Global depth distribution of soil carbon inputs inferred from belowground net primary production and root biomass profiles

Liujun Xiao¹, Guocheng Wang², Jinfeng Chang¹, Yaoyao Chen¹, Xiali Mao¹, Xiaowei Guo¹, Zhou Shi¹, Mingming Wang¹, Shuai Zhang¹, Yiqi Luo³, Lei Cheng⁴, Kailiang Yu⁵, Fei Mo⁶, Shengyao Jia⁷, and Zhongkui Luo¹

¹Zhejiang University - Zijingang Campus ²Chinese Academy of Sciences ³Northern Arizona University ⁴Wuhan University ⁵Princeton University ⁶Northwest A&F University ⁷Zhejiang University

April 05, 2024

Abstract

The depth distribution of carbon inputs to soil has been unquantified globally, hindering our understanding of belowground carbon dynamics. We synthesize global observational data to infer the allocation of carbon inputs to soil depths down to 2 m, and map depth-specific carbon inputs globally at 1 km resolution. Global average carbon input to the 0–20 cm soil layer is 1.1 Mg C ha⁻¹ yr⁻¹, accounting for >50% of total soil carbon inputs. Across the globe, the depth distribution of carbon inputs shows large variability, and there are relatively more carbon inputs to deeper layers in hotter and drier regions. Edaphic, climatic and topographic properties (in the order of importance) explain >80% of such variability in soil depths; and the direction and magnitude of the influence of individual properties are soil depth- and biome-dependent. Our results provide global benchmarks for prediction of whole-soil carbon profiles across global biomes.

Hosted file

MS_BNPP_ELE.docx available at https://authorea.com/users/733184/articles/711051-globaldepth-distribution-of-soil-carbon-inputs-inferred-from-belowground-net-primaryproduction-and-root-biomass-profiles