝐴!←-*++) matrix, we then 184 

performed estimation of the experimental outcome by calculating the generalized analog of the 185 

GLV nullcline solution, −𝑣𝑒𝑐(𝐴!←-*++)1 ∗ 	1". We replaced any negative predicted values with 186 

0. 187 

 188 

https://www.zotero.org/google-docs/?0fChX9
https://www.zotero.org/google-docs/?0fChX9
https://www.zotero.org/google-docs/?0fChX9
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Random forest + GLV residuals 189 

We developed a residual learning approach (building on successes in image recognition (He et 190 

al. 2016)), combining model components (gEPICS) and residual effects that cannot be explained 191 

by GLV (random forest). First, we fit the gEPICS model on the dataset. Second, we predicted the 192 

abundances with the fitted GLV model and obtained residuals. Third, we fit a random forest 193 

model on the residuals with no abundance binning. For final outcome predictions, we summed 194 

the gEPICS and random forest prediction values. 195 

 196 

Random forest + GLV features 197 

We gave the random forest model additional information from a GLV model. We used the 198 

random forest method, but with the input variables including the experimental actions and also 199 

the GLV prediction values obtained by fitting a gEPICS model. 200 

 201 

Experimental designs 202 

Low richness – There are 𝜅(𝑛, 𝑘, 𝑞) = ∑2!30 𝐶(𝑛, 𝑘)	possible assemblages with richness ≤k, 203 

where C(n,k) indicates the binomial coefficient. We selected a random set of cases for training, 204 

selecting only among assemblages with k=2, or k=3 pairs and triplets, named as the low-2 and 205 

low-3 experimental designs. No additional cases are selected after all pairs and triplets are 206 

exhausted. 207 

 208 

High richness – There are also 𝜅(𝑛, 𝑘) possible assemblages with richness ≥k. We selected a 209 

random set of cases for training, selecting only among assemblages with k=n-1, k=n-2 (single or 210 

https://www.zotero.org/google-docs/?rOrmuM
https://www.zotero.org/google-docs/?rOrmuM
https://www.zotero.org/google-docs/?rOrmuM
https://www.zotero.org/google-docs/?rOrmuM
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double dropouts, named as the high-1 and high-2 experimental designs). No additional cases 211 

were selected after all single and double dropouts are exhausted. 212 

 213 

Mixed richness – we selected a random set of cases from each dataset for training independent of 214 

richness (named as the mixed experimental design). Because 𝜅(𝑛, 𝑘) is largest at k=⌊n/2⌋, 215 

intermediate richness assemblages are frequently sampled.  216 

 217 

Prior – we selected states that are either singlets (only one species present), or leave one out (all 218 

but one species present). Further cases are sampled according to the mixed richness design, 219 

mirroring (Ansari et al. 2021). 220 

 221 

Sequential – we sampled initial training data according to the mixed richness design, and then 222 

add data points in batches according to, and only for, the sequential random forest method.  223 

 224 

Datasets 225 

Seven empirical and empirically parameterized datasets of combinatorial community assembly 226 

experiments were used, spanning a range of taxa (Table 1, Text S1, Figure S1-S7). For datasets 227 

generated from a parameterized dynamical model, only the predicted outcomes are used. All 228 

datasets were pre-processed to first remove outcome abundances exceeding 107, which arose in a 229 

few assemblages within the ‘mouse gut’ dataset, and then were clipped to the (0.005,0.095) 230 

quantiles (across all assemblages within each dataset) to avoid outlier overfitting.  231 

 232 

Analyses 233 

https://www.zotero.org/google-docs/?JKDJDF
https://www.zotero.org/google-docs/?JKDJDF
https://www.zotero.org/google-docs/?JKDJDF
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Analyses were carried out in a training-testing cycle for each algorithm, experimental design, 234 

and sample size. Each analysis was replicated 10 times to capture training case sampling 235 

variation. Training-set sample sizes spanned from 10 to 10,000, covering 20 values evenly 236 

spaced on logarithmic scale. Analyses were skipped where sample sizes exceeded either the 237 

dataset size or the maximum number of samples available for the experimental design. We then 238 

compared predicted outcomes to actual outcomes in the test-set assemblages. Scaled error was 239 

defined as the mean absolute error (MAE) between the observed and predicted 𝑆&'#(&)* scaled 240 

by the 95% quantile dataset abundance, treating each experimental action as a replicate. 241 

 242 

For Questions 1-3, we plotted marginal predictions for the test-set scaled error rate 243 

(scaled_error) as a function of the method (method), the training sample size (num_train), and 244 

the experimental design (experimental_design), and the dataset. To reduce the high 245 

dimensionality of the dataset and reflect a realistic use case, for method we used random forest; 246 

for num_train, 89; for experimental design, mixed. Because the data have a statistically balanced 247 

design, no post-hoc model was used. 248 

 249 

For Question 4, we plotted the test-set scaled error rate as a function of several dataset 250 

properties: whether the dataset was generated from real experiments or from dynamical model 251 

simulations (type), the number of species in the regional pool for each dataset 252 

(regional_pool_richness), the mean number of species gained or lost from the experiment to the 253 

outcome (num_losses_mean), and the mean of the skewness of the abundances of species present 254 

in the outcome (abundance_skewness_mean). We conditioned on values for method of random 255 
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forest; for experimental design, mixed. Because predictors are potentially correlated, we fit a 256 

linear mixed model: 257 

 258 

scaled_error ~ log10(num_train) * type * regional_pool_richness * num_losses_mean * 259 

abundance_skewness_mean + (1|dataset) 260 

We visualized model predictions using conditional effect plots and summarized fit using 261 

Nakagawa’s pseudo-R2. 262 

 263 

For Question 5, analyses were restricted to the four datasets where the complete set of 264 

experimental outcomes were available for validation (annual plant, human gut, mouse gut, 265 

SORTIE-ND). We prioritized experiments as described below, then compared the prioritized 266 

experiments to the actual best experiments using true positive and negative rate metrics. We 267 

assumed that there existed a desirability function via a function 𝑔: {𝑆!"!#!$% , 𝐴, 𝑆&'#(&)*} → 𝐷. 268 

For simplicity, we assume this function is determined entirely by these predictors, in contrast to a 269 

more complex approach where D is a learned function (Clark et al. 2021; Connors et al. 2023).  270 

 271 

In a ‘remove unwanted’ desirable outcome, we searched for communities that would be 272 

invasion-resistant. Desirable outcomes were identified as those where a focal species i was 273 

present in the experiment and occurred at its 0% quantile abundance in the outcome (0 if ever 274 

absent in at least one outcome, or minimum abundance if never absent in any outcome), i.e. 𝐷! =275 

D𝑆!"!#!$%,! > 0F × D𝑆&'#(&)*,! = 0F.	We repeated this analysis for every species in every dataset. 276 

 277 

https://www.zotero.org/google-docs/?5apj1A
https://www.zotero.org/google-docs/?5apj1A
https://www.zotero.org/google-docs/?5apj1A
https://www.zotero.org/google-docs/?5apj1A
https://www.zotero.org/google-docs/?5apj1A
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In a ‘maximize diversity’ desirable outcome, we searched for communities with high 278 

biodiversity (Shannon’s index; (Pielou 1966)). We predicted abundance for all non-training set 279 

experiments and calculated a predicted H value as the desirability function, i.e. 𝐷 =280 

−∑! 𝑝!𝑙𝑛(𝑝!) where 𝑝! = 𝑆&'#(&)*,!/∑! 𝑆&'#(&)*,!. Desirable cases were flagged as those 281 

with a D above the 95% quantile D value actually observed in all assemblages (in a real-world 282 

use, this quantile threshold’s value would be unknown a priori, but a known threshold value for 283 

D could be specified).  284 

 285 

In a ‘maximize abundance’ desirable outcome, we searched for communities with high summed 286 

abundance across all species, i.e. 𝐷 = ∑! 𝑆&'#(&)*,!. Desirable cases were flagged as those 287 

with a D above the 95% quantile D value actually observed in all assemblages. 288 

 289 

Data for prioritization come from a random forest method, a mixed richness experimental design, 290 

and a num_train of either 89 or 264. Analyses were replicated across 10 sampled training 291 

datasets. We then summarized the true positive and true negative rates of the prioritized 292 

experiments relative to the actual best experiments. We also visualized the similarity between the 293 

prioritized experiments and outcomes relative to their actual values, using heatmaps with cases 294 

hierarchically clustered by Euclidean distance. We additionally carried out a principal 295 

component analysis of the outcome abundance space, then visualized the distribution of 296 

classifications for each experiment within this space. 297 

 298 

For Question 6, we plotted the true negative rate of the prioritization for each task as a function 299 

of regional_pool_richness, num_losses_mean, and abundance_skewness_mean. We conditioned 300 

https://www.zotero.org/google-docs/?Yzw3Ns
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on values for method of random forest; for experimental design, mixed and fit a linear mixed 301 

model: 302 

true_negative_rate ~ num_train + regional_pool_richness + num_losses_mean + 303 

abundance_skewness_mean + (1|dataset) 304 

Fixed effect interactions were not included due to the sample size. In the removal model, a 305 

random intercept for removed species was also included. We visualized model predictions using 306 

conditional effect plots and summarized fit using Nakagawa’s pseudo-R2. 307 

 308 

Data availability statement 309 

Processed datasets and code are available at https://github.com/bblonder/coexistence_LOVE.1 310 

 311 

Results 312 

Question 1 - value of mechanism-free prediction and mechanism 313 

The mechanism-free methods performed as well or better than a mechanistic method at 314 

predicting abundance in experimental outcomes across all datasets (Figure 2a). The naïve 315 

method obtains an error rate of 10-50% depending on the dataset. The GLV model often had 316 

error rates substantially higher than this baseline, and required large numbers of training 317 

experiments (>500 depending on dataset) to reach lower error rates. This is notable as several 318 

datasets are from simulations of a GLV model. Providing the random forest method with 319 

 
1 These files will be archived upon acceptance at Dryad or a similar repository.  

https://github.com/bblonder/coexistence_e2e
https://github.com/bblonder/coexistence_e2e
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additional residuals from a GLV fit (i.e. a residual learning approach) had no effect, while the 320 

random forest method on those residuals directly was worse that the GLV fit. 321 

 322 

When comparing the methods at a plausible number of training experiments (89), the baseline 323 

random forest and the sequential random forest had lowest error rates (Figure 2b).  324 

 325 

Question 2 - number of experiments required 326 

The mechanism-free methods yielded error rates below the naïve baseline typically by ~50 327 

training experiments, and continued to improve in skill with more experiments (Figure 2a). The 328 

mean scaled error rate dropped to 2-5% across datasets with <100 experiments (Table S2). The 329 

sequential random forest was only slightly more efficient at learning from training experiments 330 

than the random forest. 331 

 332 

The structure of abundance error is shown for a random forest method, a mixed richness 333 

experimental design, and 89 training experiments (Figure S8). Errors were generally unbiased, 334 

though a small number of species were consistently unpredictable, with lower or variable 335 

abundances than observed. False prediction of absence was the main systematic error. All of 336 

these issues become unimportant at larger sample sizes (e.g, 264 training experiments; Figure 337 

S9). 338 

 339 
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Question 3 - experimental design 340 

The lowest error rates were obtained using a mixed richness experimental design, for all datasets 341 

(Figure 2c). The design of sampling doublets and 1-dropouts before proceeding to mixed 342 

richness sampling had similar but slightly worse performance. The doublet, triplet, and dropout 343 

experimental designs had error rates up to four times higher than mixed richness sampling. 344 

 345 

Question 4 - dataset properties predicting prediction skill 346 

Some datasets had consistently higher error rates. Some of this variation was explainable by a 347 

post-hoc mixed model, conditioned on a random forest method, a mixed experimental design, 348 

and 89 training experiments (Figure 3). This model had a marginal R2 of 64% and a conditional 349 

R2 of 90%. Higher error occurred for datasets with higher species richness, lower number of 350 

species lost, greater outcome abundance mean skewness, and for empirical origins.  351 

 352 

Question 5 - tractable prioritization tasks 353 

Skill varied with each prioritization task. When considering a random forest method, a mixed 354 

richness experimental design, and 89 training experiments, mean true positive rate varied from 355 

94-99% and true negative rate from 12-84% across tasks (Table S3). 356 

 357 

For the removal of unwanted species (Figure 4a), true positive and true negative rates 358 

were >75% in most datasets for most species. However, in each dataset, there were a small 359 

number of species for which the true negative rate was always <20%; this likely reflects an 360 

absence of training data covering certain species combinations.  361 
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 362 

For obtaining high diversity (Figure 5b), true positive rate was >80% in all datasets, while true 363 

negative rate varied from 0-75%, with some datasets (e.g., human gut) consistently performing 364 

well and other datasets (e.g., SORTIE-ND) consistently performing poorly. Somewhat worse 365 

results were found for the obtaining of high abundance (Figure 4c).  366 

 367 

When increasing the training sample size to 264, improvement in true negative rate sometimes 368 

occurred. For the maximizing Shannon’s H task, 10-50% improvement was possible depending 369 

on the dataset. However limited improvement was obtained for the removal and maximizing total 370 

abundance tasks. 371 

 372 

The structure of prioritization error is shown for the removal (Figure S10), diversity (Figure 373 

S11), and abundance (Figure S12) tasks. In the removal and maximizing Shannon’s H tasks, the 374 

distribution of prioritized experiments and the actual best experiments is similar. The prioritized 375 

experiments typically leverage species that are correctly predicted at high abundances. Errors 376 

occur when experiments fail to include species incorrectly predicted to occur at low abundances. 377 

In the maximizing total abundance task, the distribution of prioritized experiments and the actual 378 

best experiments shows low similarity, consistent with low true negative rate. 379 

 380 

The distribution of error types in abundance outcome space depended on the task and dataset 381 

(removal, Figure S13; maximizing Shannon’s H, Figure S14; maximizing total abundance, 382 

Figure S15). False negatives and false positive errors consistently occurred in different parts of 383 

the abundance outcome space. 384 
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 385 

Question 6 - dataset properties predicting prioritization skill 386 

Several predictors explained variation in prioritization skill (Figure 5). For the removal task, the 387 

true negative rate increased with higher species richness, higher mean number of species lost, 388 

and lower mean abundance outcome skewness (p<10-4). However this model had a marginal R2 389 

of 0.07 and conditional R2 of 0.63. For the maximizing Shannon’s H task, true negative rate 390 

increased with higher species richness (p<0.05), lower mean number of species lost, and lower 391 

mean abundance outcome skewness. This model had a marginal R2 of 0.49 and conditional R2 of 392 

0.66. For the maximizing total abundance task, true negative rate increased with higher species 393 

richness, higher mean number of species lost, and lower mean abundance outcome skewness 394 

(p<10-3). This model had a marginal R2 of 0.62 and conditional R2 of 0.62.  395 

Discussion 396 

Outcome prediction can be successful without understanding dynamics or community assembly 397 

processes. Mechanism-free approaches are complementary to other mechanism-first or 398 

generality-oriented approaches (Evans et al. 2013; Levins 1966). They avoid the complexity of 399 

community dynamics and the limitations of mechanistic assumptions, e.g. competition (Simha et 400 

al. 2022). They provide a useful first step, with low data requirements, towards further 401 

mechanistic understanding. 402 

 403 

Simple algorithms and sparse datasets (mixed richness sampling of training data, a random forest 404 

algorithm, and less than 100 experimental actions for training) yielded acceptable results. For 405 

prediction, <5% abundance error was obtained. For prioritization, high true positive rate and 406 

https://www.zotero.org/google-docs/?JswsJ0
https://www.zotero.org/google-docs/?JswsJ0
https://www.zotero.org/google-docs/?JswsJ0
https://www.zotero.org/google-docs/?RfutQh
https://www.zotero.org/google-docs/?RfutQh
https://www.zotero.org/google-docs/?RfutQh
https://www.zotero.org/google-docs/?RfutQh
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variable true negative rate was obtained. True negative rates were typically above 20%, 407 

indicating that at least 1 in 5 prioritized experiments would lead to the desired outcome, far 408 

better than what random selection of experiments would yield. 409 

 410 

Mixed sampling of experimental actions provided more information per experiment than other 411 

designs, due to the multiple species combinations that are simultaneously explored. Additionally, 412 

such experiments can be carried out in parallel, limiting the total time needed for the approach. 413 

In contrast, dropout communities alone are less useful - multiple levels of dropouts are required 414 

to resolve complex species interactions, e.g. (Finkel et al. 2019). Pair and triplet designs were 415 

most successful only when the underlying dynamical model involves purely pairwise 416 

interactions. Fractional factorial designs may have higher efficiencies (Gunst & Mason 2009; 417 

Santner et al. 2003), but may not be optimal if the strength of higher-order species interactions is 418 

unknown. 419 

 420 

There was substantial variation in skill across the datasets explored. For prediction, smaller state 421 

spaces, stronger species interactions, fewer rare species with high abundance, and lower 422 

stochasticity all reduce error. For prioritization, large state spaces and few dominant species both 423 

reduce error (because even low true positive rates are useful when state spaces are large). 424 

However, future studies could identify additional mechanisms that make outcomes more or less 425 

predictable. For example, a fully neutral community assembly process would yield random 426 

outcomes and high error. It remains unknown how the topology of interaction networks or the 427 

nonlinearity of interactions might affect skill. 428 

 429 

https://www.zotero.org/google-docs/?5dXcmO
https://www.zotero.org/google-docs/?5dXcmO
https://www.zotero.org/google-docs/?5dXcmO
https://www.zotero.org/google-docs/?DHWl3l
https://www.zotero.org/google-docs/?DHWl3l
https://www.zotero.org/google-docs/?DHWl3l
https://www.zotero.org/google-docs/?DHWl3l
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Guidance from a mechanistic model was not helpful for prediction. Model residuals or model 430 

predictions did not improve skill relative to the random forest, nor did more complex 431 

experimental designs. Simple algorithms for function approximation may already leverage all the 432 

information present in the data, consistent with findings from (Arya et al. 2023).  433 

 434 

Conceptual considerations 435 

LOVE is best used when data are sparse and regional pool richness is high. When n is large, 436 

LOVE requires a small number of experiments relative to the size of the action space and 437 

provides a useful approximation. In contrast, when n is small, the action space can simply be 438 

enumerated via trying all experiments. For example, in the ‘fly gut’ dataset (n=5), LOVE had low 439 

utility because the number of training experiments was close to the number of actual possible 440 

experiments. Many currently available datasets do not achieve high coverage of the action space. 441 

For example, in the Cedar Creek (USA) and Jena (Europe) biodiversity-ecosystem functioning 442 

studies, less than 1% of all possible plant communities were experimentally assembled (Tilman 443 

et al. 2012; Weisser et al. 2017). Shifting to a mixed experimental design for similar future 444 

studies would be valuable for applying LOVE. 445 

 446 

Because of the function approximation approach, there is no ability to extrapolate to novel 447 

environmental conditions, actions, or species. However, it should be possible to include 448 

environmental conditions as additional dimensions, but training would likely require replicating 449 

experiments across an environmental gradient, e.g., (Pennekamp et al. 2018). It should also be 450 

possible to add trait predictors to augment species identity, which could allow extrapolation of 451 

https://www.zotero.org/google-docs/?nFfBxj
https://www.zotero.org/google-docs/?nFfBxj
https://www.zotero.org/google-docs/?nFfBxj
https://www.zotero.org/google-docs/?WUsi2f
https://www.zotero.org/google-docs/?WUsi2f
https://www.zotero.org/google-docs/?WUsi2f
https://www.zotero.org/google-docs/?WUsi2f
https://www.zotero.org/google-docs/?WUsi2f
https://www.zotero.org/google-docs/?WUsi2f
https://www.zotero.org/google-docs/?oPQwXZ
https://www.zotero.org/google-docs/?oPQwXZ
https://www.zotero.org/google-docs/?oPQwXZ


 

22 

the effects of novel species. However, in species invasion prediction, trait-based approaches have 452 

had uneven success (Drenovsky et al. 2012; Fournier et al. 2019; Thompson & Davis 2011). 453 

 454 

 The amount of time to wait between the action and the outcome is implicit in LOVE. It is 455 

assumed to be determined by the investigator’s interests and practical constraints. Sometimes it 456 

may be possible to assume an equilibrium has been obtained, and/or that the outcome represents 457 

stable coexistence, but not always (e.g. the transient stochastic dynamics in the SORTIE-ND 458 

simulation and dataset). That is, LOVE makes inferences about persistence, not about stable 459 

coexistence; mechanistic approaches are required for the latter. 460 

 461 

Methodological improvement may be possible. Zero-inflation can cause challenges. Two-stage 462 

models or class weighting approaches can be used to address this in the single-species context 463 

but are not feasible in multi-species contexts due to correlations in abundance (especially zeros) 464 

across species. We converted abundances to factors, which reduces the impact of zeros, but 465 

multivariate hurdle approaches may work better (Kong et al. 2020). Additionally, the structure of 466 

errors in abundance space for prioritization suggests that an additional model could be coupled to 467 

the prediction model to better approximate the D function (i.e. learning rather than enumerating 468 

prioritization). 469 

 470 

More complex community assembly problems could also be studied (Blonder et al. 2023). Initial 471 

states could be non-empty. Actions could be continuously-valued (𝐴 ∈ ℜ") to reflect variation in 472 

the magnitude of a species addition. The dimensionality of A could be increased to assess order-473 

https://www.zotero.org/google-docs/?Y4Z8fN
https://www.zotero.org/google-docs/?Y4Z8fN
https://www.zotero.org/google-docs/?Y4Z8fN
https://www.zotero.org/google-docs/?Y4Z8fN
https://www.zotero.org/google-docs/?Y4Z8fN
https://www.zotero.org/google-docs/?d2LhVo
https://www.zotero.org/google-docs/?d2LhVo
https://www.zotero.org/google-docs/?d2LhVo
https://www.zotero.org/google-docs/?Zgc5yB
https://www.zotero.org/google-docs/?Zgc5yB
https://www.zotero.org/google-docs/?Zgc5yB
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of-arrival effects (Fukami 2015; Weidlich et al. 2021). The dimensions of S and A could also be 474 

increased to allow for environmental covariates, e.g., (Pennekamp et al. 2018).  475 

 476 

Applications may initially be most successful for short-lived organisms and controlled 477 

environments (e.g., microbiomes). Prioritization applications to long-lived organisms may 478 

require long waiting times beyond the timeline of decision-making. Similarly, the assumption of 479 

a fixed environment may not be valid if temporal environmental change occurs.  480 

 481 

A non-sequential approach is most realistic when decision-making timelines are limited and 482 

experimental actions take a long time, because sequential methods require multiple iterations. At 483 

low numbers of experiments, sequential learning was slightly more data-efficient than non-484 

sequential learning, but required ten times more iterations. While sequential design of 485 

experiments (Santner et al. 2003) and active learning (Shalev-Shwartz 2012) have many uses, 486 

they seem less practical here. Similarly for prioritization, a Bayesian optimization approach 487 

requiring multiple iterations to simultaneously learn best actions and outcomes is probably not 488 

realistic. 489 

 490 

Ethical considerations 491 

Because many of the candidate applications of LOVE are in applied ecology, it is necessary to 492 

consider related ethical issues. Many of the potential applications involve making predictions 493 

that involve high-risk species (e.g. an invader). While simulations and initial experiments can 494 

build statistical confidence that experiments will yield the desired outcome, there is no way to 495 

guarantee it. Outcomes may actually occur that are undesirable, and that may not be recoverable. 496 

https://www.zotero.org/google-docs/?OQPkCi
https://www.zotero.org/google-docs/?OQPkCi
https://www.zotero.org/google-docs/?OQPkCi
https://www.zotero.org/google-docs/?K9DOUA
https://www.zotero.org/google-docs/?K9DOUA
https://www.zotero.org/google-docs/?K9DOUA
https://www.zotero.org/google-docs/?vWwLLq
https://www.zotero.org/google-docs/?vWwLLq
https://www.zotero.org/google-docs/?vWwLLq
https://www.zotero.org/google-docs/?EHalWI
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Additionally, the algorithm may prioritize unsafe experiments, i.e. with transient dynamics that 497 

pass through dangerous community states (Aswani et al. 2013), or yielding the loss of culturally 498 

important species. A healthy respect for ecological complexity (Lawton 1999; Simberloff 2004) 499 

and unforeseen consequences (Crichton 1991) is prudent, as is follow-up mechanistic study. 500 

 LOVE also enables the possibility of dual use, i.e. adversarial applications. It could be 501 

possible to discover and then implement actions that intentionally cause dangerous outcomes, 502 

e.g. rapid loss of biodiversity or introductions of invasive species. For example, drug discovery 503 

algorithms (Gupta et al. 2021) intended for health applications also can identify novel molecules 504 

that are more lethal than known nerve agents (Urbina et al. 2022). Dangerous communities may 505 

be assemblable that do not exist naturally. 506 

Potential LOVE applications must also consider whether they take a technocratic and 507 

algorithm-first approach to mediating relationships between people and nature. Such framings 508 

could be harmful because they would de-legitimize the value of traditional and expert 509 

knowledge, and could support the legacy of colonialism and white supremacy in ecology 510 

(Chapman et al. 2021; Wyborn & Evans 2021). Real applications of LOVE should include 511 

engaging relevant communities, and consideration of the unintended consequences of algorithm 512 

deployment.  513 

https://www.zotero.org/google-docs/?hAbX0y
https://www.zotero.org/google-docs/?hAbX0y
https://www.zotero.org/google-docs/?hAbX0y
https://www.zotero.org/google-docs/?omWEJF
https://www.zotero.org/google-docs/?I5pD8N
https://www.zotero.org/google-docs/?2BBHpQ
https://www.zotero.org/google-docs/?2BBHpQ
https://www.zotero.org/google-docs/?2BBHpQ
https://www.zotero.org/google-docs/?DWdAih
https://www.zotero.org/google-docs/?DWdAih
https://www.zotero.org/google-docs/?DWdAih
https://www.zotero.org/google-docs/?vGWzef
https://www.zotero.org/google-docs/?vGWzef
https://www.zotero.org/google-docs/?vGWzef
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Tables 753 

Table 1.  754 

Summary of datasets used in this study. The number of experiments indicates the total number of 755 

experimental actions available in the dataset; unique experiment numbers may be lower if 756 

experiments have been replicated. The number of excluded experiments indicates cases omitted 757 

from training due to outlier abundance values. The number of possible experiments is equal to 758 

the cardinality of the action space. More detail on dataset provenance and preprocessing is 759 

provided in Text S2. 760 

Dataset Taxa Provenance Citation 
# of 
experiments 

# of unique 
experiments 

Outcome mean 
abundance 
(95% quantile) 

# of possible 
experiments 

Annual 
plant 

California 
annual plants 

Simulations 
from nonlinear 
competition / 
seedbank 
model 

(Godoy 
et al. 
2014, 
2017) 262144 262144 4321.1 262144 

Cedar Creek 

North 
American 
prairie plants 

Experimental 
sowing in 
natural 
environments 

(Tilman 
et al. 
2001, 
2012) 154 132 50.2 262144 

Fly gut 
Bacteria in 
fly gut 

Experimental 
inoculations of 
germ-free flies 

(Gould et 
al. 2018) 1536 32 537000 32 

Human gut 
Bacteria in 
human gut 

Simulations 
from GLV 
competition 
model 

(Venturel
li et al. 
2018) 4096 4096 0.6 4096 

Mouse gut 
Bacteria in 
mouse gut 

Simulations 
from GLV 
competition 
model 

(Buffie et 
al. 2012; 
Stein et 
al. 2013) 2048 2048 13.3 2048 

Soil bacteria 
Bacteria in 
soil 

Experimental 
assembly in 
microcosms 

(Friedma
n et al. 
2017) 570 101 0.1 256 

SORTIE-
ND 

Eastern 
North 
American 
hardwood 
trees 

Simulations of 
forest  

(Pacala et 
al. 1996) 1536 512 195 512 

  761 
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Figures 762 

Figure 1.  763 

(a) Overview of the datasets used by LOVE. A community is first observed in an initial state 764 

(Sinitial), here assumed to be empty (shadowed region). An experimental action (A) is then taken, 765 

here representing a species addition (colored species silhouettes). After some time has passed, an 766 

abundance outcome is observed (Sfinal), here with bars representing abundances with the same 767 

colors as silhouettes. The desirability (D) of the outcome can also be independently determined 768 

by humans. (b) In prediction, the mechanism-free model is used to determine the outcome of 769 

proposed actions. (c) In prioritization, the mechanism-free model is used to determine best 770 

action(s) within the potential action space that maximize(s) desirability. (d) Overview of the 771 

inference procedure for LOVE. Magenta steps indicate those that require human decision-772 

making; yellow steps indicate those that require experimental work with real organisms; green 773 

steps those that require modeling only. 774 
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Figure 2. 776 

Comparison of abundance prediction skill in several scenarios. All panels’ y-axis indicates the 777 

mean absolute error in abundance scaled by the datasets’s 95% quantile abundance; lower values 778 

indicate better prediction skill. Results from ten training replicates are shown as points. The y-779 

axis scale is log-transformed. (a) Comparison of methods, breaking out the effect of the number 780 

of training experiments, conditioning on a mixed richness experimental design. (b) Comparison 781 

of methods, conditioning on a mixed richness experimental design and 89 training experiments. 782 

(c) Comparison of experimental designs, conditioning on a random forest method and 89 training 783 

experiments. In panels b and c, some designs and datasets are not shown due to an insufficient 784 

number of training experiments. 785 
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Figure 3.  788 

The effect of dataset properties on scaled error using a post-hoc linear mixed model. Predictions 789 

are for a random forest method and a mixed richness experimental design. Dots indicate results 790 

for each training replicate; lines indicate predicted conditional effects. Panels show the effect of 791 

(a) species richness of the dataset, (b) mean number of species lost (i.e. present in experiment, 792 

absent in outcome) in training data, (c) mean skewness of outcome abundances in training data, 793 

and (d) whether the outcomes are from empirical experiments or simulated experiments from a 794 

hidden dynamical model. 795 
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Figure 4.  797 

Skill at prioritizing experiments for three prioritization tasks: (a) removing an unwanted species, 798 

(b) obtaining high Shannon’s H, and (c) obtaining high abundance. Dots indicate results for each 799 

training sample and are colored by dataset. Prioritizations are for a random forest method, a 800 

mixed richness experimental design, and 89 training experiments. In panel a, more dots are 801 

present because the analysis is repeated for each potential species to remove; letters are shown 802 

only for species in which prioritizations for all replicates had <20% true negative rate. Species 803 

names for each alphabetical species code are in Table S1.804 
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Figure 5.  806 

The effect of dataset properties on prioritization true negative rate using a post-hoc linear mixed 807 

model. Rows show each of the three prioritization tasks. Predictions are for a random forest 808 

method and a mixed richness experimental design. Dots indicate results for each training 809 

replicate; lines indicate predicted conditional effects. Panels show the effect of (a,d,g) species 810 

richness of the dataset, (b,e,h) mean number of species lost (i.e. present in experiment, absent in 811 

outcome) in training data, and (c,f,i) mean skewness of outcome abundances in training data.  812 



 

41 

  813 



 

42 

Supporting Information 814 

Table S1.  815 

Species names for all taxa in each dataset. 816 

Dataset Label Abbreviation Name 

Annual plant a AGHE Agoseris heterophylla 
Annual plant b AGRE Agoseris retrorsa 
Annual plant c AMME Amsinckia menziesii 
Annual plant d ANAR Anagallis arvensis 
Annual plant e CEME Centaurea melitensis 
Annual plant f CLPU Clarkia purpurea 
Annual plant g ERBO Erodium botrys 
Annual plant h ERCI Erodium cicutarium 
Annual plant i EUPE Euphorbia peplus 
Annual plant j GECA Geranium carolinianum 
Annual plant k HECO Hemizonia congesta ssp. luzulifolia 
Annual plant l LACA Lasthenia californica 
Annual plant m LOPU Lotus purshianus 
Annual plant n LOWR Lotus wrangelianus 
Annual plant o MEPO Medicago polymorpha 
Annual plant p NAAT Navarretia atractyloides 
Annual plant q PLER Plantago erecta 
Annual plant r SACA Salvia columbariae 
Cedar Creek a Achmi Achillea millefolium (lanulosa) 
Cedar Creek b Agrsm Agropyron smithii 
Cedar Creek c Amocan Amorpha canescens 
Cedar Creek d Andge Andropogon gerardi 
Cedar Creek e Asctu Asclepias tuberosa 
Cedar Creek f Elyca Elymus canadensis 
Cedar Creek g Koecr Koeleria cristata 
Cedar Creek h Lesca Lespedeza capitata 
Cedar Creek i Liaas Liatris aspera 
Cedar Creek j Luppe Lupinus perennis 
Cedar Creek k Monfi Monarda fistulosa 
Cedar Creek l Panvi Panicum virgatum 



 

43 

Cedar Creek m Petpu Petalostemum purpureum 
Cedar Creek n Poapr Poa pratensis 
Cedar Creek o Queel Quercus ellipsoidalis 
Cedar Creek p Quema Quercus macrocarpa 
Cedar Creek q Schsc Schizachyrium scoparium 
Cedar Creek r Sornu Sorghastrum nutans 
Fly gut a LP Lactobacillus plantarum 
Fly gut b LB Lactobacillus brevis 
Fly gut c AP Acetobacter pasteurianus 
Fly gut d AT Acetobacter tropicalis 
Fly gut e AO Acetobacter orientalis 
Human gut a BH Blautia hydrogenotrophica 
Human gut b CA Collinsella aerofaciens 
Human gut c BU Bacteroides uniformis 
Human gut d PC Prevotella copri 
Human gut e BO Bacteroides ovatus 
Human gut f BV Bacteroides vulgatus 
Human gut g BT Bacteroides thetaiotaomicron 
Human gut h EL Eggerthella lenta 
Human gut i FP Faecalibacterium prausnitzii 
Human gut j CH Clostridium hiranonis 
Human gut k DP Desulfovibrio piger 
Human gut l ER Eubacterium rectale 
Mouse gut a Bar Barnesiella 
Mouse gut b undLac und. Lachnospiraceae 
Mouse gut c uncLac uncl. Lachnospiraceae 
Mouse gut d Oth Other 
Mouse gut e Bla Blautia 
Mouse gut f undMol und. uncl. Mollicutes 
Mouse gut g Akk Akkermansia 
Mouse gut h Cop Coprobacillus 
Mouse gut i Clodif Clostridium difficile 
Mouse gut j Ent Enterococcus 
Mouse gut k undEnt und. Enterobacteriaceae 
Soil bacteria a Ea Enterobacter aerogenes 
Soil bacteria b Pa Pseudomonas aurantiaca 
Soil bacteria c Pch Pseudomonas chlororaphis 



 

44 

Soil bacteria d Pci Psuedomonas citronellolis 
Soil bacteria e Pf Pseudomonas fluorescens 
Soil bacteria f Pp Pseudomonas putida 
Soil bacteria g Pv Pseudomonas veronii 
Soil bacteria h Sm Serratia marcescens 
SORTIE-
ND 

a ACRU Acer rubrum 

SORTIE-
ND 

b ACSA Acer saccharum 

SORTIE-
ND 

c BEAL Betula alleghaniensis 

SORTIE-
ND 

d FAGR Fagus grandifolia 

SORTIE-
ND 

e TSCA Tsuga canadensis 

SORTIE-
ND 

f FRAM Fraxinus americana 

SORTIE-
ND 

g PIST Pinus strobus 

SORTIE-
ND 

h PRSE Prunus serotina 

SORTIE-
ND 

i QURU Quercus rubra 

 817 

  818 
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Table S2. 819 

Scaled error for prediction, conditioned on a method of random forest and an experimental 820 

design of mixed. 821 

Dataset name 
Number of 
training cases 

Scaled error 
(mean) Scaled error (s.d.) 

Annual plant 10 0.188 0.035206 

Annual plant 14 0.137 0.051771 

Annual plant 21 0.103 0.040066 

Annual plant 30 0.08 0.030029 

Annual plant 43 0.067 0.020783 

Annual plant 62 0.057 0.015806 

Annual plant 89 0.051 0.008632 

Annual plant 127 0.048 0.006375 

Annual plant 183 0.048 0.004666 

Annual plant 264 0.044 0.005761 

Annual plant 379 0.042 0.002672 

Annual plant 546 0.043 0.004031 

Annual plant 785 0.041 0.001772 

Annual plant 1129 0.041 0.002085 

Annual plant 1624 0.04 0.001111 

Annual plant 2336 0.04 0.000902 

Annual plant 3360 0.039 0.001127 

Annual plant 4833 0.039 0.000857 

Annual plant 6952 0.038 0.000657 

Annual plant 10000 0.038 0.000641 

Cedar Creek 10 0.126 0.007185 

Cedar Creek 14 0.113 0.004621 

Cedar Creek 21 0.105 0.003632 

Cedar Creek 30 0.1 0.007033 
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Cedar Creek 43 0.083 0.002883 

Cedar Creek 62 0.067 0.00401 

Cedar Creek 89 0.045 0.001947 

Fly gut 10 0.139 0.009458 

Fly gut 14 0.138 0.007543 

Fly gut 21 0.126 0.003907 

Fly gut 30 0.127 0.0052 

Human gut 10 0.134 0.014303 

Human gut 14 0.111 0.012693 

Human gut 21 0.103 0.013476 

Human gut 30 0.084 0.006531 

Human gut 43 0.067 0.005437 

Human gut 62 0.053 0.002741 

Human gut 89 0.043 0.002965 

Human gut 127 0.035 0.001275 

Human gut 183 0.029 0.002661 

Human gut 264 0.025 0.000948 

Human gut 379 0.02 0.001438 

Human gut 546 0.018 0.000661 

Human gut 785 0.016 0.000356 

Human gut 1129 0.015 0.000273 

Human gut 1624 0.014 0.000153 

Human gut 2336 0.014 0.000105 

Human gut 3360 0.014 0.000036 

Mouse gut 10 0.043 0.00677 

Mouse gut 14 0.033 0.005846 

Mouse gut 21 0.027 0.002267 

Mouse gut 30 0.024 0.003599 

Mouse gut 43 0.021 0.001956 
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Mouse gut 62 0.018 0.001034 

Mouse gut 89 0.017 0.001555 

Mouse gut 127 0.017 0.001378 

Mouse gut 183 0.016 0.001358 

Mouse gut 264 0.015 0.000694 

Mouse gut 379 0.015 0.000892 

Mouse gut 546 0.015 0.000459 

Mouse gut 785 0.015 0.000645 

Mouse gut 1129 0.015 0.000207 

Mouse gut 1624 0.015 0.000184 

SORTIE-ND 10 0.101 0.010968 

SORTIE-ND 14 0.092 0.012706 

SORTIE-ND 21 0.085 0.012665 

SORTIE-ND 30 0.071 0.005861 

SORTIE-ND 43 0.063 0.003379 

SORTIE-ND 62 0.056 0.001947 

SORTIE-ND 89 0.052 0.001347 

SORTIE-ND 127 0.051 0.001218 

SORTIE-ND 183 0.048 0.000681 

SORTIE-ND 264 0.045 0.000476 

SORTIE-ND 379 0.042 0.000352 

Soil bacteria 10 0.136 0.006685 

Soil bacteria 14 0.125 0.007807 

Soil bacteria 21 0.106 0.011251 

Soil bacteria 30 0.084 0.009954 

Soil bacteria 43 0.065 0.003127 

Soil bacteria 62 0.049 0.00419 

Soil bacteria 89 0.034 0.002287 
  822 
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Table S3. 823 

Error for prioritization, conditioned on a method of random forest and an experimental design of 824 

mixed. 825 

Task 
Dataset 
name 

Number 
of 
training 
cases 

True negative 
rate (mean) 

True 
negative 
rate (s.d.) 

True positive 
rate (mean) 

True 
positive rate 
(s.d.) 

abundance 
Annual 
plant 89 0.000031 0.000096 0.99 0.01719 

abundance Human gut 89 0.472195 0.303772 0.99 0.00522 

abundance Mouse gut 89 0 0 1 0 

abundance 
SORTIE-
ND 89 0.020968 0.017086 0.99 0.01031 

abundance 
Annual 
plant 264 0 0 1 0.00024 

abundance Human gut 264 0.462927 0.306334 0.99 0.00414 

abundance Mouse gut 264 0 0 1 0 

abundance 
SORTIE-
ND 264 0.032258 0.026339 0.98 0.00581 

shannons_h 
Annual 
plant 89 0.247177 0.152217 0.97 0.02131 

shannons_h Human gut 89 0.598206 0.197346 0.98 0.01353 

shannons_h Mouse gut 89 0.287778 0.111167 1 0.00174 

shannons_h 
SORTIE-
ND 89 0.039706 0.028625 0.99 0.00339 

shannons_h 
Annual 
plant 264 0.71644 0.112456 0.95 0.00499 

shannons_h Human gut 264 0.653812 0.17978 0.98 0.01621 

shannons_h Mouse gut 264 0.373333 0.151009 0.99 0.00442 

shannons_h 
SORTIE-
ND 264 0.108824 0.030376 0.99 0.00529 

removal 
Annual 
plant 89 0.85757 0.219518 0.97 0.05003 

removal Human gut 89 0.902874 0.168068 0.91 0.06902 

removal Mouse gut 89 0.776574 0.284374 0.94 0.04922 
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removal 
SORTIE-
ND 89 0.78989 0.271564 0.94 0.06289 

removal 
Annual 
plant 264 0.863898 0.198121 0.99 0.01778 

removal Human gut 264 0.912263 0.098506 0.96 0.03929 

removal Mouse gut 264 0.777913 0.284855 0.98 0.02 

removal 
SORTIE-
ND 264 0.747148 0.293548 0.97 0.02973 

  826 
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Text S1.  827 

Datasets and pre-processing steps. 828 

 829 

‘Annual plant’ dataset 830 

We obtained data from a field-parameterized plant competition model, which describes the 831 

dynamics of annual plants with seed banks (Chesson 1990; Levine & HilleRisLambers 2009). 832 

This model is more complex than the generalized Lotka-Volterra, as it includes population stage 833 

structure and nonlinear competition. Data came from 18 California annual plants (Godoy et al. 834 

2014). We modified the model reported in (Godoy et al. 2014) to include multi-species 835 

competition, following (Godoy et al. 2017). The modified discrete-time model describes the 836 

abundance of seeds of species i at time t+1 as: 837 

𝑁!,#50 = 𝑁!,#[(1 − 𝑔!)𝑠! + 𝑔!𝐹!]  838 

where: 839 

𝐹! = 𝜆!/ P1 +Q
-

𝛼!-𝑔-𝑁-,#S 840 

The modification is the inclusion in the denominator of Fi of a sum over all species, rather than 841 

the sum over only two focal species. Here, 𝜆!is the per germinant fecundity of species i,𝑔!is the 842 

germination rate of species i, 𝑠! is the annual survival rate of ungerminated seed in the soil of 843 

species i, 𝐹!is the number of viable seeds produced per germinated individual of species i, and 844 

𝛼!-is the per capita effect of species j on species i. 66/234 values of 𝛼!-which were missing from 845 

the dataset were replaced with the mean value in the dataset per (Donders et al. 2006). 846 

 847 

https://www.zotero.org/google-docs/?T5bV7a
https://www.zotero.org/google-docs/?XQaK7c
https://www.zotero.org/google-docs/?XQaK7c
https://www.zotero.org/google-docs/?XQaK7c
https://www.zotero.org/google-docs/?XQaK7c
https://www.zotero.org/google-docs/?lUOMhi
https://www.zotero.org/google-docs/?lUOMhi
https://www.zotero.org/google-docs/?lUOMhi
https://www.zotero.org/google-docs/?6D82Hj
https://www.zotero.org/google-docs/?6D82Hj
https://www.zotero.org/google-docs/?6D82Hj
https://www.zotero.org/google-docs/?HbrA7h
https://www.zotero.org/google-docs/?HbrA7h
https://www.zotero.org/google-docs/?HbrA7h
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For each of the communities possible among the species pool, we initialized all species present 848 

in the experiment to 𝑁!(𝑡 = 0) = 1, and ran for 1000 generations (long enough to reach 849 

equilibrium). Richness and composition were calculated by flagging species with𝑁!(𝑡 =850 

1000) ≥ 0.01. 851 

 852 

‘Cedar Creek’ dataset 853 

We obtained data from the Cedar Creek Biodiversity II ‘e120’ experiment. This dataset describes 854 

annual aboveground biomass estimates (from 1994 to 2018) of 154 experimentally assembled 855 

plant communities of varying composition (Tilman et al. 2001). For each plot, we set the 856 

experimental conditions (X) to whether the plot contained each of n=18 species (16 intentionally 857 

planted, plus 2 volunteer species). We then set the final abundance to each species’ biomass in 858 

each plot in 2018. Richness and composition were calculated by flagging species with 859 

𝑁!(𝑡 = 2018) > 0. This approach conflates biomass with abundance and does not account for 860 

biomass from other non-focal species that colonized each plot by 2018 (e.g. numerous weeds), 861 

but is a reasonable choice given the limitations of the data.  862 

 863 

‘Fly gut’ dataset 864 

We obtained data for germ-free fruit flies experimentally inoculated with each possible 865 

combination of core species of fly gut bacteria at 3-day intervals, from (Gould et al. 2018). For 866 

each treatment, we set the experimental conditions (X) to whether the fly had been inoculated 867 

with each of n=5 bacterial taxa. We then set the final abundances to the number of colony 868 

forming units of each taxon after 10 days of experimental treatments. A total of q=48 replicate 869 

https://www.zotero.org/google-docs/?pg0eW8
https://www.zotero.org/google-docs/?pg0eW8
https://www.zotero.org/google-docs/?pg0eW8
https://www.zotero.org/google-docs/?HceABq
https://www.zotero.org/google-docs/?HceABq
https://www.zotero.org/google-docs/?HceABq
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flies were used per treatment. Richness and composition were calculated by flagging species 870 

with 𝑁!(𝑡 = 10) > 0. 871 

 872 

‘Human gut’ dataset 873 

The generalized Lotka-Volterra model was used to simulate outcomes, based on the equation: 874 

𝑑𝑁Y(𝑡)
𝑑𝑡 = 𝑑𝑖𝑎𝑔 \𝑁Y(𝑡)] \�̂� + 𝐴𝑁Y(𝑡)] 875 

Here 𝑁Y is a vector of abundances among species in the regional pool, �̂� is the vector of density-876 

independent growth rates, and A is the matrix of interaction coefficients, with entry 𝐴!- 877 

representing the change in species i’s per-capita growth rate for a unit change in the density of 878 

species j. 879 

 880 

For each of the communities possible among the species pool, and for a given set of A and r 881 

parameters, we analyzed the model over the reduced dimensionality corresponding to the number 882 

of species introduced in the local community. We initialized all species present in the experiment 883 

to 𝑁!(𝑡 = 0) = 1, then solved the differential equation up to t=1000 using the ode function in the 884 

deSolve package in R. Richness and composition were calculated by flagging species with 𝑁!∗ >885 

0.01. 886 

 887 

We parameterized the model for a n=11 mouse gut microbial community including the pathogen 888 

Clostridium difficile (Stein et al. 2013) based on (Buffie et al. 2012).  889 

 890 

‘Mouse gut’ dataset 891 

https://www.zotero.org/google-docs/?oOWN0Q
https://www.zotero.org/google-docs/?oOWN0Q
https://www.zotero.org/google-docs/?oOWN0Q
https://www.zotero.org/google-docs/?m9e7Z1
https://www.zotero.org/google-docs/?m9e7Z1
https://www.zotero.org/google-docs/?m9e7Z1
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We followed the steps outlined for the ‘human gut’ dataset but using A and r parameters for a 892 

n=12 synthetic human gut microbial community (Venturelli et al. 2018).  893 

 894 

‘Soil bacteria’ dataset 895 

We obtained data from experimental assembly of soil bacterial communities from (Friedman et 896 

al. 2017). Communities were assembled at varying densities in microplate microcosms each 897 

comprising five cycles each comprising 48 hours of growth, followed by a 1500-fold dilution 898 

into fresh media. Data include species grown alone, in pairs, in triplets, in single-species drop-899 

outs, and all together. Experiments were replicated from 2 to 14 times. We set the abundance of 900 

each species to its optical density after this growth period. Richness and composition were 901 

calculated by flagging species with 𝑁!(𝑡 = 240) > 0.  902 

 903 

‘SORTIE-ND’ dataset 904 

We used the SORTIE-ND (version 7.0.5) model of forest dynamics, which is an individual-based 905 

forest simulator that includes demography and life history stage transitions, light competition, 906 

spatially explicit dispersal, and other processes (Pacala et al. 1993, 1996). This model was 907 

chosen for its high complexity and stochasticity.  908 

 909 

We obtained a parameterization of the model for n=9 hardwood species in eastern North 910 

America at 42°N latitude (‘GMD’, available by download from http://sortie-911 

nd.org/software/7_05/sample_par_file.zip). We modified this file to change the plot size to 100 x 912 

100 m, to run for 1000 years (200 5-year time steps) with no external disturbances, and set the 913 

parameters for Weibull seed rain and Weibull seed beta to species-specific values reported at 914 

https://www.zotero.org/google-docs/?oz6jT6
https://www.zotero.org/google-docs/?oz6jT6
https://www.zotero.org/google-docs/?oz6jT6
https://www.zotero.org/google-docs/?Dfu95U
https://www.zotero.org/google-docs/?Dfu95U
https://www.zotero.org/google-docs/?Dfu95U
https://www.zotero.org/google-docs/?Dfu95U
https://www.zotero.org/google-docs/?qrPrUO
https://www.zotero.org/google-docs/?qrPrUO
https://www.zotero.org/google-docs/?qrPrUO
http://sortie-nd.org/software/7_05/sample_par_file.zip
http://sortie-nd.org/software/7_05/sample_par_file.zip
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http://sortie-nd.org/software/sample_par_file.html), as the default parameter file erroneously 915 

includes blank values (personal communication, L. Murphy and C. Canham, 2 Sept. 2021). The 916 

simulation does not come to equilibrium but rather includes fluctuations in abundance, due to the 917 

effects of light-based competition and no self-thinning in the understorey. Some stochastic 918 

extinctions also occur. 919 

 920 

For each local community that could be assembled from this species pool, we then ran 921 

simulations, initializing all species to an initial density of either 0 or 25 saplings ha-1 (default 922 

initial values) and running q=3 replicates per initial condition. We determined abundance as the 923 

absolute density of adults at t=1000. Richness and composition were calculated by flagging 924 

species with adult densities of 𝑁!(𝑡 = 1000) > 1.  925 

http://sortie-nd.org/software/sample_par_file.html
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Figure S1.  926 

Visualization of experimental conditions and abundance outcomes for the annual plant dataset. 927 

Panels show (a) initial species presence/absence data for each experiment and (b) outcomes. 928 

Quantile clipped values are colored red. 929 

  930 
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Figure S2.  931 

Visualization of experimental conditions and abundance outcomes for the Cedar Creek dataset. 932 

Panels show (a) initial species presence/absence data for each experiment and (b) outcomes. 933 

Quantile clipped values are colored red. 934 

  935 
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Figure S3.  936 

Visualization of experimental conditions and abundance outcomes for the fly gut dataset. Panels 937 

show (a) initial species presence/absence data for each experiment and (b) outcomes. Quantile 938 

clipped values are colored red. 939 

 940 

  941 
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Figure S4.  942 

Visualization of experimental conditions and abundance outcomes for the human gut dataset. 943 

Panels show (a) initial species presence/absence data for each experiment and (b) outcomes. 944 

Quantile clipped values are colored red. 945 

 946 

Figure S5.  947 

Visualization of experimental conditions and abundance outcomes for the mouse gut dataset. 948 

Panels show (a) initial species presence/absence data for each experiment and (b) outcomes. 949 

Quantile clipped values are colored red. 950 
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 951 

  952 
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Figure S6.  953 

Visualization of experimental conditions and abundance outcomes for the soil bacteria dataset. 954 

Panels show (a) initial species presence/absence data for each experiment and (b) outcomes. 955 

Quantile clipped values are colored red. 956 

  957 
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Figure S7.  958 

Visualization of experimental conditions and abundance outcomes for the SORTIE dataset. 959 

Panels show (a) initial species presence/absence data for each experiment and (b) outcomes. 960 

Quantile clipped values are colored red. 961 

  962 
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Figure S8.  963 

Observed vs. predicted abundance values for all species and all training replicates. Individual 964 

predictions are shown as dots; lines are drawn for each species and replicate sample dataset 965 

combination, and reflect a regression for all test-set experiments of this combination. The 1:1 966 

line is shown in transparent black. Predictions are for a random forest method, a mixed richness 967 

experimental design, and 89 training experiments. Species names for each alphabetical species 968 

code are in Table S1.969 

  970 
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Figure S9.  971 

Observed vs. predicted abundance values for all species and all sampled training datasets. 972 

Individual predictions are shown as dots; lines are drawn for each species and replicate sample 973 

dataset combination, and reflect a regression for all test-set experiments of this combination. The 974 

1:1 line is shown in transparent black. Predictions are for a random forest method, a mixed 975 

richness experimental design, and 264 training experiments. Species names for each alphabetical 976 

species code are in Table S1. Some datasets did not have enough training experiments at this 977 

sample size to be visualized. 978 

  979 
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Figure S10.  980 

Structure of prioritization errors for the removal task for the (a) annual plant, (b) human gut, (c) 981 

mouse gut and (d) SORTIE-ND datasets. Within each panel, left columns indicate prioritizations 982 

for a random forest method, a mixed richness experimental design, and 89 training experiments 983 

and right columns indicate actual best experiments. Top panels indicate experiments as rows, 984 

while bottom panels indicate outcomes as rows. The ordering of rows in top and bottom panels is 985 

the same and is based on hierarchical clustering of the outcomes. In panel a, a random sample of 986 

500 experiments is shown for clearer visualization. The replicate and species combination with 987 

highest true positive rate has been chosen for this visualization. Species names for each 988 

alphabetical species code are in Table S1.  989 
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 990 

  991 
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Figure S11.  992 

Structure of prioritization errors for the maximizing Shannon’s H task for the (a) annual plant, 993 

(b) human gut, (c) mouse gut and (d) SORTIE-ND datasets. Within each panel, left columns 994 

indicate prioritizations for a random forest method, a mixed richness experimental design, and 89 995 

training experiments and right columns indicate actual best experiments. Top panels indicate 996 

experiments as rows, while bottom panels indicate outcomes as rows. The ordering of rows in 997 

top and bottom panels is the same and is based on hierarchical clustering of the outcomes. In 998 

panel a, a random sample of 500 experiments is shown for clearer visualization. The replicate 999 

with highest true positive rate has been chosen for this visualization. Species names for each 1000 

alphabetical species code are in Table S1.  1001 
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 1002 

 1003 

  1004 
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Figure S12.  1005 

Structure of prioritization errors for the maximizing total abundance task for the (a) annual plant, 1006 

(b) human gut, (c) mouse gut and (d) SORTIE-ND datasets. Within each panel, left columns 1007 

indicate prioritizations for a random forest method, a mixed richness experimental design, and 89 1008 

training experiments and right columns indicate actual best experiments. Top panels indicate 1009 

experiments as rows, while bottom panels indicate outcomes as rows. The ordering of rows in 1010 

top and bottom panels is the same and is based on hierarchical clustering of the outcomes. In 1011 

panel a, a random sample of 500 experiments is shown for clearer visualization. The replicate 1012 

with highest true positive rate has been chosen for this visualization. Species names for each 1013 

alphabetical species code are in Table S1. Blanks are shown in panel c left column due to the 1014 

failure of the prioritization to identify any viable predictions. 1015 
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 1016 

  1017 
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Figure S13.  1018 

Structure of error types in abundance outcome space for the removal prioritization task for each 1019 

dataset. Prioritizations are for a random forest method, a mixed richness experimental design, 1020 

and (a) 89 or (b) 264 training experiments. In each panel, arrows show variable loadings of a 1021 

principal component analysis in outcome abundance space (𝑥0/8 transformed to reduce outlier 1022 

effects); hexagon colors indicate numbers of outcomes that fall within each bin. Outcomes are 1023 

grouped by whether the experiment yielding them is a true positive, true negative, false positive, 1024 

or false negative with respect to the prioritization task. Species names for each alphabetical 1025 

species code are in Table S1.  1026 

 1027 

  1028 
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Figure S14.  1029 

Structure of error types in abundance outcome space for the maximizing Shannon’s H task for 1030 

each dataset. Prioritizations are for a random forest method, a mixed richness experimental 1031 

design, and (a) 89 or (b) 264 training experiments. In each panel, arrows show variable loadings 1032 

of a principal component analysis in outcome abundance space (𝑥0/8 transformed to reduce 1033 

outlier effects); hexagon colors indicate numbers of outcomes that fall within each bin. 1034 

Outcomes are grouped by whether the experiment yielding them is a true positive, true negative, 1035 

false positive, or false negative with respect to the prioritization task. 1036 

 1037 

  1038 
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Figure S15.  1039 

Structure of error types in abundance outcome space for the maximizing total abundance task for 1040 

each dataset. Prioritizations are for a random forest method, a mixed richness experimental 1041 

design, and (a) 89 or (b) 264 training experiments. In each panel, arrows show variable loadings 1042 

of a principal component analysis in outcome abundance space (𝑥0/8 transformed to reduce 1043 

outlier effects); hexagon colors indicate numbers of outcomes that fall within each bin. 1044 

Outcomes are grouped by whether the experiment yielding them is a true positive, true negative, 1045 

false positive, or false negative with respect to the prioritization task. 1046 

 1047 


