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Abstract

In this paper, we study the uniqueness of nodal radial solutions to nonlinear elliptic equations in the unit ball in R 3 . Under

suitable conditions, we prove that, for any given positive integer k, the problem we considered has at most one solution possessing

exactly k -1 nodes. Together with the results presented by Nagasaki [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (2): 211–232,

1989] and Tanaka [Proc. Roy. Soc. Edinburgh Sect. A. 138 (6): 1331–1343, 2008], we can prove that more types of nonlinear

elliptic equations have the uniqueness of nodal radial solutions.
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1 Introduction

This paper investigates the uniqueness of radially symmetric solutions to nonlinear elliptic

equations having exactly k − 1 nodes in B:{
−∆u = K(|x|)|u|p−2u, x ∈ B,
u = 0, x ∈ ∂B,

(1.1)

where k ∈ N := {1, 2, . . . }, B = {x ∈ R3 : |x| < 1}, p > 2, K ∈ C[0, 1] ∩ C2(0, 1], and

K(r) > 0 for r ∈ (0, 1]. The radial solutions to (1.1) having exactly k− 1 nodes in B can be

obtained by solving the following ordinary differential equation:
u′′ +

2

r
u′ +K(r)|u|p−2u = 0, r ∈ (0, 1),

u′(0) = u(1) = 0, u(0) > 0,

u has exactly k − 1 zeros in (0, 1).

(1.2)

∗Supported partially by the National Natural Science Foundation of China (Grant Nos. 12071266 and

11801338) and the Natural Science Foundation of Shanxi Province (Grant No. 201801D211001)
†Corresponding author. E-mail address: lzp@sxu.edu.cn
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Equation (1.1) with K = 1, known as the Lane–Emden equation in astrophysics, arises

in the study of stellar structure [4]. In the case of K = 1 and p = 6, (1.1) is relevant to

the problems in differential geometry such as the prescribed scalar curvature problem [3].

Since the beginning of last century, numerous contributions flourished within the topics of

the existence and uniqueness of solution to problems related to (1.1). Here, we just mention,

among many possible choices, the papers [1, 7, 8, 12, 13, 15, 16, 17]. Moreover, we refer to

[5, 6, 19] for the existence and uniqueness results of problems related to (1.1) set on RN and

[2, 14] set on an annuli.

Let

V (r) =
rK ′(r)

K(r)
, r ∈ (0, 1).

In [10, Theorem 3], Naito showed that (1.2) admits at least one solution if p > 2, K ∈
C[0, 1] ∩ C1(0, 1], K(r) > 0 for r ∈ (0, 1], and

lim inf
r→0+

V (r) >
1

2
(p− 6). (1.3)

We also know that, by the results in [7, 8], the solutions to the equation u′′ +
2

r
u′ +K(r)|u|p−2u = 0, r ∈ (0, 1),

u′(0) = 0, u(0) 6= 0

have no zeros in [0, 1] provided that

V (r) <
1

2
(p− 6), r ∈ (0, 1).

As for the uniqueness results related to (1.1), we refer to [12, 13, 15, 16]. In [15], Tanaka

showed that if K ∈ C2[0, 1], K(r) > 0 for r ∈ [0, 1], and

(V (r)− p+ 2)(V (r)− p+ 4)− 2rV ′(r) < 0, r ∈ (0, 1), (1.4)

then the solution to (1.2) is unique. As pointed out by [15, Remark 1.3], letting r → 0+, we

have p 6 4. Hence, roughly speaking, Tanaka [15] can only provide a method to judge the

uniqueness for (1.2) in the case of p ∈ (2, 4].

It seems natural to ask what happens when p > 4? To describe the idea of solving

this problem, we will briefly review some previous results for the special case K(r) = rq

with q > 0. In [11], Ni demonstrated the existence of positive radial solutions to (1.1) for

p ∈ (2, 6+2q). Nagasaki [9] showed that (1.2) has a unique solution for every k ∈ N and every

p ∈ (2, 6 + 2q), and has no solution if p > 6 + 2q. The above facts tell us that the potential

function |x|q may expand the range of p for the uniqueness of solutions to (1.2). Motivated

by these observations, we focus on the discussion of (1.2) in the case of K(r) = rqK1(r) with

K1(r) > 0. We prove the unique result of (1.2) by using the shooting method and variable

substitution.
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Compared with [9], this paper has well established in the case where K1(r) ≡ c > 0 to

the case where K1(r) varies, where c is a constant. Yanagida in [18] proved that if V (r) is

non-increasing then uniqueness is ensured. We can also solve some cases where V ′(r) > 0

for r ∈ (0, 1), as shown in the Remarks 1.3 and 1.5. Furthermore, we can not only prove the

case where K(0) = 0, but also solve the case where K(0) > 0, presented in [15].

The main results of this paper are as follows.

Theorem 1.1. Let K(r) = rqK1(r) ∈ C[0, 1] with q > 0 and 2 < p − q < 4, and β :=

(p− q − 2)/2. Assume that

(i) K1 ∈ C2(0, 1] and K1(r) > 0 for r ∈ (0, 1];

(ii) lim
r→0+

rβ[K1(r)]
−1/2 = 0, lim

r→0+
rp−2−β[K1(r)]

1/2 = 0, lim
r→0+

rβ+1[K1(r)]
−3/2K ′1(r) = 0;

(iii) 4β(β − 1)K2
1(r) + 3r2[K ′1(r)]

2 − 4βrK1(r)K
′
1(r)− 2r2K1(r)K

′′
1 (r) < 0 for r ∈ (0, 1].

Then, for every k ∈ N, the problem (1.2) has at most one solution that has exactly k − 1

zeros in (0, 1).

In particular, if K ′1(r) > 0 for r ∈ (0, 1], then we have

Corollary 1.2. Let K(r) = rqK1(r) ∈ C[0, 1] with q > 0 and 2 < p − q < 4, and β :=

(p− q − 2)/2. Assume that

(i) K1 ∈ C2(0, 1], K1(r) > 0 for r ∈ (0, 1], and K ′1(r) > 0 for r ∈ (0, 1);

(ii) lim
r→0+

rβ[K1(r)]
−1/2 = 0, lim

r→0+
rp−2−β[K1(r)]

1/2 = 0, lim
r→0+

rβ+1[K1(r)]
−3/2K ′1(r) = 0;

(iii) 3[K ′1(r)]
2 < 2K1(r)K

′′
1 (r) for r ∈ (0, 1].

Then, for every k ∈ N, the problem (1.2) has at most one solution that has exactly k − 1

zeros in (0, 1).

Remark 1.3. In Theorem 1.1, the conditions K1 ∈ C2(0, 1] and K1(r) > 0 for r ∈ (0, 1] allow

us to consider the situation, K(0) > 0, presented in [15]. For example, let us consider the

equation from [15, Example 1.5]:
−∆u = e3|x|u3, x ∈ B,
u = 0, x ∈ ∂B,
u(0) > 0.

(1.5)

We will show that (1.5) has a unique solution that has exactly k − 1 nodes in B for every

k ∈ N. In fact, the existence is guaranteed by V (r) = 3r satisfying (1.3). Letting K1(r) =

e3r/r, p = 4 and q = 1, because of β = 1/2, we have

lim
r→0+

rβ[K1(r)]
−1/2 = lim

r→0+
re−3r/2 = 0,

lim
r→0+

rp−2−β[K1(r)]
1/2 = lim

r→0+
re3r/2 = 0,

lim
r→0+

rβ+1[K1(r)]
−3/2K ′1(r) = lim

r→0+
re−3r/2(3r − 1) = 0,
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and

4β(β − 1)K2
1(r) + 3r2[K ′1(r)]

2 − 4βrK1(r)K
′
1(r)− 2r2K1(r)K

′′
1 (r)

= r−2e6r[−1 + 3(3r − 1)2 − 2(3r − 1)− 2(3r − 1)(3r − 2)− 6r]

= r−2e6r[(3r − 1)2 − 6r − 1]

= 3r−1e6r(3r − 4) < 0, r ∈ (0, 1].

Remark 1.4. It follows from [15, Theorem 1.6] that, for any p ∈ (2, 6) and k ∈ N, there

exists K ∈ C∞[0, 1] with K(r) > 0 for r ∈ [0, 1] such that (1.2) has at least three solutions.

Therefore, we can not expect to prove the uniqueness of solutions to (1.2) for all K satisfying

the existence conditions of solution; we can only increase our understanding of the uniqueness

of solution to (1.2) by looking for more judgment conditions of the uniqueness of solutions.

Theorem 1.1 provides a new condition for the uniqueness of solutions to (1.2). Let us consider

the following equation: 
−∆u = |x|qe−δ|x||u|p−2u, x ∈ B,
u = 0, x ∈ ∂B,
u(0) > 0,

(1.6)

where q > 0 with p − q ∈ (2, 4), and δ ∈ (0,
√

2(p− q − 2) − (p − q − 2)). We will show

that, for p ∈ (2 + q, 4 + q), (1.6) has a unique solution that has exactly k − 1 nodes in B

for every k ∈ N. In fact, the existence is guaranteed by V (r) = q − δr satisfying (1.3) for

p ∈ (2 + q, 4 + q). Since p may be greater than 4, the uniqueness of solution cannot be

guaranteed by (1.4). When p ∈ (2 + q, 4 + q), letting K1(r) = e−δr, we have

lim
r→0+

rβ[K1(r)]
−1/2 = lim

r→0+
rβeδr/2 = 0,

lim
r→0+

rp−2−β[K1(r)]
1/2 = lim

r→0+
rp−2−βe−δr/2 = 0,

lim
r→0+

rβ+1[K1(r)]
−3/2K ′1(r) = lim

r→0+
−δrβ+1eδr/2 = 0,

and

4β(β − 1)K2
1(r) + 3r2[K ′1(r)]

2 − 4βrK1(r)K
′
1(r)− 2r2K1(r)K

′′
1 (r)

= e−2δr[(p− q − 2)(p− q − 4) + r2δ2 + 2δr(p− q − 2)]

= e−2δr[(δr + p− q − 2)2 − 2(p− q − 2)] < 0, r ∈ (0, 1].

The desired uniqueness result is obtained by Theorem 1.1.

Remark 1.5. Let us consider the following equation:
−∆u = |x|q(|x|2 + 3)|u|p−2u, x ∈ B,
u = 0, x ∈ ∂B,
u(0) > 0,

(1.7)
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where q > 0 with p − q ∈ (2, 4). We will prove that (1.7) has a unique solution which

has exactly k − 1 nodes in B for every k ∈ N. In fact, the existence is guaranteed by

V (r) = [(q + 2)r2 + 3q]/(r2 + 3) satisfying (1.3). Because K(0) = 0 and V ′(r) > 0, the

uniqueness of solution cannot be guaranteed by [15] and [18]. Letting K1(r) = r2 + 3, we

obtain

lim
r→0+

rβ[K1(r)]
−1/2 = lim

r→0+
rβ(r2 + 3)−1/2 = 0,

lim
r→0+

rp−2−β[K1(r)]
1/2 = lim

r→0+
rp−2−β(r2 + 3)1/2 = 0,

lim
r→0+

rβ+1[K1(r)]
−3/2K ′1(r) = lim

r→0+
2rβ+2(r2 + 3)−3/2 = 0.

Meanwhile, K ′′1 (r) = 2 > 0 and

3[K ′1(r)]
2 − 2K1(r)K

′′
1 (r) = 12r2 − 4(r2 + 3) = 8r2 − 12 < 0, r ∈ (0, 1].

The desired uniqueness result is obtained by Corollary 1.2.

Remark 1.6. In this paper, we only discuss the case of B in R3. In fact, a similar conclusion

to Theorem 1.1 can be obtained for the case of B in RN with N > 3. To prove this, we need

only make appropriate modifications to the relevant formulas in all sections.

2 Preliminaries

In this section, the conditions of Theorem 1.1 are satisfied. The proof of Theorem 1.1 is

based on the shooting method. Assume that u(·, α) is the solution to the following problem: u′′ +
2

r
u′ +K(r)|u|p−2u = 0, r ∈ (0, 1),

u(0) = α > 0, u′(0) = 0,
(2.1)

where α > 0 is a parameter. Because K ∈ C[0, 1], we have that u(·, α) exists on [0, 1] and is

unique, u, u′ ∈ C1([0, 1]× (0,∞)), and w(·, α) := uα(·, α) := ∂u(·, α)/∂α is a solution to the

following problem:  v′′ +
2

r
v′ + (p− 1)K(r)|u|p−2v = 0, r ∈ (0, 1],

v(0) = 1, v′(0) = 0.
(2.2)

Henceforth we assume that u(·, α) has exactly k zeros in (0, 1], denoted as 0 < z1 < z2 <

· · · < zk := 1. Note that u(·, α) and u′(·, α) cannot vanish at the same time. Then, we have

(−1)iu′(zi, α) = (−1)i
d

dr
u(zi, α) > 0, i = 1, 2, . . . , k. (2.3)
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In order to obtain the uniqueness of problem (1.2), it is not enough to study the properties

of the derivative of u at the zero points, we also need to consider the properties of w at the

zero points of u. Thus, we make the following variable substitution:

U(t, α) = tu(t, α), W (t) = tw(t, α), t ∈ [0, 1].

Then, U and W satisfy

U ′′ +M(t)|U |p−2U = 0, t ∈ (0, 1], (2.4)

U(0, α) = 0, U ′(0, α) = α, (2.5)

W ′′ + (p− 1)M(t)|U |p−2W = 0, t ∈ (0, 1], (2.6)

W (0) = 0, W ′(0) = 1. (2.7)

Here ′ = d/dt, and

M(t) = t−(p−2)K(t) = t−p+q+2K1(t) > 0, t ∈ (0, 1],

[M(t)]−1/2 = t(p−q−2)/2[K1(t)]
−1/2 := tβ[K1(t)]

−1/2 > 0, t ∈ (0, 1], (2.8)

where β = (p− q − 2)/2. Because p− q ∈ (2, 4), we have β ∈ (0, 1).

We denote z0 := 0. Then,

U(zi, α) = ziu(zi, α) = 0, i = 0, 1, 2, . . . , k,

(−1)i−1U(t, α) > 0, t ∈ (zi−1, zi), i = 1, 2, . . . , k.

It follows from (2.4) that there exist the unique si such that
si ∈ (zi−1, zi), U ′(si, α) = 0, i = 1, 2, . . . , k,

U ′(t, α) > 0, t ∈ (0, s1),

(−1)iU ′(t, α) > 0, t ∈ (si, si+1), i = 1, 2, . . . , k − 1,

(−1)kU ′(t, α) > 0, t ∈ (sk, zk].

(2.9)

Obviously, we can find that (0, s1), (s1, s2), (s2, s3), . . . , (sk−1, sk), (sk, zk) are the monotonic

intervals of U .

In Lemmas 2.1–2.5 below, we always assume that U and W are solutions to (2.4)–(2.5)

and (2.6)–(2.7), respectively. Then, U satisfies (2.9).

Lemma 2.1. For any given i ∈ {1, 2, . . . , k}, W has at least one zero in (zi−1, zi).

Proof. Assume to the contrary that W (t) 6= 0 for t ∈ (zi−1, zi). Without loss of generality,

we may suppose that W (t) > 0 and U(t) > 0 for t ∈ (zi−1, zi). Other cases can be treated

similarly. Therefore, we have that U ′(zi) < 0, U ′(zi−1) > 0, and then

W (zi)U
′(zi)−W (zi−1)U

′(zi−1) 6 0. (2.10)
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A simple calculation gives

(WU ′ −W ′U)′ = (p− 2)M(t)|U |p−2UW, t ∈ (0, 1]. (2.11)

It follows from K ∈ C[0, 1] that

lim
t→0+

M(t)|U |p−2UW = lim
t→0+

t−(p−2)tqK1(t)|U |p−2UW

= lim
t→0+

K(t)

∣∣∣∣Ut
∣∣∣∣p−2 UW = 0.

Therefore, (WU ′−W ′U)′ is integrable on [0, 1]. Integrating (2.11) over the interval (zi−1, zi),

we have that

W (zi)U
′(zi)−W (zi−1)U

′(zi−1) > 0.

This contradicts (2.10). Hence, W has at least one zero in (zi−1, zi).

Lemma 2.2. For U and W , we have[
[M(t)]−1/2[W ′U ′ −WU ′′]− ([M(t)]−1/2)′WU ′

]′
= −([M(t)]−1/2)′′WU ′, t ∈ (0, 1]. (2.12)

Proof. From (2.4), we note that

U ′′′ = −M ′(t)|U |p−2U − (p− 1)M(t)|U |p−2U ′, t ∈ (0, 1].

By a direct calculation, we have that[
[M(t)]−1/2[W ′U ′ −WU ′′]− ([M(t)]−1/2)′WU ′

]′
= ([M(t)]−1/2)′[W ′U ′ −WU ′′] + [M(t)]−1/2[W ′′U ′ −WU ′′′]

−([M(t)]−1/2)′′WU ′ − ([M(t)]−1/2)′[W ′U ′ +WU ′′]

= −2([M(t)]−1/2)′WU ′′ − ([M(t)]−1/2)′′WU ′

+[M(t)]−1/2[−(p− 1)M(t)|U |p−2WU ′ +M ′(t)|U |p−2UW + (p− 1)M(t)|U |p−2WU ′]

= [M(t)]−3/2M ′(t)W [−M(t)|U |p−2U ]− ([M(t)]−1/2)′′WU ′ + [M(t)]−1/2WM ′(t)|U |p−2U
= −([M(t)]−1/2)′′WU ′, t ∈ (0, 1].

The proof was completed.

Lemma 2.3. For U and W , we also have

lim
t→0+

[
[M(t)]−1/2[W ′U ′ −WU ′′]− ([M(t)]−1/2)′WU ′

]
= 0. (2.13)

Proof. According to (2.4), (2.5), (2.7), (2.8), and the conditions of Theorem 1.1, we get that

lim
t→0+

[M(t)]−1/2W ′U ′ = lim
t→0+

tβ[K1(t)]
−1/2W ′U ′ = 0,
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and

lim
t→0+

[M(t)]−1/2WU ′′ = − lim
t→0+

[M(t)]1/2|U |p−2UW

= − lim
t→0+

tp−2−β[K1(t)]
1/2

∣∣∣∣Ut
∣∣∣∣p−2 UW = 0.

Meanwhile, we observe that

([M(t)]−1/2)′ = βtβ−1[K1(t)]
−1/2 − 1

2
tβ[K1(t)]

−3/2K ′1(t), t ∈ (0, 1].

Hence,

lim
t→0+

([M(t)]−1/2)′W = lim
t→0+

[
βtβ[K1(t)]

−1/2 − 1

2
tβ+1[K1(t)]

−3/2K ′1(t)

]
W

t
= 0.

We conclude that (2.13) holds. This completes the proof.

Lemma 2.4.
(
[M(t)]−1/2

)′′
< 0 for t ∈ (0, 1].

Proof. Note that M(t) = t−2βK1(t) > 0 for t ∈ (0, 1]. Thus, for t ∈ (0, 1],

([M(t)]−1/2)′ = −1

2
[M(t)]−3/2M ′(t),

and

([M(t)]−1/2)′′

=
3

4
[M(t)]−5/2[M ′(t)]2 − 1

2
[M(t)]−3/2M ′′(t)

=
1

4
[M(t)]−5/2

[
3[M ′(t)]2 − 2M(t)M ′′(t)

]
=

1

4
[M(t)]−5/2

{
3(−2βt−2β−1K1(t) + t−2βK ′1(t))

2

−2t−2βK1(t)[−2β(−2β − 1)t−2β−2K1(t)− 4βt−2β−1K ′1(t) + t−2βK ′′1 (t)]
}

=
1

4
[M(t)]−5/2t−4β−2

[
12β2K2

1(t) + 3t2[K ′1(t)]
2 − 12βtK1(t)K

′
1(t)

−4β(2β + 1)K2
1(t) + 8βtK1(t)K

′
1(t)− 2t2K1(t)K

′′
1 (t)

]
=

1

4
[M(t)]−5/2t−4β−2

[
4β(β − 1)K2

1(t) + 3t2[K ′1(t)]
2 − 4βtK1(t)K

′
1(t)− 2t2K1(t)K

′′
1 (t)

]
.

It follows from the conditions of Theorem 1.1, we have
(
[M(t)]−1/2

)′′
< 0 for t ∈ (0, 1]. This

completes the proof.

Now, we study the number of zeros of W in the monotonic intervals of U .

Lemma 2.5. (i) W (t) > 0 for t ∈ (0, s1].

(ii) For every i ∈ {1, 2, . . . , k − 1}, W has at most one zero in (si, si+1].

(iii) W has at most one zero in (sk, zk].
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Proof. (i) Suppose that there exists some t2 ∈ (0, s1] such that W (t2) = 0 and W (t) > 0

for t ∈ (0, t2). Then, W ′(t2) < 0. Because t2 ∈ (0, s1], we find that U ′(t2) > 0. Therefore,

W ′(t2)U
′(t2) 6 0. Integrating (2.12) over (0, t2] and applying Lemmas 2.3 and 2.4, we obtain

W ′(t2)U
′(t2) > 0, which contradicts W ′(t2)U

′(t2) 6 0. Hence, conclusion (i) holds.

We now show part (ii) only, as part (iii) can be obtained in the same way.

(ii) Suppose that there exist t1, t2 ∈ (si, si+1] with t1 < t2 such that W (t1) = W (t2) = 0

and W (t) 6= 0 for t ∈ (t1, t2). We may assume that W (t) > 0 for t ∈ (t1, t2). The case where

W (t) < 0 for t ∈ (t1, t2) can be treated in a similar way. Therefore, we have that W ′(t1) > 0

and W ′(t2) < 0. Integrate (2.12) over [t1, t2] and then multiply the result by (−1)i. By

Lemma 2.4 and (2.9), we have that

[M(t2)]
−1/2W ′(t2)(−1)iU ′(t2)− [M(t1)]

−1/2W ′(t1)(−1)iU ′(t1) > 0,

which contradicts (2.9), W ′(t1) > 0, and W ′(t2) < 0. This completes the proof.

Before finishing this section, we prove an important lemma, which describes the properties

of w at the zero points of u.

Lemma 2.6. (−1)iw(zi) > 0 for i = 1, 2, . . . , k.

Proof. According to Lemmas 2.1 and 2.5, there exists some c1 ∈ (s1, z1) such that W (c1) = 0,

W (t) > 0 for t ∈ (0, c1), and W (t) < 0 for t ∈ (c1, s2]. Thus, we have W (z1) < 0. From

Lemmas 2.1 and 2.5, we also imply that there exists some c2 ∈ (s2, z2) such that W (c2) = 0,

W (t) < 0 for t ∈ (s2, c2), and W (t) > 0 for t ∈ (c2, s3]. Therefore, W (z2) > 0. By continuing

this process, we obtain (−1)iW (zi) = (−1)iziw(zi) > 0 for i = 1, 2, . . . , k. This means that

(−1)iw(zi) > 0 for i = 1, 2, . . . , k.

3 Proof of main theorem

In this section we apply the Prüfer transformation for the solution u(·, α) to problem (2.1).

For the definition and properties of the Prüfer transformation, we can refer to [17, p.270].

For the solution u(r, α) with α > 0, ρ(r, α) and θ(r, α) are defined as{
u(r, α) = ρ(r, α) sin θ(r, α),

r2u′(r, α) = ρ(r, α) cos θ(r, α),
(3.1)

where ′ = d/dr. Let us consider the implicit function equation{
F (r, ρ, θ) := u(r, α)− ρ sin θ = 0,

G(r, ρ, θ) := r2u′(r, α)− ρ cos θ = 0
(3.2)

with initial conditions {
F
(
0, α, π

2

)
= 0,

G
(
0, α, π

2

)
= 0.

(3.3)

9



Because u(·, α) and u′(·, α) cannot disappear at the same time, we note that

ρ(r, α) =
(
[u(r, α)]2 + r4[u′(r, α)]2

)1/2
> 0.

At any point (ρ, θ) ∈ (0,∞)× R, the Jacobi determinant is

J(ρ, θ) =
∂(F,G)

∂(ρ, θ)
=

∣∣∣∣∣∣ Fρ Fθ

Gρ Gθ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ − sin θ −ρ cos θ

− cos θ ρ sin θ

∣∣∣∣∣∣ = −ρ sin2 θ − ρ cos2 θ = −ρ < 0.

Thus, by (3.2) and (3.3), ρ = f(r) and θ = g(r) such that F (r, f(r), g(r)) ≡ 0 and

G(r, f(r), g(r)) ≡ 0 for r ∈ [0, 1] are uniquely determined. It follows from u, u′ ∈ C1([0, 1]×
(0,∞)) that ρ, θ ∈ C1[0, 1].

We denote H(r, ρ, θ) = (F (r, ρ, θ), G(r, ρ, θ)). Then, we obtain[
dρ
dr
dθ
dr

]
:=

[
ρ′

θ′

]
= −[H ′(ρ,θ)]

−1H ′r

= −

[
− sin θ −ρ cos θ

− cos θ ρ sin θ

]−1 [
u′(r, α)

2ru′(r, α) + r2u′′(r, α)

]

= −1

ρ

[
−ρ sin θ −ρ cos θ

− cos θ sin θ

][
u′(r, α)

2ru′(r, α) + r2u′′(r, α)

]

=

[
u′(r, α) sin θ + cos θ[2ru′(r, α) + r2u′′(r, α)]

1
ρ
u′(r, α) cos θ − 1

ρ
sin θ[2ru′(r, α) + r2u′′(r, α)]

]

=

[
u′(r, α) sin θ − r2 cos θ[K(r)|u(r, α)|p−2u(r, α)]

1
ρ2
r2[u′(r, α)]2 + 1

ρ2
u(r, α)r2[K(r)|u(r, α)|p−2u(r, α)]

]
.

Thus, we find that

θ′ =
1

ρ2
r2[u′(r, α)]2 +

1

ρ2
u(r, α)r2[K(r)|u(r, α)|p−2u(r, α)] > 0, r ∈ (0, 1].

This shows that, for any given α > 0, θ(·, α) is increasing in (0, 1]. By (3.3), it is easy to see

that u(·, α) is a solution to problem (1.2) if and only if

θ(1, α) = kπ. (3.4)

Therefore, the number of solutions to (1.2) is the same as the number of roots of (3.4).

Lemma 3.1. Let k ∈ N and u(·, α0) be a solution to (1.2) for some α0 > 0. Then, θα(1, α0) >

0.

Proof. By (3.1), we find that

θα(r, α) =
uα(r, α)r2u′(r, α)− u(r, α)r2u′α(r, α)

[u(r, α)]2 + [r2u′(r, α)]2
.
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Because zk = 1 and u(1, α0) = 0, we have that

θα(1, α0) =
uα(zk, α0)

u′(zk, α0)
.

By (2.3), we observe that (−1)ku′(zk, α0) > 0. It follows from Lemma 2.6 that

(−1)kuα(zk, α0) > 0.

Therefore, θα(1, α0) > 0.

Proof of Theorem 1.1. Because θ(1, ·) is a continuous differentiable function in (0,∞), and

when α0 satisfies θ(1, α0) − kπ = 0, by Lemma 3.1, we have θα(1, α0) > 0. Therefore,

θ(1, ·)− kπ has at most one zero in (0,∞). This completes the proof of the theorem.
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