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Abstract

Considering light absorbing and scattering problems in connection with wavelength can decrease the visibility, contrast and color

distortion of images, we propose a new type of convolutional neural network with two training phases. Firstly, the coordinate

attention module is integrated into the residual block of the residual group in the backbone network, which is used to strengthen

the feature extraction capability of the network. Secondly, since the unrealistic image colors may degrade the image details,

an unsupervised method that combines the physical prior knowledge and the real underwater images is proposed to finetune

the backbone network. Furthermore, a model protection mechanism is designed to guarantee the successful execution of the

training. The experimental results indicate the proposed model can effectively optimize the contrast, color and image quality

of the underwater image. Compared with relevant algorithms, our UCIQE and NIQE are respectively 0.525 and 4.149, which

further verifies the superiority of the proposed model.
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An Underwater Image Enhancement Model
Combining Physical Priors and Residual
Network

Fan Xinnan, Zhou Xuan, Chen Hongzhu, Xin Yuanxue and Shi
Pengfei*

Considering light absorbing and scattering problems in connection with
wavelength can decrease the visibility, contrast and color distortion
of images, we propose a new type of convolutional neural network
with two training phases. Firstly, the coordinate attention module is
integrated into the residual block of the residual group in the backbone
network, which is used to strengthen the feature extraction capability of
the network. Secondly, since the unrealistic image colors may degrade
the image details, an unsupervised method that combines the physical
prior knowledge and the real underwater images is proposed to finetune
the backbone network. Furthermore, a model protection mechanism is
designed to guarantee the successful execution of the training. The
experimental results indicate the proposed model can effectively optimize
the contrast, color and image quality of the underwater image. Compared
with relevant algorithms, our UCIQE and NIQE are respectively 0.525
and 4.149, which further verifies the superiority of the proposed model.

Introduction: Optical images are critical for underwater engineering
exploration, archaeology, and biological research. However, getting high-
quality images is a very difficult task. Light is highly attenuated and
scatters as it travels through water, leading to color distortion and a bluish
or greenish tint in underwater images. Additionally, suspended particles in
the water can further reduce image clarity and contrast. Notable progress
has been made to improve the visual quality of underwater images in recent
years. Drews et al. [1] adapt the DCP [2]and create the Underwater Dark
Channel Prior (UDCP). Kashif et al. [3] propose a sliding stretch-based
method for underwater image perception (ICM). Song et al. [4] propose
an underwater image scene based on the Underwater Light Attenuation
Prior (ULAP). Zhuang et al. [5]process the underwater images with
hyper-laplacian reflectance priors. Most of these algorithms are based
on underwater optical imaging model, which focus on calculating the
parameters by mathematical deduction. Despite having strong physical
interpretability, these methods result in poor image quality.

The advent of deep neural networks has led to their application
in underwater image enhancement. Wang et al. [6]propose a CNN-
based underwater image enhancement network called UIE-Net. Li et
al. [7]propose WaterGAN, which uses RGB-D images taken in air and
underwater images as input to adversarially train a generative network.
Fabbri et al.[8]propose UGAN, a generative adversarial network applicable
to underwater scenes, which uses CycleGAN[9] to generate paired images
and is able to provide a higher-quality training set for the model. Li et
al.[10]improve the loss function of the traditional CycleGAN. Islam et
al.[11]propose FunIEGAN, a real-time underwater image enhancement
model based on conditional generative adversarial networks[12]. Liu
et al. [13]proposed a dual-adversarial contrastive learning method for
underwater image enhancement that alleviates the need for paired data
in an unsupervised manner. Fu et al.[14]resolve underwater image
enhancement into distribution estimation and consensus process. Although
deep learning-based methods have shown superior performance compared
to traditional methods, the limited available datasets often result in
unnatural color representations. In addition, deep learning methods only
pursue high similarity between the output image and the target image,
while neglect whether it meets the human visual evaluation standards.

Therefore, we explore a method that combines the efficient performance
and robustness of deep learning with the interpretability of physical
models, and makes the output image color natural. Inspired by Chen et
al.[15], we propose an end-to-end network with two training phases. In the
first phase, we design and train a backbone network composed of residual
blocks and jump connections with strong image enhancement capabilities.
In the second phase, we add a physical prior fine-tuning module to further
improve the backbone network and enhance the quality of image colors.
The major contributions of the proposed method are as follows:

• We propose a novel residual attention block, utilizing the Coordinate
Attention mechanism, as a fundamental component of the backbone
network. This basic block enhances the network’s feature extraction
capability and makes the network easier to train.

• We combine several popular, well-grounded physical priors into
an unsupervised correction module, which utilizes real underwater
images(unpaired) to fine-tune the backbone.

• Our method outperforms existing algorithms in terms of objective
metrics and visual inspection, demonstrating significant improvements
in color saturation, contrast, and overall image clarity.

Fig. 1. Overview of the two-phase model.

Architecture : The complete model is shown in Fig.1. The backbone
network consists of a shallow feature extraction layer, followed by three
successive residual groups with skip connections that cascade the output
features. The feature maps are then input to a Coordinate Attention module,
inspired by Hou et al. [16]. As shown in Fig.2, the module aggregates
features along two spatial directions and encodes them into direction-aware
and position-sensitive attention maps that are applied complementarily to
the feature maps. The output feature map is then processed through two
convolutional layers and a skip connection that spans the entire network to
produce the final clear image.

Fig. 2. Coordinate Attention module.

The residual group is comprised of multiple tandem residual blocks, a
convolutional layer, and a skip connection, as depicted in the bottom left
part of Fig. 1. Successive residual groups are added to increase the depth
of the backbone network. Jump connection facilitates network training.

We propose a residual attention block consisting of a local residual
structure and a Coordinate Attention module, as depicted in the bottom
right part of Fig. 1. The residual attention block preserves shallow
information and efficiently passes it to deeper layers, allowing the
backbone network to focus on relevant feature information, such as
complex textures and color biases in the image.

Training in the first phase: Underwater optical imaging model describes
the process of underwater image quality deterioration, which can be
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expressed as this equation:

I = Jt+B(1− t) (1)

where I denotes the underwater image captured by the camera, J is the
clean underwater image, B is the global back light and t is the transmission
map.

In the first phase, the backbone network output J and t by learning the
relationship between the input low quality underwater image and the clean
image. To estimate the back light B, we link the back light estimation
network from DCPDN[17] with our backbone network. To ensure the
accuracy of network outputs J ,B and t, we set Ljoint which consists of
two essential components, LJ and LI . The first component is LJ , which
is formulated as follows:

LJ = ∥J − Jo∥1 (2)

where J is the output clear underwater image and Jo is the input training
ground truth.

We input J ,B, t into the underwater optical imaging model showed in
equation (1) to calculate the input image I. We calculate the loss between
it and the input low quality underwater image, which is formulated as:

LI = ∥I − Io∥1 (3)

where Io is the input low quality underwater image.
Finally, we obtain the loss function Ljoint for the training of backbone

network:

Ljoint = αLJ + βLI (4)

where α and β act as hyper-parameters.
So in the first trainging phase, the overall loss is as follows:

Lfirst =Ljoint (5)

Thanks to the well-designed backbone network, our model produces
satisfactory clean results and accurate physical parameters in the first
phase.

Training in the second phase: To mitigate computational errors arising
from scene changes and the absence of clean underwater images, we
employ the physical prior as an unsupervised training method during the
second phase. By inputting real-world underwater images, we obtain a
physical output interface that can accurately capture image characteristics.
Then we connect it to the output part of the backbone. This interface
contains two branches, each consisting of two convolution layers that
output a transmission map and a clear image, respectively. The following
physical priors are applied in our model:

BCP:Applying the bright channel prior to the underwater dark
environment enhancement results in a significant improvement in global
illumination while recovering more detail. We incorporate this prior into
the training using the following loss function:

Lbcp =
∥∥t− t̃

∥∥
1

(6)

where t is the transmission map estimated by the BCP and t̃ is the
transmission map estimated by the backbone network proposed in the first
phase.

DCP:Using only BCP can lead to an over-brightened and unrealistic
image. In this paper, we simultaneously utilize both DCP and the BCP
to achieve an optimal illumination balance. We combine the strengths of
previous DCP techniques[18] with the following loss function:

Ldcp =E
(
t, t̃

)
= tTLt+ λ

(
t− t̃

)T (
t− t̃

)
(7)

where t is the transmission map estimated by the underwater DCP, t̃

is the transmission map estimated by the backbone network, λ is the
hyperparameter, and L is the Laplacian matrix.

CLAHE:Contrast limited adaptive histogram equalization has shown
promise in mitigating the blurring that commonly affects underwater
images. We performed loss calculations on both the output of our model
and the processing results obtained with CLAHE:

Lclahe = ∥J − Jclahe∥1 (8)

where J is the output of backbone network and Jclahe is the result of
CLAHE enhancement.

At this point we obtain the physical priors loss unit:

Lphy = aLbcp + bLdcp + cLclahe (9)

Due to the shift in training focus during fine-tuning, the backbone
network’s enhancing ability is weakened. To solve this problem, we put
forward a protective mechanism to help our model memorize the previous
image-enhancing task in the first phase. In practical terms, we replicate the
backbone network in the first phase as N0 and compare the output of the
new network N1 in the second phase with that of N0. We minimize the
loss function Lprotect to achieve this:

Lprotect = ∥Fp − F0p∥1 + ∥Fup − F0up∥1 (10)

Where Fp and F0p are the output feature maps of N0 and N1 for paired
images, respectively. Fup and F0up are the output feature maps of N0 and
N1 for unpaired images.

In summary, the overall loss function in the second phase is as follows:

Lsecond =Ljoint + Lphy + Lprotect (11)

Fig. 3. Comparison of different methods.

Experiments: We utilize data from the Enhancing Underwater Visual
Perception (EUVP) , established by Islam et al. [7]. On the whole, 5.1K
paired data are input to the first phase while 2K real underwater images
are input to the second phase, with all images cropped to 128*128 size as
input. The model is trained for 100 epochs by the Adam optimizer in the
first phase and 4 epochs in the second phase. We adopt the cosine annealing
strategy (He et al.[19]) to adjust the learning rate. The training batch size
is set to 4. As for the loss function, we set α = 1, β = 0.8, a = 0.05, b =
0.001 and c = 1.

Table 1: Quantitative results using UCIQE and NIQE metrics
Method UCIQE NIQE
He 0.460 4.441
UDCP 0.516 4.480
ULAP 0.485 4.591
ICM 0.447 4.405
CycleGan 0.430 5.181
UGan 0.468 4.975
UGan-p 0.480 5.057
FunIEGAN 0.460 5.063
Ours 0.525 4.149

The evaluation metrics used in this article are UCIQE (Underwater
Color Image Quality Evaluation metrics) and NIQE (Natural Image
Quality Evaluator), both of which do not need to be compared with
reference images when used. Compared with PSNR and SSIM, UCIQE
and NIQE have more visual reference value and are specific for underwater
images. We compare our method with several traditional algorithms:
He[2], UDCP[1], ICM[3], and ULAP[4], as well as several deep learning
methods: CycleGan[9], UGan[8], UGan-P[8], and FunIEGAN[11]. Table I
present the numerical scores for the two metrics, with bold font indicating
the best results. The results demonstrate that our method achieves optimal
performance on UCIQE and NIQE evaluations. Our UCIQE and NIQE
reach 0.525 and 4.149 respectively, with a 0.009-0.095 increase in UCIQE
and a 0.256-1.032 decrease in NIQE compared to other methods.
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Fig. 4. Results of ablation experiment on physical priors.

The processing results of each algorithm are shown in Fig.3. The results
indicate that He’s method has negligible impact on underwater image
quality. UDCP enhances the contrast of the images, but does not solve
the problem of color distortion, resulting in images with unrealistic green
and blue hues and low image brightness in some cases (e.g., image4,
image5, and image6). ICM improves greenish hues, but at the cost of image
contrast and overall quality. ULAP further improves greenish hues, but
may lead to overexposure (e.g., the turtle in the image5). UGan and UGan-
p show promising results in correcting blue color bias, but make the picture
too bright (e.g., the rocky coral reef in the image1). FunIEGAN slightly
improves overall image quality, but lacks detail and brightness in some
areas (e.g., the fish patterns in the image2 and the image3). Compared to
the above methods, our model significantly improves the underwater image
coloration problem, and further enhances the image contrast with brighter
and more vivid colors.

Table 2: Comparison of ablation experiment results
Number of residual groups UCIQE NIQE
1 0.492 4.071
2 0.501 4.103
4 0.498 4.125
3(ours) 0.518 4.139

Ablation experiments: We conduct an ablation experiment on the number
of residual groups in the network structure. The number of residual groups
is set to 1, 2, and 4. Then we randomly select 200 images for evaluation.
The test results are summarized in TableIII.

As the number of residual groups increases, the feature extraction
capability increases and the output image quality improves. However, the
performance score decreases when the number of residual groups reaches
four, potentially due to the increased difficulty of model training and
overfitting resulting from the model’s increased depth.

In addition, we conduct an ablation experiment on the physical priors
in the second phase. As shown in Fig.4, the visual results reveal that
the backbone network without physical priors fine-tuning displays strong
enhancement potential, but the contrast and colors could be further
improved. In contrast, the model lacking BCP produced dark images with
incomplete texture information, while the model lacking DCP produced
slightly blurred images with exposure issues. The image lacking CLAHE
guidance exhibited uneven lighting and poor results. By integrating all
three physical priors, the resulting images demonstrate the most complete
texture effects, rich colors, strong contrast, and excellent visual outcomes.

Conclusion: In this letter, we propose a two-phase training model
for enhancing underwater images. In the first phase, we incorporate
Coordinate Attention module into the residual block to create a deep
residual network, which serves as an efficient model backbone. In the
second phase, we fine-tune the backbone guided by three physical priors
to get the final model. We integrate deep learning methods with physical
priors to ensure that the model maintains the strong feature capture ability
of convolutional neural networks while also having empirical control over
image quality. Our experiments demonstrate that our method performs
better than other methods in both UCIQE and NIQE. However, due to
the high computational requirements of our model, the processing time
for images is lengthy. Future work will focus on simplifying the model to
reduce computational complexity.
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