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Abstract

Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomed-
ical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing
great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle
these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering
their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing
(scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of
T cell profiles in both adult blood and cord blood, we showcased the robust capacity of Seurat in flow cytometric data analysis,
which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual
analysis. Importantly, we identified a unique CD8 + T cell population defined as CD8 +CD45RA +CD27 +CD161 + T cell,
that was predominantly present in cord blood. We characterized its IFN-γ-producing and potential cytotoxic properties using

flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human cord

blood CD8 +CD45RA +CD27 +CD161 + T cell subset and demonstrated that Seurat, a widely used package for scRNA-seq

analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough

interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven

investigation in clinical immunology.
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Abstract

Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound
innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in
an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis.
Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most
newly developed computational methods lack flexibility and interoperability, hampering their accessibility
and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing
(scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody
panel and analyses of T cell profiles in both adult blood and cord blood, we showcased the robust capacity
of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional
cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique
CD8+ T cell population defined as CD8+CD45RA+CD27+CD161+T cell, that was predominantly present
in cord blood. We characterized its IFN-γ-producing and potential cytotoxic properties using flow cytom-
etry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique
human cord blood CD8+CD45RA+CD27+CD161+T cell subset and demonstrated that Seurat, a widely
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used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analy-
sis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a
single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.

Introduction

The rapid development of analytical technologies at a single-cell level over recent decades has revolutionized
biological and medical research, particularly in the field of immunology. Immune cell populations are well-
known for their heterogeneity and tools such as flow cytometry (or fluorescence-activated cell sorting, FACS),
cytometry by time-of-flight mass spectrometry (CyTOF) and single-cell RNA-sequencing (scRNA-seq), fa-
cilitate an in-depth identification and characterization of various immune cell types (1). Conventionally,
analysis of cytometric data (including flow, spectral and mass cytometry) has relied on manual analysis
based on empirical gating strategies under expert supervision. This is extremely labor-intensive and tedious,
as the complex cytometric data is limited to permutational visualization of two-dimensional (2D) plots
(FACS plots). These plots feature different pairs of marker combinations, which requires arduous sequential
inspection (2). The possible combinations of markers from a given panel increase exponentially with the
addition of extra parameters. As more and more state-of-the-art cytometric panels exceed 20 markers (3,4),
thorough manual gating analysis is becoming increasingly challenging and impractical (5). Furthermore,
such analytical workflows are inevitably subject to bias, considering their dependence on empirical knowl-
edge and subjective selection and inspection of markers. These limitations hamper analyses and potentially
conceal novel findings.

Various computational approaches have been developed as potential solutions, including methods for dimen-
sion reduction (such as t-distributed stochastic neighbor embedding, tSNE (6), and uniform manifold approx-
imation and projection, UMAP (7)), clustering (such as PhenoGraph, and FlowSOM (8,9)), and automated
cell gating and classification (5,10). These tools all accelerate high-dimensional data analysis. Moreover,
they have revolutionized cytometry-based research, transitioning from the conventional hypothesis-driven
strategy that focuses on specific cell types or markers, to more unbiased and comprehensive methods, that
simultaneously take all data into account. Despite their notable success, these tools still suffer significant
limitations. For example, many of these computational modalities are separate, and some even require spe-
cific data formatting and processing procedures. This is not user-friendly and hampers their usability and
accessibility in the broader research community. While some integrative toolkits combine these modalities
and offer end-to-end analysis of cross-platform cytometric data including normalization, integration and
clustering, such as Spectre (10), and ImmPort Galaxy (11), these are still few in number. There are also
some other commercial toolkits of this kind like OMIQ (12,13) and Cytobank (14), but they usually require
paid subscriptions, limiting their availability. Furthermore, owing to their non-open-source nature, commer-
cial toolkits can lag in flexible customizing services, as well as community-driven support, maintenance and
improvements, potentially preventing optimal usability and adaptability. Hence, there is great interest in
more accessible and adaptable tools.

Computational analyses of complex cytometric data have considerably benefited clinical immunological re-
search. On one hand, clinical immunological data is notorious for its heterogeneity, highlighting the need for
computational tools for data cleaning, batch alignment, and unbiased analysis. On the other hand, given
the limited availability of clinical samples (such as samples with rare disease backgrounds or longitudinal
samples), expanding the markers and dimensionality of cytometry panels may help to achieve more com-
prehensive and efficient investigation, and represents an unprecedented opportunity for high-dimensional
data analysis. Leveraging the rapidly developing computational analytical tools for clinical immunological
studies is thus emerging as a promising avenue to provide more detailed insights into clinical contexts whilst
maximizing the values of limited clinical samples.

An area of increasing interest is the characterization of immune profiles in umbilical cord blood (CB) com-
pared to adult blood (AB). The striking immunological differences between CB and AB not only offer critical
insights for disease pathogenesis but also provide an ideal scenario for showcasing the analytical power of
computational toolkits in clinical applications.
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The main components of the CB immune compartment are cord blood mononuclear cells (CBMCs), known
to exhibit unique characteristics relative to peripheral blood mononuclear cells (PBMCs) from AB, due to
the semi-allogeneic environment of pregnancy. Mirroring the fetal immune system (15), CBMCs feature a
more näıve phenotype (16–18), and are implicated in the physiology and pathology during both pregnancy
and later in life (19–22). Hence, understanding CB immune profiles and their differences from AB provides
precious insights into immunological development at different stages, as well as sheds light on the complex
immunobiology of pregnancy.

Here, we developed a 20-marker antibody panel for thoroughly immunophenotyping T cells in both CB and
AB. We adapted Seurat, a widely used end-to-end package originally for scRNA-seq analysis, for the resulting
high-dimensional flow cytometric data analysis after primary processing in FlowJo. This workflow identified
several previously underappreciated T cell subsets in AB, validated by Spectre, another computational cyto-
metric analytical package, and conventional manual gating, showcasing the capacity of Seurat. Importantly,
using Seurat for a comparative study of CB and AB profiles, we revealed a unique CB T cell population,
characterized as CD8+CD45RA+CD27+CD161+T cells. Analysis of previously published scRNA-seq data
confirmed this identified population and hinted at its possible cytotoxic and pro-inflammatory properties.
Together, this represents the first application example of using Seurat as a complete flow cytometric analysis
workflow and demonstrates its robust analytical performance. It emerges as a simple and easy-to-use toolkit
for cytometric data analysis, particularly for its pre-existing wide scRNA-seq user community. Seurat also
features as a single platform but with various supplementary tools and plugins facilitating single-cell analysis
of both protein and RNA data, as well as their comparisons and cross-validation. This represents a novel
unbiased discovery tool for complex single-cell data analysis in clinical immunology.

Materials and Methods

Sample preparation and flow cytometry experiments

PBMCs from adult blood samples and CBMCs from cord blood samples were prepared as described in
Supplementary Information 1.1. For flow cytometry experiments, cells were processed, barcoded, and stained
as Supplementary 1.2 – 1.3. and analyzed using the 5-laser Aurora Spectral cytometer (Cytek Biosciences,
USA) on the same day.

Cytometric data was unmixed with SpectroFlo and analyzed using FlowJo (BD Life Science) based on the
gating strategy in Supplementary Figure 1A. The CD3+CD4+ and CD3+CD8+ T cell populations were
manually gated and exported as CSV files with their scaled values for further computational analysis in
RStudio using Seurat and Spectre.

High-dimensional flow cytometry data analysis

Data preparation

For analysis using Seurat 4.3.0 and Spectre 1.0.0, the exported CSV files of the gated populations of interest
were loaded in RStudio (v4.1.2). Next, data tables for each sample were merged together using Spectre’s
do.merge.files() function. The data then underwent an hyperbolic arcsine (arcsinh) transformation (co-factor
= 2000) using Spectre (do.asinh ). To avoid bias and skewing due to different cellularity, the processed
cytometric data was first randomly downsampled to the same number among samples before analysis.

Analysis using Seurat

After reading in the downsampled data matrix generated in 2.2.1., along the conventional Seurat analysis
workflow (23–26), procedures such as QC and normalization originally for transcriptomic data were skipped.
Furthermore, to preserve the transformed flow cytometry data structure for analysis, the data scaling process
was bypassed by selecting “do.scale = FALSE, do.center = FALSE” in the ScaleData()function.. All features
were selected as variable features for further analysis.

After that, principal component analysis (PCA) was performed. Based on the PCA scores, the top PCs con-
tributing to 99% of variance were selected for the subsequent cluster analysis using theFindNeighbors() and
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FindClusters() functions and dimensional reduction with the RunUMAP() function. We utilized theDotPlot()
and VlnPlot() functions in Seurat to visualize the expression of various markers in different clusters.

A detailed workflow for analyzing flow cytometry data using Seurat is available in the Supplementary Infor-
mation 1.4.2.

Analysis using Spectre

For analysis with Spectre, input data were first down sampled and then analyzed following (10), except a
5×5 self-organizing map (SOM) was used. The final clustering numbers were also adjusted to the same as
Seurat’s results for comparison.

Single-cell RNA sequencing (scRNA-seq) analysis

Preprocessed single-cell RNA sequencing (scRNA-seq) data was downloaded from Gene Expression Omnibus
from a previous study (27) (GEO accession: GSE158493). Since the original dataset was grouped based on
sample origins (fetal spleen, full-term umbilical cord blood and adult peripheral blood), the LIGER package
was used to re-integrate the data with different origins to eliminate potential batch effects (28). After that,
the data were analyzed with Seurat 4.3.0. (23–26). Marker genes were identified using Seurat’s FindMarkers()
function based on its default settings, with thresholds for differentially expressed genes defined as p < 0.05
and LOG2(Fold change) higher than 0.5 or lower than -0.5. Gene ontology (GO) analysis and gene set
enrichment analysis (GSEA) was run with package fgsea and ClusterProfiler following their tutorials (29,30).

Statistics

Statistical analysis was performed with GraphPad PRISM 10 or in RStudio using Seurat. Mann-Whitney U
test was used for comparison between two groups. Differences were considered to be statistically significant
when p < 0.05.

Results

Seurat is a reliable tool for high-dimensional flow cytometry data analysis

Analysis of human peripheral blood, and the heterogenous T cell compartments therein, is of great importance
considering the availability of blood samples and its ubiquitous use in medical research and clinical diagnosis.
Here, we established a 20-marker antibody panel (Table 1) to comprehensively characterize the functional
profiles of CD4+ and CD8+ T cells in human peripheral blood mononuclear cells (PBMCs). Details about the
markers and their functions are described in Table 1. They cover various aspects of T cell biology, including
maturation, activation, migration, and function.

PBMCs from healthy adult individuals were collected and processed based on the workflow in Figure 1A. To
reduce antibody wastage as well as minimize the inter-sample variations caused by batch effects introduced
during experimental processes, which is an intrinsic problem for clinical studies involving flow cytometry,
we utilized a barcoding system leveraging the anti-CD45 labelling. In the current study, PBMC samples
were stained with our 20-colour antibody panel and analyzed by spectral cytometry. After demultiplexing,
the resulting cytometric data were manually gated for CD4+ and CD8+ T cell populations (Supplementary
Figure 1A).

For proof-of-concept, the CD8+ T cell data was analyzed with Seurat and compared with Spectre, based on
the 12 functional markers out of the total 15 surface markers, excluding lineage markers such as CD45, CD3
and CD8. The results were validated through manual gating as well.

Seurat clustered the adult CD8+ T cell compartment into 14 clusters (Se1-14) and projected them onto the 2D
UMAP plot as shown in Figure 1B. Historically, T cells are gated into four populations based on expression of
CD45RA and CD27. The CD45RA+CD27+ population is defined as näıve, the CD45RA-CD27+population
as central memory (CM), the CD45RA-CD27- population as effector memory (EM) and the CD45RA+CD27-

is effector memory that re-express CD45RA (EMRA) (31). Comparing Seurat’s results to this classification,
we found that Se1, Se2 and Se8 were näıve, Se4, Se5 and Se7 were CM, Se11 and Se13 were EM, and
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Se12 was EMRA. Interestingly, Seurat clustering retrieved populations exhibiting intermediate expression
levels of CD45RA and CD27, such as clusters Se3, Se6, Se9, Se10 and Se14 (Figure 1C-D), which did not
necessarily fall into any of the four conventional gates mentioned above. This implies that the conventional
gating strategy based only on positive or negative expression of markers is incomplete. Seurat, on the other
hand, can provide a more comprehensive analysis for multiple markers, and thus enable the discovery of
previously unidentified subsets.

Feature markers identified by Seurat and the potential functional properties of each cluster are summarized
in Supplementary Table 3. Clusters with näıve phenotypes (Se1, Se2 and Se8) expressed different levels of
integrin β7, indicating differential gut-homing potentials (32). Two CM clusters, Se4 and Se7, were also high
in integrin β7, however, they could be separated based on CXCR-5 and CD161 expression, as markers for
follicular T cells and cytotoxic T cells, respectively. The CM cluster Se5 uniquely featured the skin-homing
marker, CLA. Cluster Se6 and Se9 both expressed intermediate levels of CD161, but Se6 also had intermediate
expression of integrin β7 while Se9 did not express integrin β7 at all. Se3 exhibited a similar profile to Se6,
except for the absence of CD161. Additionally, their intermediate expression of CD45RA implied that they
might represent the transitional state between EM and EMRA (33). For EM-like and EMRA-like clusters,
Se13 and Se12, but not Se11, they expressed high levels of integrin β7. Finally, Se14 was characterized by
its high level of LAG-3, a marker for early T cell activation, while Se10 might be a transitional population
during the T cell activation and maturation, considering its intermediate expression of both CD45RA and
CD27. Other markers in our panel including CD49b and FCER1A were expressed at relatively low levels in
T cells in the absence of stimulation. These subtle differences could still be detected by Seurat and confirmed
with manual analysis (Figure 1C and Supplementary Figure 2A-B). For example, CD49b, a collagen-binding
integrin, showed the highest level in the skin-homing population Se5, while FCER1A expression inversely
correlated with CD27 expression, as exemplified in Se3, Se6, Se9, Se11 and Se12. Considering their relatively
low level of expression, further research is required to evaluate whether such mild differences are of biological
significance.

In parallel, we applied Spectre’s workflow to analyze our dataset, manually defining 14 clusters as the final
clustering output to cross-validate the findings from Seurat. Comparison of the Seurat and Spectre results
revealed that their outcomes were similar, with 11 of the 14 clusters being identified by both approaches,
displaying comparable cluster sizes and feature marker expression (Figure 1C, Figure 1E and Supplementary
Figure 2C). This indicated the robust and reliable performance of Seurat. As for their discrepancies, the Sp2
identified by Spectre was divided into three distinct clusters by Seurat, Se1, Se2 and Se8 (Supplementary
Figure 2D). In contrast, Se4 in Seurat analysis was split into Sp1 and Sp4 by Spectre (Supplementary Figure
2D). In an independent comparative study, we also found that most cells were grouped into the same cluster
by both methods, with minor discrepancies (Supplementary Figure 3). Together, these results indicated that
clustering analyses from Seurat and Spectre were comparable and since they adopted different algorithms
for their analyses, some differences were potentially to be expected.

Importantly, we further validated the results from Seurat with manual gating. As shown in Supplementary
Figure 4, all 14 Seurat clusters could be gated out according to their marker expression on 2D FACS plots.
Projection of Seurat and Spectre clustering results on the 2D FACS plots showed similar distributions
compared to the manual gating results (Supplementary Figure 5-7). Furthermore, the proportion of each
population in the total CD8+ T cells were also comparable between manual gating and Seurat clustering
(Figure 1F).

Finally, we similarly applied the workflow to the gated CD4+ T cells and retrieved 15 clusters with Seurat
(Supplementary Figure 8A-B). These subsets could also be similarly confirmed by manual gating and cross-
validated with Spectre, which identified 12 out of the 15 subsets obtained by Seurat (Supplementary Figure
8C-D).

Together, these results demonstrated that Seurat, a tool originally developed for scRNA-seq data analy-
sis, is also applicable and robust for high-dimensional flow cytometric data analysis. Its analysis helps to
characterize the CD8+ T cells in PBMCs in more detail, retrieving novel T cell sub-clusters.
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Comparative profiling of CD8+ T cells in adult blood and cord blood

Human circulatory T cells are plastic across the human lifespan and might be linked to differential disease
susceptibility across human lives (34). We next aimed to compare the profiles of the T cell compartments
from the cord blood (CB) and adult blood (AB) using Seurat.

As shown in Figure 2, peripheral blood mononuclear cells (PBMCs) from AB and cord blood mononuclear
cells (CBMCs) from CB were first analyzed based on our 20-parameter antibody panel with manual gating.
Next, the high-dimensional data were analyzed by Seurat and Spectre (Figure 3-4).

The proportion of CD4+ and CD8+ T cells among total lymphocytes showed no difference in PBMCs
and CBMCs (Supplementary Figure 1B). As previously shown (16) , there were more näıve T cells and
fewer EM T cells in both CD4+ and CD8+ compartments from CBMCs compared with PBMCs (Figure
2B-D). Reflective of a mature phenotype, adult PBMCs had higher proportions of CD4+ CM T cells and
CD8+ EMRA T cells (Figure 2C-D). Our comprehensive 20-parameter antibody panel enabled an in-depth
characterization of the functional status of T cells.

As shown in Figure 2E, CD4+ T cells in adult PBMCs had higher proportions of cells expressing T-bet, CLA
and CXCR-5, while more CD4+ T cells from CB expressed CD27, β7, and LAG-3. Similarly, CB CD8+ T
cells had a higher expression of CD27, β7, alongside FoxP3, whilst adult CD8+ T cells had higher proportions
of cells expressing CD161, CLA, CXCR-5 and T-bet (Figure 2F and Supplementary Figure 9A-B). These
findings are consistent with previous reports of the higher gut-homing potential of CBMCs, whilst PBMCs
are more likely to migrate to the skin (16,34–36). Moreover, the lower expression of T-bet and overall näıve-
biased phenotype of CB T cells coincides with their reduced IFN-γ, IL-4 and IL-13 production compared to
AB T cells (Supplementary Figure 9C-D) (37).

Analysis of adult blood and cord blood CD8+T cells with Seurat identifies a unique cord blood
CD8+CD45RA+CD27+CD161+T cell subset

Conventional manual gating workflows are empirical and subject to bias. Such analysis is less likely to
potentially reveal new cell populations. Focusing on the CD8+ T cell compartment, we therefore performed
unsupervised principal component analysis (PCA) on the AB and CB combined dataset based on expression
levels quantified by the expression levels of the 12 surface markers used for clustering (Figure 3A). As
expected, PBMC samples were distinctly separated from CBMC samples along the first PC (PC1, accounting
for 18.0% of the variance), which was consistent with the differential expression of various T cell functional
markers in AB samples relative to CB samples (Figure 2E-F).

Next, Seurat was used for more in-depth analyses, identifying 13 sub-populations from the combined AB
and CB dataset (Figure 3B). Seurat clustering distinguished three näıve (clusters 1, 2 and 8), three CM
(clusters 3, 4 and 7), one EM (cluster 11), and two EMRA clusters (clusters 5 and 12), with the remaining
clusters exhibiting intermediate expression levels of CD45RA and/or CD27 (clusters 6, 9, 10, 13) (Figure
3C-D). Details about feature markers and potential functional properties of the identified CD8+ T cell
subsets are summarized in Supplementary Table 4. Clusters 1 and 2 shared a näıve phenotype but differed
in their expression of integrin β7 and gut-homing potential, consistent with previous findings demonstrating
an increased expression of gut-homing receptors in näıve CB lymphocytes (38). The näıve cluster 8 was also
high in integrin β7 but additionally expressed CD161, suggesting a cytotoxic phenotype. Out of the three
CM subsets identified by Seurat, Clusters 3 and 7 of the CM class both had high integrin β7 expression,
indicative of a migratory preference to the gut. Cluster 7 differed from Cluster 3 through its low expression
of CD45RA and high expression of the follicular T cell marker, CXCR-5. Opposed to gut-homing, the CM
cluster 4 did not express integrin β7 but instead highly expressed the skin-homing marker CLA and integrin
CD49b. Integrin β7 levels could also distinguish the EMRA-like clusters 5 versus 12 as well as clusters 6
versus 9, with clusters 6 and 9 also expressing CD161. Finally, cluster 13 featured high levels of LAG-3 and
CXCR-5.

We again compared the analyses from Seurat and Spectre based on the combined AB and CB dataset.
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Both methods identified 13 clusters, of which 11 were commonly shared, with comparable feature markers
(Supplementary Figure 9E-F). Similarly, Seurat clusters in both AB and CB could also be validated through
manual gating (Supplementary Figure 10 and Supplementary Figure 11). These results again highlighted
the robust performance of Seurat for analyzing high-dimensional cytometric data.

Striking differences in the abundance of the Seurat clusters were found comparing AB and CB samples (Figure
3B and Supplementary Figure 12A). The näıve cluster 1 was predominantly abundant in AB whilst cluster
2 consisted primarily of CB cells. Seurat cluster analysis was able to separate these two näıve populations
based on the differential expression of integrin β7 and CD27, which were enriched in the näıve population
from CB (cluster 2) (16,38). Consistent with previous studies comparing adult and cord blood, CD8+ effector
memory populations were almost exclusively found in AB (39). This includes all the identified EM (cluster
11) and EMRA (clusters 5 and 12) subsets, in addition to clusters 6, 9 and 10. Unlike these EM subsets, CM
populations were present in both AB and CB. Of note, cluster 3 was dominant in CB whilst clusters 4 and
7 were enriched in AB. Finally, the LAG-3+ cluster 13 was equally abundant in both AB and CB.

Moreover, we also documented differential expression of various markers between the clusters from AB and
CB. Reflective of their näıve phenotype and lack of antigenic exposure, several CB CD8+ T cell populations
(clusters 1, 2, 3, 4, 7, 8, 9) exhibit higher expression of CD27 compared to their adult equivalents (Figure
3E). In contrast, the expression of CXCR-5 in clusters 7 and 13 alongside CLA expression in cluster 4 was
higher in adult CD8+ T cells compared to CB (Figure 3E).

Intriguingly, our clustering analysis identified a population (cluster 8) that is almost exclusive to CBM-
Cs (7.11% of CD8+ T cells in CB versus 0.19% in AB) (Figure 4A-C). This cluster is characterized as
CD8+CD45RA+CD27+CD161+, partly overlapping with a previously reported but not fully characterized,
CD8+CD161+ T cell population found in CB (40,41). Analysis based on our 20-parameter panel provided
an unprecedented functional overview of the CD8+CD45RA+CD27+CD161+T cell subset. We discovered
that this newly identified population had high integrin β7 expression (Figure 4B and Figure 4D) as well
as higher CLA, BCL-6, T-bet, and GATA-3, but lower FoxP3 levels compared to its CD161- counterpart
(Figure 4E). No differences in LAG-3, CXCR-5, Nur77, CD137 and FCER1A were found between the
CD8+CD45RA+CD27+CD161+and CD8+CD45RA+CD27+CD161-T cells (Figure 4E). Upon stimulation
with PMA and ionomycin, this subset predominantly produced IFN-γ and IL-4 but lowly expressed IL-5,
IL-10, and IL-13. It only differed significantly in IL-10 production relative to the CD161- counterpart (Figure
4F). Based on these results, the CD8+CD45RA+CD27+CD161+sub-population (cluster 8) appeared to be
a pro-inflammatory and cytotoxic T cell subset.

In summary, using our high-dimensional antibody panel and Seurat analysis, we thoroughly profiled the
CD8+ T cell compartment in AB versus CB. This revealed a unique CD8+CD45RA+CD27+CD161+T cell
subset in CB which we characterized.

Cross-validation and further characterization of the CD8+CD45RA+CD27+CD161+T cell sub-
set using scRNA-seq.

To validate our findings and further characterize the population identified by Seurat in CBMCs, we leveraged
a recently published scRNA-seq dataset for näıve CD8+ T cells, which analyzed 18513 cells across different
developmental stages and compartments (27). This dataset covers näıve T cells from fetal spleen, umbilical
cord blood and adult peripheral blood. As shown in Figure 5A and Supplementary Figure 13A, the overall
näıve CD8+ T cell population (sorted as CD8+CD45RA+CD27+CCR7+CD95-) was further clustered into
four subsets. Cluster0 expressed high levels of RGS1 , which is linked to T cell exhaustion (42); cluster1 was
high in IL7R and SELL , indicative of a näıve phenotype; and cluster2 was marked by MT2A and RPS4Y1,
which might be potentially linked to a memory T cell phenotype (43,44). Intriguingly, cluster3 exhibited
similar features to the population we identified, characterized by its expression of KLRB1 (gene encoding
CD161) (Figure 5B). Differentially expressed gene analysis with DESeq2 (45) found 93 genes upregulated
in cluster3 compared with the remaining näıve CD8+ T cells, while 2 genes were downregulated (Figure
5C). Among the upregulated genes in cluter3, there were several related to cytotoxic T cell features, such as
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GZMA , GZMK ,GZMM , CST7 , and NKG7 (46), indicating their cytotoxic functions, which is similar to
our cytometric results and the previous reports for CD8+ CD161+ T cells (40). Additional inflammation-
related genes were upregulated, such as ID1 (47) and CMC1 (48). Interestingly, CCL5 , related to a memory
phenotype, was also significantly upregulated in cluster3. Additionally, several chemokine receptors were also
increased, such as CXCR3 and CXCR4 .

GO analysis was next carried out with the differentially expressed genes using ClusterProfiler (29,30) based on
the Gene Ontology pathways (49). As shown in Figure 5D, compared with other näıve CD8+T cells, cluster3
was enriched for pathways related to T cell chemotaxis , lymphocyte chemotaxis and T cell migration ,
consistent with the differentially expressed gene analysis (Figure 5C) and our flow cytometric data (Figure
3I and 3J). On the other hand, this population was suppressed in pathways related to ribosomes.

The GO analyses were based only on the differentially expressed genes, and we next conducted GSEA based
on the overall transcriptomic data using the fgsea package (50). GSEA using the Hallmark gene setshowed
that cluster3 displayed enrichment in inflammatory pathways such as ΤΝΦα σιγναλινγ vια ΝΦκΒ, ΙΛ2-ΣΤΑΤ5
σιγναλινγ, and ΙΦΝγ ρεσπονσε (Figure 5E). Additionally, they also showed enrichment in theMAPK signaling
pathway and the T cell receptor signaling pathway (Figure 5F-G).

In summary, scRNA-seq analysis from an independent dataset cross-validated the
CD8+CD45RA+CD27+CD161+population identified by our Seurat-based analysis. It also character-
ized it as a näıve subset but with a potential pro-inflammatory and cytotoxic profile.

Discussion

There has been a significant expansion of both the size and complexity of cytometric data, especially in
the field of clinical immunology. Such high-dimensional and complicated datasets cause great difficulties
for conventional manual analytical strategies, inevitably hampering comprehensive and unbiased analyses
and interpretation. Consequently, myriad computational toolkits have been developed, aiming to address
these challenges, but their effective applications are sometimes restricted, suffering from a lack of flexibility
and interoperability. Recently, packages such as Spectre (10) and tidyof (51) were developed, attempting to
provide integrative, end-to-end services for cytometric data analysis. However, they have only been spora-
dically applied, due to them being standalone pipelines, requiring adaptation to completely new packages,
and demanding significant prerequisite coding knowledge.

In the present study, we repurposed Seurat, a well-established package for scRNA-seq data analysis, for
high-dimensional flow cytometric data analysis (23–26). Comparison of Seurat and other currently available
analytical packages are summarized in Supplementary Table 5. Among them, Seurat has long shared great
popularity within the field of single-cell analysis. It is community-driven and well-supported and has more
than 20 R packages for related data processing and analysis. Therefore, it is likely to be more accessible
and easier to use, particularly for the broad users with previous experiences in scRNA-seq looking to flow
cytometry to complement their investigative breadth.

Here, we showcased the robust capacity of Seurat, based on our experiments profiling the T cell compartments
in adult blood (AB) and cord blood (CB). Overall, Seurat generated similar results to Spectre, which were
also confirmed by manual gating. Importantly, with our approach, we identified a unique T cell subset
(CD8+CD45RA+CD27+CD161+) within CB and cross-validated its functional profiles with an independent
scRNA-seq dataset using Seurat. Together, these data highlight the great potential of Seurat for cytometric
data analysis. It represents a simple single platform for the unbiased analysis of both protein and RNA
data at single-cell resolution. This will enable simpler comparison and cross-validation of cytometric and
scRNA-seq studies and facilitate more comprehensive investigations and discoveries in clinical immunology.

A plethora of state-of-the-art mathematical algorithms or statistical models are used in the field of cytome-
try computational analysis. These include the FlowSOM modality used in Spectre, carrying out clustering
based on a self-organizing map (SOM) method, while Seurat first ran PCAs on the overall dataset, next
constructed a K-nearest neighbor (KNN) graph, similar to PhenoGraph, another single-cell analytical tool,
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and then adopted the Louvain algorithm to group cells together (10,23). Such differences might account for
the discrepancies we observed when comparing the clustering outcomes from Seurat and Spectre. Detailed
comparisons of these mathematical methodologies are not within the scope of the current work, but previous
study has shown that FlowSOM and PhenoGraph were the top-performing unsupervised methods for mass
cytometry data clustering analysis. The KNN graph model deployed in PhenoGraph excelled in its clustering
precision, stability and robustness in identifying sub-clusters, relative to other approaches like flowMeans,
DEPECHE and Xshift (52). Since Seurat shares the similar KNN model to PhenoGraph, it is reasonable
to expect it could also show robust capacity in more generic cytometric data analysis. This warrants more
systematic comparisons in future work. On the other hand, differences in results from Seurat and Spectre
highlight that utilizing both methods in tandem will provide a more complete understanding of complex
datasets.

In addition to its distinct mathematical nature, as one of the cutting-edge end-to-end analytical tools for
single-cell data, Seurat has already been widely used in various research and clinical settings and is vigo-
rously maintained and supported by its broad user community. This contributes to its easy accessibility and
high user-friendliness and might reduce the coding burden as well, as users, especially those with previous
experience in scRNA-seq, would not need to learn a completely new package or coding language for analysis.
Moreover, the application of Seurat potentially opens more possibilities for cytometric data analysis. For
example, the built-in functionFindMarkers() in Seurat might facilitate easier marker identification, particu-
larly for high-dimensional cytometric data, as the number of markers is expanding continuously. However,
caution should still be taken to interpret its outcomes. Also, as a popular scRNA-seq analysis package,
Seurat could also act as a wrapper with favorable interoperability around a wide range of complementary
packages or plugins originally developed for scRNA-seq analysis, such as LIGER and Harmony for data in-
tegration (28,53). They might also be applicable to cytometric data, such as for batch correction, and could
provide novel possibilities for high-dimensional data analyses once validated. Thus, adapting Seurat offers a
single simple platform to analyze, compare and cross-validate protein and RNA, and even potentially other
multi-omic single-cell data.

Previously, there were only a few reports applying Seurat for protein level single-cell analysis, such as
for cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) (26) and CyTOF (54,55),
and leveraging the rPCA integration method in Seurat for spectral cytometry analysis (34,56). Recent-
ly, there has also been a similar attempt, adapting Scanpy, a Python-based scRNA-seq analysis package,
to analyze mass cytometry data (57). To our knowledge, the present work represents the first example
of applying Seurat as a complete flow cytometric analysis workflow. Harnessing our 20-colour antibody
panel and the Seurat-based analysis pipeline, we reported a unique T cell subset in CBMCs, characteri-
zed as CD8+CD45RA+CD27+CD161+T cells. This subset partly overlapped with the previously described
CD8+CD161+ T cells (40). Previously, studies first discovered the differential (low/intermediate/high) levels
of CD161 on CD8+ T cells in AB, which correlated with their various functional activities including cytokine
production, proliferation, and lytic activity (58). AB CD8+CD161hi T cells were predominantly mucosal-
associated invariant T (MAIT) cells (59), while the CD8+CD161int population represented a memory T cell
subset which were enriched in the colonic lamina propria (40). Consistent with this, our clustering analysis
found a CD8+CD161+ population predominantly existing in AB (Figure 3B), although with the current clus-
tering setting, both Seurat and Spectre failed to further subdivide it into CD161int and CD161hisubsets. This
can be overcome by finetuning the clustering parameters depending on the particular scientific question of
interest. As for our newly identified CD8+CD45RA+CD27+CD161+subset, considering its näıve phenotype,
it is not surprising that it is almost negligible in AB.

The role of the CD8+CD161+ T cells in CB remains elusive. Developmentally, it was found that the
CD8+CD161hi T cells in CB might be the progenitor for post-natal MAIT cells (41,59,60). Functionally, the
CD161hi subset produced IFN-γ and IL-17 (60,61), while the CD161int subset, despite expressing markers like
CD45RA and CCR7, still exhibited a preprogrammed transcriptomic profile reflective of their AB counter-
part (40). Our current clustering analysis could not further separate the population based on CD161 levels,
but adjusting the clustering parameters could potentially help to differentiate them considering their inter-
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mediate to high CD161 expression (Figure 4B). The näıve phenotype of this CB-enriched subset, based on the
expression of CD45RA and CD27, is similar to previous reports (40,61), and we also confirmed its IFN-γ pro-
duction. Previously, there were limited studies investigating the functional surface markers of CD8+CD161+

T cells, such as CCR6 (59). Here, we characterized the CD8+CD45RA+CD27+CD161+population as high
in integrin β7 but low in CLA expression, implying a preference to gut over skin-homing. Thus, this CB pop-
ulation might represent the progenitors for AB CD8+CD161int T cells which are enriched within the colon
(40). CD8+CD161+ T cells in AB are involved in the response to tissue-localized inflammation triggeredd by
intracellular and viral pathogens (40,59), while their functional implications in CB remain elusive. Likewise,
both our flow cytometry and scRNA-seq data suggested the pro-inflammatory and cytotoxic properties of CB
CD8+CD45RA+CD27+CD161+T cells. Additionally, as CD161 contributes to prenatal immune suppression
(62), this subset might be involved in maintaining tolerance in the semi-allogenic context of pregnancy.

In summary, we have adapted Seurat, a widely used scRNA-seq analysis package, for high-dimensional
flow cytometric data analysis and showcased its performance through the identification of a unique
CD8+CD45RA+CD27+CD161+T cell population in CB. Such a pipeline presents a novel avenue for com-
prehensive analysis of high-dimensional complex cytometric and multi-modal data, facilitating unbiased
data-driven studies and discovery.
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Figure 1 Adapting Seurat for high-dimensional flow cytometric data analysis retrieved ro-
bust results on adult blood (AB) peripheral blood mononuclear cells (PBMCs), confirmed by
Spectre and manual analysis

A. An overview of the adult blood (AB) study design. Peripheral blood mononuclear cells (PBMCs) were
isolated from blood samples from healthy adult and then were first labelled with anti-CD45 antibodies with
different fluorophores or their combinations for barcoding. After that, PBMCs were pooled together and
stained with our 20-marker antibody panel and analyzed with Spectral Cytometry. Next, the resulting
data were first demultiplexed based on their CD45 marker signals and then subject to analysis with Seurat,
Spectre, and manual gating.

B. Uniform manifold approximation and projection (UMAP) plots visualizing the clustering results from
Seurat (left) and Spectre (right) based on the adult PBMC CD8+ T cell experiment. One color represents
one cluster.

C. Dot plots visualizing the clusters identified by Seurat (left) and Spectre (right) and their marker expression
profiles. The size of the dot corresponds to the percentage of cells expressing the corresponding markers and
the color gradient reflects the average normalized expression of the corresponding markers.

D. Projection of 14 clusters identified by Seurat based on the adult PBMC CD8+ T cell experiment onto
the two-dimensional (2D) plot comparing their expression of CD27 and CD45RA. The dashed lines denote
the average normalized expression of CD27 and CD45RA for all cells.

E. Venn diagram comparing the clustering results from Seurat and Spectre. Both methods were set to
generate 14 clusters and 11 out of 14 clusters could be identified by both methods, while Se1, Se8, and Se10
could only be identified by Seurat and Sp1, Sp8 and Sp10 could only be identified by Spectre.

F. Bar chart comparing the proportions per sample within the total CD8+ T cell compartments of the
clusters identified by Seurat or retrieved by manual gating.

N=5 per group and data are presented as mean ± s.e.m.

Figure 2 Comparative analysis of T cell profiles in peripheral blood mononuclear cells (PBMCs)
from adult blood (AB) and cord blood mononuclear cells (CBMCs) from cord blood (CB)

A. An overview of the adult blood (AB) and cord blood (CB) study design. Peripheral blood mononuclear
cells (PBMCs) and cord blood mononuclear cells (CBMCs) were isolated and then were first labelled with
anti-CD45 antibodies with different fluorophores or their combinations for barcoding. After that, PBMCs
were pooled together and stained with our 20-marker antibody panel and analyzed with Spectral Cytometry.
Next, the resulting data were first demultiplexed based on their CD45 marker signals and then subject to
analysis with Seurat and manual gating.

B. Representative flow cytometric plots of CD4+ and CD8+ T cells from AB and CB to identify näıve
(CD45RA+CD27+), central memory (CM, CD45RA-CD27+), effector memory (EM, CD45RA-CD27-) and
effector memory cells re-expressing CD45RA (EMRA, CD45RA+CD27-) subsets.

(C-D ) Scatter bar charts for the proportions of näıve, CM, EM, and EMRA subsets within CD4+ (C ) and
CD8+ (D ) T cells from AB and CB.

(E-F ) Bar charts for the log2(fold change) comparing AB versus CB for the proportions of populations
expressing the corresponding markers among CD4+ (E) and CD8+ (F) T cells. The asterisks denote the
populations whose proportions are significantly different between AB and CB.

N=5 per group and data are presented as mean, with * p<0.05 and ** p<0.01 by unpaired Mann-Whitney
U test.

Figure 3 Unbiased comparative analysis of CD8+T cell profiles in peripheral blood mononuclear
cells (PBMCs) from adult blood (AB) and cord blood mononuclear cells (CBMCs) from cord

12
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blood (CB) with principal component analysis (PCA) and Seurat

A. PCA based on the marker expression levels on CD8+ T cells from AB and CB samples.

B. Uniform manifold approximation and projection (UMAP) plot visualizing the clustering results from
Seurat and the compositional contribution of each cluster from AB versus CB. The donut charts visualized
the proportions of each cluster that are from AB (dark blue) and CB (yellow), and the numbers within
denoted the proportions of the corresponding clusters within the overall CD8+ T cells from both AB and
CB.

C. Dot plot visualizing the clusters identified by Seurat and their marker expression profiles. The size of
the dot corresponds to the percentage of cells expressing the corresponding markers and the color gradient
reflects the average normalized expression of the corresponding markers.

D. Projection of 13 clusters identified by Seurat based on the AB versus CB experiment onto the two-
dimensional (2D) plot comparing their expression of CD27 and CD45RA. The dashed lines denote the
average normalized expression of CD27 and CD45RA for all cells.

E. Dot plot comparing the clusters from AB versus CB identified by Seurat and their marker expression
profiles. The size of the dot corresponds to the percentage of cells expressing the corresponding markers and
the color gradient reflects the average normalized expression of the corresponding markers.

Figure 4 Seurat analysis identified a unique CD8+CD45RA+CD27+CD161+T cell population
in cord blood

A. Overlay of the newly identified CD8+CD45RA+CD27+CD161+T cell subset (cluster 8) onto the Uniform
manifold approximation and projection (UMAP) plots for AB (left) and CB (right) CD8+ T cell compart-
ments.

B. Manual gating strategies to identify the CD8+CD45RA+CD27+CD161+T cell subset (cluster 8) from
AB (left) and CB (right) CD8+ T cell compartments.

C. Scatter bar chart for the proportions of CD8+CD45RA+CD27+CD161+T cell subset (cluster 8) in AB
(black) and CB (yellow) CD8+ T cell compartments.

D. Scatter dot plot of the proportions of cells expression integrin β7 in CD8+CD45RA+CD27+CD161+and
CD8+CD45RA+CD27+CD161-T cell subsets.

E. Bar chart for the log2(fold change) comparing the proportions of populations expressing the correspond-
ing markers among CD8+CD45RA+CD27+CD161+and CD8+CD45RA+CD27+CD161-T cell subsets. The
asterisks denote the populations whose proportions are significantly different between AB and CB.

N=5 per group and data are presented as mean, with * p<0.05 and ** p<0.01 by unpaired Mann-Whitney
U test.

F. Scatter dot plot of the proportions of cells expressing IFN-γ, IL-4, IL-5, IL-10, and IL-13 in
CD8+CD45RA+CD27+CD161+and CD8+CD45RA+CD27+CD161-T cell subsets.

Figure 5 Single-cell RNA sequencing (scRNA-seq) cross-validation and characterization of the
newly identified CD8+CD45RA+CD27+CD161+T cell population

A. Uniform manifold approximation and projection (UMAP) plot visualizing the clustering results from
re-analysis of the scRNA-seq data for näıve CD8+ T cells from GEO: GSE158493.

B. Violin plot visualizing the expression of KLRB1 (encoding CD161) across clusters identified by Seurat
from scRNA-seq analysis. Red dots indicate the average expression of the corresponding group.

C. Volcano plot showing the differentially expressed genes comparing CD8+CD45RA+CD27+CD161+and
CD8+CD45RA+CD27+CD161-T cell subsets. The red dots indicate genes up-regulated
in CD8+CD45RA+CD27+CD161+T cells, the blue dots indicate genes down-regulated in
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CD8+CD45RA+CD27+CD161+T cells, and the black ones are genes without significant changes.KLRB1 ,
the gene that we used as the population-defining gene for cluster3 was specified.

D. Dot plot for the activated (left) and suppressed (right) pathways in CD8+CD45RA+CD27+CD161+T
cell subset compared to CD8+CD45RA+CD27+CD161-T cell subset analyzed by ClusterProfiler. The size
of the dot corresponds to the number of genes within the corresponding pathway, the GeneRatio is cal-
culated by the ratio between the number of genes that are significantly differentially expressed comparing
CD8+CD45RA+CD27+CD161+and CD8+CD45RA+CD27+CD161-T cell subsets and the number of total
genes involved in the corresponding pathway, and the color gradient reflects the adjusted p-value for the
comparison.

E. The top enriched gene sets of gene set enrichment analysis (GSEA) comparing
CD8+CD45RA+CD27+CD161+and CD8+CD45RA+CD27+CD161-T cell subsets based on the Hall-
mark gene sets and the representative GSEA plot of the top enriched gene set “TNFA SIGNALING VIA
NFKB”.

(F-G ). Visualization of differentially expressed genes comparing CD8+CD45RA+CD27+CD161+T cell sub-
sets relative to CD8+CD45RA+CD27+CD161-T cell subsets that are involved in T cell receptor (TCR)
signaling pathway (F ) and mitogen-activated protein kinase (MAPK) signaling pathway (G ).

Supplementary Figure 1

A. Gating strategy to demultiplex and analyze the T cell subsets from CD3+CD4+ or CD3+CD8+ T cell
compartments.

B. Scatter dot plots of the proportions of CD4+ and CD8+ T cells among the total lymphocytes (CD45+)
in adult blood (AB) versus cord blood (CB).

N=5 per group and data are presented as mean ± s.e.m. and analyzed by unpaired Mann-Whitney U test.

Supplementary Figure 2

(A-B). Bar charts, with representative FACS gating, visualizing the proportions of cells expressing
CD49b+(A) and FCER1A+ (B) from each cluster identified by Seurat.

C. Bar chart comparing the proportions of the clusters identified by Seurat (blue) and Spectre (red) within
the total CD8+ T cell compartment. Clusters uniquely identified by one method are circled.

D. Uniform manifold approximation and projection (UMAP) plots visualizing the clustering results from
Seurat (left) and Spectre (right). Cells that are differently clustered by Seurat and Spectre are circled. Sp2
from Spectre (i) is divided into Se1, Se2 and Se8 by Seurat (I). Se4 from Seurat (II) is split into Sp1 and
Sp4 by Spectre (ii).

N=5 per group and data are presented as mean ± s.e.m.

Supplementary Figure 3

A demonstration dataset with 50000 adult blood CD8+ T cells was analyzed with Seurat and Spectre to
compare their clustering performance.

A. Uniform manifold approximation and projection (UMAP) plots visualizing the clustering results from
Seurat.

B. Projection of clustering results from Spectre onto the UMAP generated from Seurat.

C. Sankey plot visualizing the cells that are grouped into the same clusters by Seurat and Spectre, with the
number on left and right corresponding to the clusters identified by Seurat and Spectre and the “influx” in
between reflecting the number of cells that are grouped into the same cluster.

Supplementary Figure 4
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A. 14 clusters were identified by Seurat from the experiment with adult PBMC CD8+ T cells and were
projected on UMAP, and based on their corresponding markers, a gating strategy was developed to identify
them manually.

Supplementary Figure 5

A. Projection of the clustering results from Seurat based on the adult PBMC CD8+ T cell experiment onto
two-dimensional FACS plots.

Supplementary Figure 6

A. Projection of the clustering results from Spectre based on the adult PBMC CD8+ T cell experiment onto
two-dimensional FACS plots.

Supplementary Figure 7

A. Representative manual gating analysis result from the adult PBMC CD8+ T cell experiment based on
the gating strategy developed in Supplementary Figure 4.

Supplementary Figure 8

A. Uniform manifold approximation and projection (UMAP) plots visualizing the clustering results from
Seurat (left) and Spectre (right) based on the adult peripheral blood mononuclear cells (PBMCs) CD4+ T
cell experiment. One color represents one cluster.

B. Dot plots visualizing the clusters identified by Seurat (left) and Spectre (right) and their marker expression
profiles. The size of the dot corresponds to the percentage of cells expressing the corresponding markers and
the color gradient reflects the average normalized expression of the corresponding markers.

C. Venn diagram comparing the clustering results from Seurat and Spectre. Both methods were set to
generate 15 clusters and 12 out of 15 clusters could be identified by both methods, while Se2, Se8, and Se15
could only be identified by Seurat and Sp1, Sp8 and Sp15 could only be identified by Spectre.

D. Scattering dot plot comparing the proportions per sample within the total CD4+ T cell compartments
of the clusters identified by Seurat or retrieved by manual gating.

N=5 per group and data are presented as mean ± s.e.m.

Supplementary Figure 9

(A-B ). Scatter dot plots of the proportions of CD4+ (A ) and CD8+(B ) T cells expressing different surface
and intracellular markers in adult blood (AB) versus cord blood (CB).

(C-D). Scatter dot plots of the proportions of CD4+ (C ) and CD8+(D ) T cells expressing IFN-γ, IL-4,
IL-5, IL-10, and IL-13 in adult blood (AB) versus cord blood (CB).

(E-F ). Clustering results retrieved by Spectre for CD8+ T cells based on the combined AB and CB exper-
iment. E. Uniform manifold approximation and projection (UMAP) plot visualizing clustering results from
Spectre. F. Dot plot visualizing the clusters identified by Spectre and their marker expression profiles. The
size of the dot corresponds to the percentage of cells expressing the corresponding markers and the color
gradient reflects the average normalized expression of the corresponding markers.

N=5 per group and data are presented as mean ± s.e.m., with * p<0.05 and ** p<0.01 by unpaired Mann-
Whitney U test.

Supplementary Figure 10

A. Gating strategy of adult blood (AB) CD8+ T cells to identify the 13 clusters obtained by Seurat.

B. Bar chart comparing the proportions within CD8+ T cell compartments of the clusters identified by
Seurat or gated out by manual analysis in AB.
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N=5 per group and data are presented as mean ± s.e.m.

Supplementary Figure 11

A. Gating strategy of cord blood (CB) CD8+ T cells to identify the 13 clusters obtained by Seurat.

B. Bar chart comparing the proportions within CD8+ T cell compartments of the clusters identified by
Seurat or gated out by manual analysis in CB.

N=5 per group and data are presented as mean ± s.e.m.

Supplementary Figure 12

A. Scattering dot plot comparing the proportions within CD8+ T cell compartment of the clusters identified
by Seurat in adult blood (AB) versus cord blood (CB).

N=5 per group and data are presented as mean, with * p<0.05 and ** p<0.01 by unpaired Mann-Whitney
U test.

Supplementary Figure 13

A. The fraction of four clusters of näıve CD8+ T cell subsets in fetal spleen, cord blood and adult samples.
Each color denotes one cluster and the number at the bottom shows the number of cells sequenced from each
sample.

Table 1. A 20-marker antibody panel for comprehensive profiling of T cells in human peripheral blood
mononuclear cells (PBMCs).

Marker Target Staining
Markers / Functional
Implications References

CD45 Surface Leukocytes (excludes
erythrocytes and
platelets)

CD3 Surface T lymphocytes
CD4/CD8 Surface Helper T

cells/Cytotoxic T cells
CD45RA Surface High expression

identifies naive T cells
(31,64)

CD27 Surface Highly expressed in
näıve T cells but lost in
fully differentiated cells
after persistent antigen
stimulation

(31)

Integrin β7 (β7) Surface Gut-homing marker. (32)
CD161 Surface Type 17 responses and

cytotoxic functions.
(58,65)

PSGL-1 (CLA) Surface Skin-homing marker. (66)
CXCR-5 Surface Follicular T cell

marker.
(67)

LAG-3 Surface Inhibitory receptor
upregulated in recently
activated lymphocytes.

(68)

FcERI (FCER1A) Surface High affinity receptor
for IgE.

(69)
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Marker Target Staining
Markers / Functional
Implications References

CD49b Surface Integrin (α2β1) that
binds to collagen and
modulates T cell
stimulation, cytokine
production and
survival.

(70,71)

CD137 Surface Costimulatory
receptor, promoting
proliferation and
survival, upregulated in
activated lymphocytes.

(72)

CRTH2 Surface Type 2 responses. (73)
CD40L Surface Costimulatory ligand

expressed on activated
T cells.

(74)

T-box protein 21 (T-bet) Intracellular Type 1 responses and
effector CD8+ cells
differentiation

(75)

GATA-3 Intracellular Type 2 responses and
cytotoxic CD8+

function

(76)

BCL-6 Intracellular Involved in follicular
helper T cell
differentiation.
Involved in granzyme
B production and
memory differentiation
in CD8+ T cells.

(77,78)

Forkhead box protein
P3 (FoxP3)

Intracellular Transcription factor
expressed by regulatory
T cells.

(79)

Nur77 Intracellular Transcription factor
indicative of T cell
activation.

(80)
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