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Abstract

In recent years, penetration testing (pen-testing) has emerged as a crucial process for evaluating the security level of network

infrastructures by simulating real-world cyber-attacks. Automating pen-testing through reinforcement learning (RL) facilitates

more frequent assessments, minimizes human effort, and enhances scalability. However, real-world pen-testing tasks often involve

incomplete knowledge of the target network system. Effectively managing the intrinsic uncertainties via partially observable

Markov decision processes (POMDPs) constitutes a persistent challenge within the realm of pen-testing. Furthermore, RL agents

are compelled to formulate intricate strategies to contend with the challenges posed by partially observable environments,

thereby engendering augmented computational and temporal expenditures. To address these issues, this study introduces

EPPTA (Efficient POMDP-Driven Penetration Testing Agent), an agent built on an asynchronous RL framework, designed for

conducting pen-testing tasks within partially observable environments. We incorporate an implicit belief module in EPPTA,

grounded on the belief update formula of the traditional POMDP model, which represents the agent’s probabilistic estimation

of the current environment state. Furthermore, by integrating the algorithm with the high-performance RL framework, Sample

Factory, EPPTA significantly reduces convergence time compared to existing pen-testing methods, resulting in an approximately

20-fold acceleration. Empirical results across various pen-testing scenarios validate EPPTA’s superior task reward performance

and enhanced scalability, providing substantial support for efficient and advanced evaluation of network infrastructure security.
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Abstract

In recent years, penetration testing (pen-testing) has emerged as a crucial process
for evaluating the security level of network infrastructures by simulating real-world
cyber-attacks. Automating pen-testing through reinforcement learning (RL) facili-
tates more frequent assessments, minimizes human effort, and enhances scalability.
However, real-world pen-testing tasks often involve incomplete knowledge of the
target network system. Effectively managing the intrinsic uncertainties via par-
tially observable Markov decision processes (POMDPs) constitutes a persistent
challenge within the realm of pen-testing. Furthermore, RL agents are compelled
to formulate intricate strategies to contend with the challenges posed by partially
observable environments, thereby engendering augmented computational and tem-
poral expenditures. To address these issues, this study introduces EPPTA (Efficient
POMDP-Driven Penetration Testing Agent), an agent built on an asynchronous RL
framework, designed for conducting pen-testing tasks within partially observable en-
vironments. We incorporate an implicit belief module in EPPTA, grounded on the
belief update formula of the traditional POMDP model, which represents the agent’s
probabilistic estimation of the current environment state. Furthermore, by integrating
the algorithm with the high-performance RL framework, Sample Factory, EPPTA
significantly reduces convergence time compared to existing pen-testing methods,
resulting in an approximately 20-fold acceleration. Empirical results across vari-
ous pen-testing scenarios validate EPPTA’s superior task reward performance and
enhanced scalability, providing substantial support for efficient and advanced evalu-
ation of network infrastructure security.
KEYWORDS:
Penetration testing, asynchronous RL, partial observable, optimizations

1 INTRODUCTION

Penetration testing has become a fundamental element in comprehensive network security strategies, assessing the security of
computer systems, networks, and applications by simulating malicious actor-driven attacks. In this context, the automation of
pen-testing has gained significant importance. It aims to alleviate the time and cost limitations associated with traditional manual
methods and adapt to the complexities of modern networks1. However, this shift toward automation is accompanied by notable
challenges, especially within intricate pen-testing environments.
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In recent years, reinforcement learning has found extensive application in autonomous decision-making challenges. Within
the realm of pen-testing, it exhibits remarkable potential. RL is capable of facilitating agent learning and decision-making by
optimizing reward signals, offering potential cost-effectiveness, rapid prototype design, secure testing environments, and repro-
ducibility in the domain of automated pen-testing2. Nonetheless, in practical pen-testing scenarios, agents frequently confront
the constraints of partial observability, a challenge accentuated within the framework of RL-based pen-testing automation. At-
tackers often possess access only to limited and potentially unreliable information sources, such as network traffic and system
logs, thereby restricting comprehensive access to the target system.

Partial observable reinforcement learning offers an avenue to address the challenges posed by incomplete information en-
vironments, with POMDPs serving as a widely adopted framework for their resolution. Nevertheless, effective and efficient
implementation of RL-based automated pen-testing techniques in the context of partial observability remains an unresolved
challenge in the pen-testing field. Despite diverse methodologies proposed for tackling POMDPs, such as the fusion of model-
free RL with recurrent models3,4, or approximative techniques employing neural networks and traditional POMDP models5,6,
the effective integration of these methods to tackle the intricate environments within pen-testing warrants further investigation.

To address this research gap, this study introduces an intelligent agent named "Efficient POMDP-Driven Penetration Testing
Agent" (EPPTA), leverages a high-performance RL framework to tackle pen-testing tasks within partially observable environ-
ments. EPPTA’s design draws inspiration from advanced methodologies in asynchronous RL and partial observability, aiming
to overcome challenges faced by conventional methods in pen-testing.

One fundamental innovation in our proposed approach lies in the incorporation of an implicit belief module, drawing inspira-
tion from the belief update formulation found in traditional POMDP theory. The belief module equips EPPTA with the capacity
to make precise estimations of the probability distribution regarding the states of the environment based on the partial obser-
vations it receives. Within the belief module, we have employed long short-term memory (LSTM) layers7 to store trajectory
observation data and select optimal actions guided by our belief module. This enhancement substantially augments EPPTA’s
decision-making capacity, particularly in pen-testing scenarios characterized by partial observability, enabling EPPTA to devise
more effective attack sequence strategies informed by the agent’s beliefs.

Moreover, we seamlessly integrated the EPPTA algorithm into a high-performance asynchronous RL framework known
as "Sample Factory"8. This framework empowers EPPTA to asynchronously perform data collection and parameter gradient
updates across multiple parallel pen-testing environments. By leveraging shared memory mechanisms, we achieved a signifi-
cant reduction in data transfer overhead between parallel environments. Additionally, we adopted a double-buffered sampling
approach to ensure continuous acquisition of experiential data by the agent, thereby optimizing its learning process. This inte-
gration has resulted in a substantial enhancement in the convergence efficiency of EPPTA and has equipped the algorithm with
improved scalability.

To validate the effectiveness of EPPTA, we conducted experiments in the simulated pen-testing environment NASim9. Our
results indicate that EPPTA successfully and efficiently exploits vulnerabilities within partially observable pen-testing scenar-
ios, manifesting as a reduction in both the number of attack steps and convergence time. As an illustrative example, consider
POCP2Gen, one of the largest default environments in NASim, featuring over 3500 actions and a state space of ∼ 227. Within
POCP2Gen, EPPTA not only converges to an average number of attack steps closer to theoretical values but also exhibits
convergence speeds approximately 20 times faster than existing algorithms.

Furthermore, when confronting compromised network systems, human experts frequently employ node isolation as a de-
fense mechanism. To replicate such scenarios, we introduced controlled random node isolation in our experiments, effectively
preventing the agent from accessing information related to the isolated nodes. Notably, our approach consistently outperforms
traditional methods in these scenarios, demanding fewer average attack steps and less time consumption to access the target
host’s information.

In conclusion, our research contributes to the development of efficient autonomous cybersecurity systems by enhancing the
efficiency and effectiveness of pen-testing. This advancement holds the potential to assist organizations in safeguarding their
systems and networks from cyber threats, ensuring the confidentiality, integrity, and availability of sensitive data and critical
infrastructure.
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2 RELATED WORKS

Autonomous pen-testing:During the nascent stage of research, pen-testing planning employed attack graphs and decision trees
to depict a variety of attack actions through the conjunctive combination of pre-conditions and post-conditions pertaining to
the relevant properties of network systems10. These methodologies were closely linked to traditional planning techniques and
aimed to discover the most effective attack graph. While these algorithms produce interpretable and formal models, they are
predominantly appropriate for small-to-medium-sized networks, facing considerable obstacles when attempting to scale to larger
and more intricate networks11. In a recent study by Gangupantulu et al.12, RL was incorporated with attack graphs to enhance the
scalability of such models. However, this strategy necessitates the acquisition of prior network information and the deployment
of tailor-made MDPs.

RL in pen-testing: In recent times, there has been a considerable increase in research efforts employing RL algorithms to
address pen-testing challenges2,13,14. These problems have been modeled as fully observable MDPs. A number of novel architec-
tures, incorporating domain-specific modifications for deep RL, have been developed, including the double agent architecture15,
a hierarchical decomposition method termed HA-DQN16, and various improvements to the DQN algorithm with the Intrin-
sic Curiosity Module (ICM) called NDSPI-DQN17. Concurrently, Hu et al.18 successfully identified efficient attack paths for
exploitation from a range of possible solutions generated by traditional search algorithms, specifically targeting vulnerability
assessments within particular subnets.

RL for POMDPs: Numerous RL approaches have been developed to address the complexities inherent in POMDPs, con-
centrating on belief update models and recurrent models. Belief update-centric methodologies, including Point-Based Value
Iteration (PBVI)19 and Monte Carlo Value Iteration (MCVI)20, approximate the belief state by managing a collection of be-
lief points and updating them during the learning process. These strategies have been successful in scaling to larger POMDPs
with discrete state and action spaces. On the other hand, recurrent models utilize memory-based structures to maintain infor-
mation about the environment over time. LSTM networks and Gated Recurrent Units (GRUs)21 have been integrated into deep
RL algorithms to enable the learning of policies in partially observable settings. In this vein, model-free RL methods such as
Deep Recurrent Q-Networks (DRQN)22 have been proposed, that demonstrated the potential of recurrent model-free RL in ad-
dressing POMDPs. Recently, researchers have also explored the development of specialized belief modules23 and sequential
model learning architectures24 to facilitate convergence in specific problem domains. These approaches aim to improve RL’s
effectiveness in handling POMDPs by incorporating domain-specific modifications and adaptive learning mechanisms.

High-performance RL frameworks: High-performance RL frameworks have become increasingly important in address-
ing the computational challenges associated with POMDPs. POMDPs introduce additional complexities due to the uncertainty
in the environment, which necessitates the development of efficient and scalable training methods for RL agents. One notable
framework in this category is the Asynchronous Advantage Actor-Critic (A3C)25 and its generalized counterpart (GA3C)26.
These frameworks are specifically tailored to the parallelized training of RL agents, offering particular advantages in POMDPs.
The concurrent interaction of multiple agents with the environment is particularly beneficial for exploration in such scenarios.
Another significant contribution to this area is the Importance Weighted Actor-Learner Architecture (IMPALA)27, is a scal-
able and distributed RL framework designed to handle POMDPs efficiently. IMPALA employs off-policy correction methods
V-trace and decouples acting and learning processes, making it suitable for large-scale distributed training. Sample Factory,
an advanced high-performance RL framework, takes the spotlight by prioritizing both single-node sample efficiency and com-
putational scalability8. It utilizes shared memory and shared GPU memory technologies to improve internal communication
efficiency and maximize the computing capabilities of a single node. In addition, Sample Factory’s adaptive frame-skipping
technique dynamically modifies the number of frames omitted during training, enabling agents to focus on critical observa-
tions within partially observable contexts. Furthermore, several high-performance RL libraries, including Stable Baselines28
and RLlib29, have made significant contributions to the field. These libraries offer a unified framework, streamline hyperparam-
eter tuning, and enable distributed training, thereby advancing the state of high performance RL. Their effectiveness in tackling
the computational challenges inherent in complex RL tasks has been well-documented, resulting in improved scalability and
training efficiency. By leveraging these advanced frameworks and libraries, increasingly sophisticated RL agents can be de-
veloped to address uncertainty and partial observability effectively, thereby contributing to the cutting-edge advancements in
POMDP-based RL.
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Figure 1 A schematic representation of the proposed EPPTA method is provided. The upper portion illustrates an outline of
the partially observable pen-testing process, while the lower portion details the EPPTA flowchart. An innovative belief module
is introduced, which collaborates with the Actor-Critic network framework to implicitly comprehend the belief update for the
pen-testing environment state.

3 PRELIMINARIES

3.1 Pen-testing
Pen-testing typically involves a series of operations that adhere to a similar pattern. The process commences with an entry
point, serving as a foothold for an initial attack. The initially compromised hosts may not possess adequate privileges, posing
challenges for attackers in further network penetration. The ultimate objective of an attack is to compromise the target machine
and maintain influence over it, necessitating lateral movement within the network to acquire higher privileges in the system.
More specifically, the environment for conducting pen-testing usually comprises multiple subnets, each containing several hosts,
such as servers or terminal devices, as depicted in the upper portion of Figure 1. The pen-testing process is generally initiated by
an attacker situated in the demilitarized zone (DMZ), who begins by utilizing techniques such as port and vulnerability scanning
to collect information about the target system, network, or application and identify any known vulnerabilities or weaknesses.
Following this, the attacker strives to access hosts within adjacent subnets in the network topology, potentially employing social
engineering tactics or exploiting known vulnerabilities to gain entry. Once access is obtained, the attacker may seek to escalate
the privileges of the compromised host using techniques such as password cracking, using it as a starting point for subsequent
testing phases. This iterative process continues until the attacker successfully accesses the final target host, represented by the
golden host, and exploits its vulnerabilities. Ultimately, the attacker furnishes a detailed record of the sequence of attack actions,
as depicted by the red lines in the figure, for further investigation. Reducing the number of attack steps (indicated by shorter
red lines) provides defenders with less time to detect critical security vulnerabilities within the network system. Therefore, the
number of attack steps is a crucial metric for evaluating network security.
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3.2 POMDPs for pen-testing
3.2.1 Modeling
Pen-testing presents a unique challenge due to its partially observable nature, where attackers must make decisions based on
limited information. POMDPs offer a suitable framework for modeling such scenarios in which an agent must make decisions
under uncertainty.

In the context of pen-testing, a POMDP can be defined by a tuple (𝑆,𝐴, 𝑃 ,𝑅,Ω, 𝑂, 𝛾), where:
• 𝑆 represents the set of possible system states, including various network configurations, access privileges, and security

measures. Each element 𝑠 ∈ 𝑆 denotes a distinct system state, with its values representing information such as penetrated
network topology, firewalls, and access privilege levels.

• 𝐴 denotes the set of actions that an attacker can perform, where 𝑎 ∈ 𝐴 denotes a specific attack action. The Adversarial
Tactics Techniques and Common Knowledge (ATT&CK) framework30 serves as an example of the action set, which
includes a variety of operations, such as exploits, service scanning from one host to another, and subnet IP scanning from
a host to a subnet.

• 𝑃 :𝑆 ×𝐴 → Δ(𝑆) is the state transition probability function, 𝑃 (𝑠′|𝑠, 𝑎), which captures the probability of transitioning to
state 𝑠′ upon executing action 𝑎 in state 𝑠. Δ symbolizes the probability simplex.

• 𝑅:𝑆 ×𝐴 → ℝ is the reward function, 𝑅(𝑠, 𝑎, 𝑠′), which quantifies the desirability of taking action 𝑎 in state 𝑠 and reaching
state 𝑠′. In pen-testing, rewards may be associated with successful exploits, privilege escalation, or acquiring valuable
information.

• Ω denotes the set of observations perceivable by the attacker, where 𝜔 ∈ Ω represents the explicitly obtained observations
during a pen-testing simulation. Observations are contingent upon the current system state 𝑠 and the action 𝑎 executed.
The attacker can acquire the observable state of the subnet or host that is currently under attack or has been compromised,
incorporating information such as responses from port scanning and results from vulnerability scanning.

• 𝑂:𝑆×𝐴 → Δ(Ω) is the observation probability function, 𝑂(𝑜|𝑠, 𝑎), which models the likelihood of perceiving observation
𝑜 after taking action 𝑎 in state 𝑠.

• 𝛾 ∈ [0, 1] is the discount factor that determines the importance of immediate versus future rewards.

3.2.2 Belief Update
Belief update is a critical technique for estimating the current pen-testing system state from a sequence of observations and
actions. Due to the inherent uncertainty of system states in POMDPs, an attacker cannot directly observe the true state of the
target network. Instead, they must rely on a probability distribution over states, referred to as the belief state.

Mathematically, the belief state 𝑏(𝑠) represents a probability distribution over the set of possible states 𝑆, where 𝑠 ∈ 𝑆. The
belief state can be denoted as 𝑏𝑡(𝑠𝑡) = 𝑃 (𝑠𝑡 ∣ ℎ𝑡), with ℎ𝑡 signifying the history of actions and observations up to timestep 𝑡. The
belief state is updated according to the underlying POMDP model, the actions taken 𝑎𝑡, and the observations received 𝜔𝑡. The
objective is to compute the posterior probability 𝑏𝑡+1(𝑠𝑡+1) = 𝑃 (𝑠𝑡+1 ∣ ℎ𝑡, 𝑎𝑡+1, 𝜔𝑡+1). To establish a stronger connection between
our proposed EPPTA neural network framework and the belief update formula, we will deconstruct and provide clarity on the
belief update formula below.

Applying Bayes’ theorem:
𝑃 (𝑠𝑡+1 ∣ ℎ𝑡, 𝑎𝑡+1, 𝜔𝑡+1) =

𝑃 (𝜔𝑡+1 ∣ 𝑠𝑡+1, ℎ𝑡, 𝑎𝑡+1)𝑃 (𝑠𝑡 ∣ ℎ𝑡, 𝑎𝑡+1)
𝑃 (𝜔𝑡+1 ∣ ℎ𝑡, 𝑎𝑡+1)

. (1)
Notice that 𝜔𝑡+1 is conditionally independent of ℎ𝑡, given 𝑠𝑡+1 and 𝑎𝑡+1. Consequently, 𝑃 (𝜔𝑡+1 ∣ 𝑠𝑡+1, ℎ𝑡, 𝑎𝑡+1) = 𝑃 (𝜔𝑡+1 ∣

𝑠𝑡+1, 𝑎𝑡+1), which corresponds to the observation probability function 𝑂(𝜔𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡+1) previously mentioned.
Subsequently, the law of total probability is employed to determine 𝑃 (𝑠𝑡+1 ∣ ℎ𝑡, 𝑎𝑡+1):

𝑃 (𝑠𝑡+1 ∣ ℎ𝑡, 𝑎𝑡+1) =
∑

𝑠𝑡∈𝑆
𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, ℎ𝑡, 𝑎𝑡+1)𝑃 (𝑠𝑡 ∣ ℎ𝑡). (2)
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Due to the Markov property in POMDP models, we can simplify the term 𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, ℎ𝑡, 𝑎𝑡+1) to 𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡+1). Substituting
back into (1):

𝑏𝑡+1(𝑠𝑡+1) =
𝑂(𝜔𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡+1)

∑

𝑠𝑡∈𝑆
𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡+1)𝑏𝑡(𝑠𝑡)

𝑃 (𝜔𝑡+1 ∣ 𝑎𝑡+1, 𝑏𝑡)
. (3)

By iteratively applying the belief update formula, an attacker can maintain an estimate of the system state, which informs
their decision-making process.

3.3 Proximal Policy Optimization (PPO)
The proposed EPPTA framework is designed to be compatible with most on-policy actor-critic reinforcement learning (RL)
algorithms. In our research, we adopt the on-policy actor-critic method known as Proximal Policy Optimization (PPO)31 for
training the agent. PPO exhibits excellent adaptability to environmental changes, making it a stable choice for RL tasks where
the agent’s policy needs frequent updates.

The objective function of PPO is defined as follows:

𝐿PPO(𝜃) = 𝔼̂𝑡
[

min
(clip (𝑝𝑡(𝜃), 1 − 𝜖, 1 + 𝜖

)

𝐴̂𝑡, 𝑝𝑡(𝜃)𝐴̂𝑡
)]

, (4)
where 𝐿PPO(𝜃) is the PPO loss function parameterized by 𝜃. The term 𝑝𝑡(𝜃) represents the probability ratio between the old
policy and the new policy, which quantifies the change between the previous and current policy distributions. To further enhance
the efficiency of training, we utilize the Generalized Advantage Estimator (GAE)32 to estimate the advantage function 𝐴̂𝑡. The
GAE computation is as follows:

𝐴̂𝑡 =
∞
∑

𝑙=0
(𝛾𝜆)𝑙𝛿𝑉𝑡+𝑙, (5)

where the discount factor 𝛾 accounts for the relative importance of future rewards, while 𝜆 controls the trade-off between bias
and variance in the advantage estimation. Notably, 𝛿𝑉𝑡+𝑙 represents the advantage prediction error at time step 𝑡 + 𝑙 with respect
to the value function 𝑉 , measuring the alignment between expected values and observed outcomes. As such, 𝛿𝑉𝑡+𝑙 plays a pivotal
role in the RL training process by guiding policy updates based on the quality of predictions relative to actual experiences.

4 METHODOLOGIES

In this section, we present our approach to addressing two primary challenges in automated pen-testing: 1) the limited observ-
ability of scenarios and 2) the substantial training time overhead. To tackle these challenges, we propose an innovative and
efficient RL framework named EPPTA. Figure 1 provides an overview of the EPPTA algorithm.

EPPTA incorporates multilayer perceptrons (MLPs) for feature extraction, LSTM layers to handle sparse rewards, and adopts
the actor-critic framework. Within the EPPTA framework, we introduce a novel belief module along with the associated belief
function loss. Transient belief states are integrated into the actor-critic framework, facilitating implicit belief state updates. This
innovation promotes enhanced interaction between the agent’s neural network and the environment, leveraging the belief update
formula. Furthermore, we accelerate the proposed EPPTA based on the Sample Factory framework. We perform asynchronous
computations for critical RL components, utilize GPU shared memory for efficient storage of belief states, and employ the
double-buffered sampling strategy to seamlessly integrate EPPTA with Sample Factory. The training procedure of our method
is outlined in Algorithm 1 and will be further detailed in the subsequent subsections.

4.1 Belief Module
The belief module is a critical component of our proposed EPPTA framework, designed to efficiently capture the belief state of
the pen-testing agent amid the uncertainties and partial observability inherent in the environment.

Given that the cardinality of the set S, denoted as |S|, exhibits exponential growth to an immense quantity, we introduce
modifications to the conventional belief state distribution 𝑏𝑡(𝑠𝑡). We employ a matrix 𝑏𝑡 of the same dimensions as the state
matrix 𝑠 to represent the current belief state, as illustrated in the subsequent equation:
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Algorithm 1 Asynchronous Training of EPPTA with Parallel Environments
Input: Initialize all networks and parameters

1: while not converged do
2: while environments not terminated do
3: Asynchronously update transient belief 𝑏̃𝑡 for each environment
4: for each parallel environment 𝑖 in parallel do
5: Encode 𝑏̃𝑡,𝑖 and observation 𝜔𝑡 to estimate belief state 𝑏𝑡+1,𝑖
6: Execute action 𝑎𝑡,𝑖 following policy 𝜋𝑖, obtain reward 𝑟𝑡, and new observation 𝜔𝑡+1,𝑖
7: Compute external advantage 𝐴̂ext

𝑡 using (5)
8: end for
9: Asynchronously update policy by minimizing the loss outlined in (10) for each environment

10: end while
11: Synchronize shared memory to update belief states across environments
12: Apply double-buffered sampling to ensure continuous data collection
13: end while
14: return trained EPPTA

𝑏𝑡 =

∑

𝑠𝑡∈𝑆
𝑏𝑡(𝑠𝑡) ⋅ 𝑠𝑡
|𝑆|

, (6)
It is evident that 𝑏𝑡 symbolizes the mean value of the state distribution under the current belief state. Notably, when the state

is entirely known, 𝑏𝑡 coincides with the current state.
To better enable agents to implicitly comprehend belief updates, we define a portion of (3) as the transient belief state 𝑏̃𝑡+1.

𝑏̃𝑡+1 =
∑

𝑠𝑡∈𝑆
𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡+1)𝑏𝑡(𝑠𝑡), (7)

𝑏̃𝑡+1 calculates the expected probability of reaching state 𝑠𝑡+1 based on the current belief state 𝑏𝑡 and the action 𝑎𝑡+1. Essentially,
it computes the belief state for state 𝑠𝑡+1 before incorporating the new observation 𝑜𝑡+1 and represents a summation over all
possible states 𝑠𝑡 at time 𝑡.

Substitute (7) into (3), we have:

𝑏𝑡+1 =
𝑂(𝜔𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡+1)𝑏̃𝑡+1

𝑃 (𝜔𝑡+1 ∣ 𝑎𝑡+1, 𝑏𝑡)
, (8)

Referring to Equation (1), the denominator 𝑃 (𝜔 ∣ ℎ, 𝑎) serves as a normalization constant. We observe that the iterative
process of belief updates can be described as 𝑏𝑡 → 𝑏̃𝑡+1 → 𝑏𝑡+1, where both 𝑏𝑡 → 𝑏̃𝑡+1 and 𝑏̃𝑡+1 → 𝑏𝑡+1 are linear transformations
suitable for MLP approximation. Similar to HMM filtering, 𝑏𝑡 → 𝑏̃𝑡+1 is akin to the discrete Chapman-Kolmogorov equation
in the prediction step, while the computation of 𝑏̃𝑡+1 → 𝑏𝑡+1 is based on Bayesian estimation, resembling the update step. It
is evident that the action execution primarily affects the prediction step, while the update step is predominantly influenced by
observations. To maintain consistency with the interaction between the agent and the environment in the RL process, we initiate
the iterative process of belief updates commencing from 𝑏̃𝑡 and set the initial transient belief 𝑏̃0 equal to the initial observation
𝜔0.

The bottom row of Figure 1 illustrates the implicit updates of the belief state, while Figure 2 showcases specific belief state
updates within the belief module.

As depicted in Figure 2, the left box represents the belief update process, while the right box represents the belief prediction
process. The input variables of the belief module consist of observations and belief states, with the corresponding self-weights
denoted as 𝑤𝜔, 𝑤𝑏, and features 𝑓𝜔, 𝑓𝑏 extracted by adaptive learners with shared parameters. 𝜔𝑡+1 and 𝑏̃𝑡 are jointly employed
to revise the estimated black-box belief state 𝑏𝑡+1. Subsequently, based on the encoded 𝑏𝑡+1 through 𝑓𝑏𝑠 and the encoded action
𝑎𝑡+1 via 𝑓𝑎, the prediction of the transient belief state 𝑏̃𝑡+1 is generated. 𝑓𝑏𝑠 and 𝑓𝑎 represent distinct neural networks utilized for
encoding the features of 𝑏𝑡+1 and 𝑎𝑡+1, respectively. Self-weighted feature extraction of 𝜔𝑡 and 𝑏𝑡 informs actions based on these
features, yielding a more accurate probability distribution approximation for the current state.
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Figure 2 Schematic of the proposed belief module.

The belief update loss function is indispensable as it furnishes a mechanism for the model to learn an approximation of the
belief state, even when the true belief state remains unknown. Informed by the interplay between observations, actions, and
rewards, the belief update loss function operates as an indirect supervision signal, empowering the model to learn a valuable
representation of the environment for decision-making purposes.

Taking inspiration from human beliefs in partially observable situations, we anticipate the agent’s beliefs regarding observed
aspects to align with the observations, and beliefs about unobserved information to remain consistent with the previous state.
Consequently, we define the belief loss function as follows:

𝐿Belief =
∑

𝑡

(

∑

𝑖

(𝑏𝑡[𝑖] − 𝑜𝑡[𝑖])2 ∗ 𝐼(𝑜𝑡[𝑖] ≠ 0)
∑

𝑖 𝐼(𝑜𝑡[𝑖] ≠ 0)
+
∑

𝑖

(𝑏𝑡[𝑖] − 𝑏𝑡−1[𝑖])2 ∗ 𝐼(𝑜𝑡[𝑖] = 0)
∑

𝑖 𝐼(𝑜𝑡[𝑖] = 0)

)

, (9)

where 𝐼 represents the indicator function. In order to simplify the calculation and better fit, we use empirical parameters instead
of indicative functions.

The overall loss can be expressed as follows, where 𝛼 is the weighting parameter:
𝐿𝑜𝑠𝑠 = 𝐿PPO + 𝛼 ∗ 𝐿Belief . (10)

4.2 Efficiency Enhancements for EPPTA
In this section, we investigate the integration of EPPTA into the RL framework “Sample Factory” to address the following
challenges: Firstly, Sample Factory did not initially support the EPPTA algorithm, necessitating innovative modifications and
adjustments to enable efficient operation of EPPTA within this framework. Secondly, our focus lies in enhancing the convergence
speed and computational resource utilization of EPPTA. Our motivation stems from the extensive potential applications of
EPPTA in the field of automated pen-testing, where its performance advantages need to be fully realized in large-scale RL
training.

Componentization: We decomposed EPPTA into multiple highly independent components, based on the core principles of
the Sample Factory framework: Rollout Workers, Policy Workers, and the Learner. Each component is specialized in performing
specific tasks, with Rollout Workers responsible for simulating environments and data collection, Policy Workers dedicated to
policy improvement, and the Learner focused on learning from policy updates. These components obtain input data through
signal propagation, execute computational tasks, and broadcast computation results through signal emission. By conducting
these critical computational tasks asynchronously, we achieve maximum performance enhancement in RL tasks.
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Efficient Communication Mechanism: To address real-time communication challenges among the components, we adopted
a custom communication mechanism within the Sample Factory framework, inspired by Qt’s signal and slot paradigm. This
communication mechanism not only facilitates inter-thread communication but also supports inter-process communication and
is composed of a collection of EventLoops within the application. Each EventLoop operates as an infinite loop, occupying
a thread or process, and is responsible for implementing the system’s logic through EventLoopObject components. Multiple
EventLoopObjects can be supported by each EventLoop, enabling them to emit signals that include signal names and payloads
accommodating arbitrary data. All these components engage in asynchronous interactions through the exchange of signals.

Optimized Data Transmission: To reduce data communication overhead, we opted to employ shared memory buffers for
data transmission, such as belief states, rather than explicitly serializing observation data and transferring them across processes.
Whenever a component needs to send data to another component, it writes the data into a shared memory buffer and sends a
signal containing the buffer ID.

Adaptive Double Buffered Sampling: Uninterrupted acquisition of experiential data holds paramount significance within
the realm of RL tasks. To more effectively meet this requirement, we introduced an adaptive double buffered sampling strategy.
Given a total of N parallel environments, the original strategy employed by Sample Factory allocated the interaction data of the
initial 𝑘 environments with the agent to the first buffer, with the data from the remaining 𝑁−𝑘 environments stored in the second
buffer. Here, the value of 𝑘 was determined based on the number of agents completing interactions within a fixed time interval.
However, this fixed time interval strategy could result in significant temporal discrepancies in data collection between the two
buffers, especially when confronting large-scale tasks characterized by notable variations in interaction times among diverse
environments. Importantly, one characteristic of pen-testing tasks is the vast action space, frequently reaching magnitudes of 103
or more, leading to substantial discrepancies in interaction times between different agents and environments. In response to this
challenge, we introduced an adaptive strategy to dynamically adjust buffer timing. Initially, we estimated the shortest (𝑡𝑚𝑖𝑛) and
longest (𝑡𝑚𝑎𝑥) interaction times required for different agents and environments across multiple parallel settings. Subsequently,
we adapted the data collection time of the first buffer to (𝑡𝑚𝑖𝑛 + 𝑡𝑚𝑎𝑥)∕2. This enhanced approach enables us to minimize the
temporal disparities in data collection times between the two buffers, effectively mitigating the potential for load imbalances in
double buffered sampling.

The ultimate outcome of these measures is a significant improvement in performance. By closely integrating EPPTA with
Sample Factory, we successfully accelerated the convergence rate of training, enhanced training efficiency, and made more
effective use of computational resources. These improvements not only showcased EPPTA’s exceptional performance in the
field of automated pen-testing but also provided a model for research in other areas of RL.

5 PERFORMANCE EVALUATION

In this section, we present a comprehensive evaluation of the EPPTA framework’s performance in various pen-testing scenarios.
Our assessment includes comparisons with state-of-the-art RL methods for pen-testing in terms of their efficacy and scalabil-
ity. We conducted experiments using NASim9, an open-source platform that provides diverse abstract network scenarios for
evaluating pen-testing agents.

5.1 Experimental Setup
Environments: Our training setup utilized PyTorch version 1.11.0 and an NVIDIA A100 GPU card with 40G memory. We
evaluated EPPTA on various network configurations, ranging from small-scale to large-scale scenarios. These configurations
include Tiny, Small, Medium, LargeGen, HugeGen, and Pocp2Gen. The smallest environment, Tiny, comprises 4 subnets, 3
hosts, an 18-dimensional action space, and a 576-dimensional state space. In contrast, the largest environment, Pocp2Gen,
features 21 subnets, 95 hosts, a 3515-dimensional action space, and a massive 1.49E+08-dimensional state space. For each of
these environments, we executed 12 parallel instances with different random seeds.

Actions available to the agent in NASim include scanning (collecting information on hosts/subnets), exploiting vulnerable
services, and privilege escalation (using processes to elevate access). Each action carries the possibility of success or failure,
adding an element of uncertainty to the task.
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Methods
Scenarios Tiny Small Medium LargeGen HugeGen Pocp2Gen

HA-DQN R 184.0 ± 2.7 −256.2 ± 291.1 −2140.4 ± 29.6 −4898.7 ± 85.6 −9695.0 ± 320.2 −29873.2 ± 49.1
S 16.0 ± 2.7 464.9 ± 87.2 2000 ± 0 5000 ± 0 10000 ± 0 30000 ± 0
D 8.9(9.9×) 458.9(1147.3×) − − − −

NDSPI-DQN R 185.1 ± 2.8 174.0 ± 4.7 167.0 ± 4.3 −4936.4 ± 81.2 −9494.9 ± 427.0 −29764.0 ± 57.2
S 14.9 ± 2.7 17.3 ± 4.8 20.8 ± 2.9 5000 ± 0 10000 ± 0 30000 ± 0
D 8.9(9.9×) 11.3(28.3×) 12.8(12.8×) − − −

PPO R 191.0 ± 0.93 179.4 ± 0.12 −2000 ± 0.71 138.0 ± 50.9 −243.3 ± 67.5 −213.0 ± 87.9
S 9.1 ± 0.91 12.9 ± 0.15 2000.0 ± 0.0 84.9 ± 45.7 463.7 ± 53.4 413.5 ± 90.3
D 4.4(4.9×) 4.4(11×) − 786.0(238.1×) 2577.9(560.5×) 3941.5(1231.7×)

Recurrent PPO R 𝟏𝟗𝟑.𝟐 ± 𝟎.𝟏𝟎 𝟏𝟖𝟒.𝟖 ± 𝟎.𝟏𝟐 𝟏𝟖𝟐.𝟒 ± 𝟎.𝟐𝟑 208.9 ± 0.34 211.2 ± 0.45 224.6 ± 0.21
S 𝟔.𝟕 ± 𝟎.𝟏𝟓 𝟖.𝟒 ± 𝟎.𝟏𝟓 𝟗.𝟎 ± 𝟎.𝟏𝟔 14.8 ± 0.33 18.2 ± 0.34 20.1 ± 0.26
D 𝟎.𝟕(𝟎.𝟖×) 𝟎.𝟒(𝟏×) 𝟏.𝟎(𝟏.𝟒×) 6.8(2.0×) 8.2(1.8×) 8.1(2.3×)

EPPTA
(Ours)

R 𝟏𝟗𝟑.𝟏 ± 𝟎.𝟐𝟔 𝟏𝟖𝟒.𝟗 ± 𝟎.𝟎𝟖 𝟏𝟖𝟐.𝟑 ± 𝟐.𝟕𝟒 𝟐𝟏𝟏.𝟗 ± 𝟏.𝟐𝟑 𝟐𝟏𝟒.𝟑 ± 𝟐.𝟑𝟏 𝟐𝟐𝟗.𝟖 ± 𝟑.𝟒𝟐
S 𝟔.𝟗 ± 𝟎.𝟎𝟕 𝟖.𝟒 ± 𝟎.𝟎𝟖 𝟖.𝟕 ± 𝟐.𝟏𝟓 𝟏𝟏.𝟒 ± 𝟏.𝟒𝟕 𝟏𝟒.𝟓 ± 𝟐.𝟒𝟏 𝟏𝟓.𝟔 ± 𝟒.𝟑𝟐
D 𝟎.𝟗(𝟏×) 𝟎.𝟒(𝟏×) 𝟎.𝟕(𝟏×) 𝟑.𝟒(𝟏×) 𝟒.𝟓(𝟏×) 𝟑.𝟔(𝟏×)

Oracle R 194 186 185 217 220 234
S 6 8 8 8 10 12

Table 1 Learning performance of various methods across different network configurations. IQM episodic rewards and IQM
episodic length are denoted as R and S, respectively. The distance between the converged IQM episodic length and the Oracle
is represented by D, signifying the additional number of attack operations employed to complete the pen-testing task compared
to the theoretical optimal strategy.

The reward function for the pen-testing agent is defined as the value of compromised hosts minus the cost of actions taken.
The objective is to compromise all target hosts with positive values on the network while minimizing the number or cost of
executed actions.

Evaluation metrics: To benchmark EPPTA’s performance, we introduced the "Oracle." The Oracle symbolizes the pinnacle
of pen-testing expertise, representing a hypothetical scenario where human experts execute the best actions without errors.
Comparing EPPTA’s performance to the Oracle provided us with valuable insights into the algorithm’s capabilities and its ability
to approximate human expertise.

To assess performance, we employ Interquartile Mean (IQM) metrics for episodic rewards and episodic length. IQM provides
robustness against outlier scores and exhibits higher statistical efficiency than median and mean metrics. Additionally, we use
the distance between the converged IQM episodic length and the Oracle as an auxiliary evaluation metric.

The IQM formula is defined as:
𝐼𝑄𝑀(𝑥) =

2
∑

𝑒𝑛𝑣∈𝐸 𝑥𝑒𝑛𝑣 ∗ 𝐼(𝑄1(𝑥𝑒𝑛𝑣) < 𝑥 < 𝑄3(𝑥𝑒𝑛𝑣))
|𝐸|

, (11)
where 𝑥 represents the evaluation object, 𝐸 denotes the set of all parallel environments, 𝐼 serves as an indicator function, sorting
the variables 𝑥𝑒𝑛𝑣 in different environments, and 𝑄1 and 𝑄3 correspond to the lower and upper quartiles, respectively.

5.2 Performance Comparison
Table 1 presents a performance comparative analysis of the EPPTA framework in contrast to several contemporary RL method-
ologies designed for pen-testing, which encompass HA-DQN16, NDSPI-DQN17, PPO models31 and Recurrent PPO models3.
The table clearly illustrates that EPPTA delivers substantial performance improvements across a spectrum of testing scenarios.

In the context of Tiny and Small environments, Recurrent PPO models demonstrates the most optimal performance, attributed
to its exceptional generalization capabilities, with EPPTA following closely behind. In contrast, RL-based penetration testing
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Figure 3 Medium and 95% confidence interval (CI) of IQM episodic reward and IQM episodic length across Small, LargeGen
and Pocp2Gen environments.Red vertical lines represent the Oracles.

algorithms such as HA-DQN and NDSPI-DQN exhibit inferior performance, particularly in environments characterized by
partial observability.

When scaling up to more extensive scenarios, such as Medium, LargeGen, HugeGen, and Pocp2Gen, EPPTA showcases supe-
rior performance. It converges more closely to the Oracle’s performance and requires significantly fewer actions to attain higher
rewards. Although Recurrent PPO models converges to an acceptable performance level in these larger-scale environments,
a noticeable gap from the Oracle’s performance persists. Moreover, conventional RL-based pen-testing approaches encounter
challenges in effectively addressing such extensive scenarios. As discernible from the table, the EPPTA framework outperforms
other methods by a margin of at least 1.8×.

Figure 3 depicts a detailed comparison of the methods in three typical NASim scenarios: small-scale Small, large-scale
LargeGen, and huge-scale Pocp2Gen. We apply Rliable33 to present comparisons of the IQM episodic reward and the IQM
episodic length between different methods, which confirms the data in Table 1.
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Figure 4 Convergence performance comparison in the presence of random node isolation.
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The results reveal that previous RL pen-testing methods primarily concentrate on fully observable networks, performing
poorly in partially observable networks and failing to converge in large-scale environments. More general RL methods, such
as recurrent PPO models, display relatively stable performance but cannot achieve superior convergence results in large-scale
environments. Our proposed EPPTA method integrates a belief module to facilitate the POMDPs. The evaluation based on IQM
metrics demonstrates that EPPTA can achieve the most favorable converged results across a diverse range of scenarios.

Furthermore, when a node is deactivated, acquiring information about the node becomes infeasible, even when relevant
actions are executed in other subnets and hosts. Consequently, we emulate pen-testing environments in which humans employ
random node isolation with diverse probabilities in response to the compromised network. For instance, consider the environment
LargeGen, which consists of 8 subnets, 23 hosts, a 322-dimensional action space, and a 4.5E6-dimensional state space. Previous
RL pen-testing algorithms, such as HA-DQN and NDSPI-DQN, fail to converge in the presence of random human operations.

Figure 4 presents a comparison between recurrent PPO models and EPPTA under node isolation probabilities of 30% and
70%. The yellow and blue boxes represent the performance results from Figure 3 without random node isolation, while the
red and green boxes denote the convergence outcomes when random node isolation is implemented. In an environment with
30% random node isolation probability, Recurrent PPO model’s reward decreases from 208.9 to 207.3 and its episodic length
increase from 14.8 to 16.6, while EPPTA’s reward decreases from 211.9 to 210.9 and its episodic length increase from 11.3 to
12.3. When the probability of node isolation is 70%, Recurrent PPO model’s reward drops significantly from 208.9 to 197.4 and
its episodic length increase from 14.8 to 26.5, whereas EPPTA’s reward decreases slightly from 211.9 to 208.5 and its episodic
length increase from 11.3 to 14.9. Consequently, the recurrent PPO model-based agent requires, on average, 11.6 extra steps to
complete the pen-testing task compared to the EPPTA-based agent, resulting in a 2.7-fold increase in the distance between the
episodic length and the Oracle.

Figure 4 demonstrates that EPPTA is more robust in harsh POMDP environments with artificial random node isolation and
possesses superior capability to learn implicit belief updates in the pen-testing state space.

5.3 Convergence Times
In addition to evaluating the convergence times of various pen-testing methods, it is essential to consider the scalability of these
methods as network environments grow in complexity and size. Scalability is a crucial aspect of any practical pen-testing tool,
as it directly impacts its real-world applicability.

In our investigation, we continued to select four distinct methods for the comparison of convergence time performance, in-
cluding HA-DQN16, NDSPI-DQN17, PPO models31, and Recurrent PPO models3. Notably, for PPO and Recurrent PPO, we
leveraged widely adopted high-performance reinforcement learning libraries, Stable Baselines28, to configure parallelization
strategies within multiple environments.

Table 2 provides a comprehensive comparison of the convergence times of the EPPTA framework against other state-of-the-art
RL methodologies. It is worth noting that, although EPPTA experiences an increase in the total number of steps to convergence
due to its utilization of asynchronous RL frameworks, it consistently surpasses its counterparts in various scenarios, highlighting
its remarkable efficiency in achieving convergence.

One of the key takeaways from this analysis is the remarkable scalability of EPPTA. In the Tiny and Small environments,
EPPTA exhibits competitive convergence times, indicating its effectiveness in relatively simpler scenarios. Please note that,
although PPO converges the fastest, its convergence results, as evidenced by Table 1, are far from satisfactory. However, EPPTA’s
standout performance becomes especially evident in the context of larger and intricately structured network configurations,
encompassing scenarios like Medium, LargeGen, HugeGen, and Pocp2Gen, where EPPTA not only attains convergence but
accomplishes this task notably faster compared to alternative methodologies.

In the Medium environment, EPPTA’s convergence speed is nearly 12.5× faster than PPO and Recurrent PPO. This rapid
convergence is essential for timely threat assessment and mitigation in medium-sized networks. In the LargeGen and HugeGen
environments, EPPTA’s scalability becomes even more apparent, as it successfully converges while other methods struggle or
fail.

Notably, in the challenging Pocp2Gen environment, EPPTA’s performance is exceptional. It achieves a remarkable 20.04×
speedup under partially observable states. This exemplifies EPPTA’s capability to efficiently handle large-scale, complex network
scenarios that are characteristic of modern cybersecurity challenges.

The scalability of EPPTA can be attributed to its innovative approach in managing real-time communication among its com-
ponents. Through the utilization of a signal mechanism, the minimization of data transfer overhead via shared memory, and
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Methods
Scenarios Tiny Small Medium LargeGen HugeGen Pocp2Gen

HA-DQN L 3000 − − − − −
T 0.58 − − − − −

NDSPI-DQN L 1400 3500 5000 − − −
T 0.39 1.5 1.72 − − −

PPO L 120 120 − − − −
T 0.0094 0.0089 − − − −

Recurrent PPO L 120 100 2000 2500 16000 30000
T 0.027 0.175 1.1 1.5 6.1 49.1

EPPTA L 𝟒𝟓𝟎 𝟔𝟕𝟎 𝟐𝟎𝟎𝟎 𝟏𝟎𝟎𝟎𝟎 𝟏𝟖𝟎𝟎𝟎 𝟑𝟓𝟎𝟎𝟎
T 𝟎.𝟎𝟐𝟏(𝟏.𝟐𝟗×) 𝟎.𝟎𝟑𝟏(𝟓.𝟔𝟓×) 𝟎.𝟎𝟖𝟖(𝟏𝟐.𝟓×) 𝟎.𝟑𝟓(𝟒.𝟐𝟗×) 𝟎.𝟓𝟎(𝟏𝟐.𝟐×) 𝟐.𝟒𝟓(𝟐𝟎.𝟎𝟒×)

Table 2 Comparison of convergence time among various methods under different network configurations in partially observable
states. The columns labeled L represent the converged step count (in thousands), while the columns labeled T represent the
convergence time (in hours).The values in parentheses indicate the speedup factor compared to Recurrent PPO, as it is the only
method that achieves convergence in all environments.

the optimization of CPU core utilization via adaptive double-buffering, EPPTA can effectively expand its operations to address
complex network environments. EPPTA’s scalability goes beyond mere convergence times. Its modular architecture permits the
seamless integration of supplementary functionalities and the assimilation of emerging pen-testing methodologies. This inherent
extensibility guarantees that EPPTA remains adaptable to evolving security challenges and readily incorporates advancements
in the field.

EPPTA’s superior convergence times and remarkable scalability make it a promising and practical tool for pen-testing in a
variety of network environments. Its ability to adapt and perform efficiently across diverse scenarios underscores its potential
for real-world cybersecurity applications, where network sizes and complexities continue to evolve.

6 CONCLUSION

In this work, we have presented EPPTA, an innovative RL framework designed to address the challenges associated with
automated penetration testing. Our efforts have been particularly focused on mitigating two primary challenges: the limited
observability of scenarios and the considerable training time overhead.

To tackle these challenges, we introduced several novel components within the EPPTA framework. Of particular significance
is the development of a belief module, which incorporates transient belief states. This innovation enhances the interaction
between the agent’s neural network and the environment, resulting in more accurate probability distribution approximations in
partial observable environments.

Furthermore, we integrated EPPTA with the Sample Factory framework, a parallelization framework for RL tasks. This
integration required adapting EPPTA to the specific requirements of Sample Factory, which traditionally did not support our
algorithm. Through this adaptation, we achieved substantial improvements in convergence speed, leveraging the parallelization
capabilities of Sample Factory. Key components of the algorithm, including rollout workers, policy workers, and learners,
were orchestrated to function asynchronously and independently, optimizing the utilization of available computing resources.
Moreover, we addressed the challenge of data collection by adjusting the double-buffered sampling strategy. This approach
allowed us to simulate multiple environments concurrently, making better use of CPU cores and GPU resources, ultimately
accelerating the training process.

In conclusion, our work demonstrates the adaptability of EPPTA to the Sample Factory framework, enhancing its efficiency
and convergence speed. A comprehensive evaluation of EPPTA using NASim demonstrates its superior performance in different
scenarios, outperforming current state-of-the-art RL pen-testing methods. Furthermore, EPPTA maintains robust stability in
simulated environments that featured human-controlled random node isolation.
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By addressing the challenges of automated pen-testing, we have paved the way for more effective and rapid RL-based security
assessment methods. The improvements achieved through the integration of EPPTA with Sample Factory underscore the poten-
tial for applying similar innovations to other RL domains, thereby advancing the field of RL and its real-world applications. As
future work, we envision further exploration of EPPTA’s adaptability to various RL applications and the incorporation of more
advanced asynchronous communication techniques and implement an intelligent parallel strategy to push the boundaries of RL
training efficiency.
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Appendices
FIGURES AND TABLES

Figure 5 Example network with 5 subnets, 11 machines and the sensitive documents located on machines (2, 0) and (5, 0).
(Schwartz,2019)

Name Type Subnets Hosts OS Services Processes Exploits PrivEscs Actions
Tiny Static 4 3 1 1 1 1 1 18
Small Static 5 8 2 3 2 3 2 72

Medium Static 6 16 2 5 3 5 3 192
Large-Gen Generated 8 23 3 7 3 7 3 322
Huge-Gen Generated 11 38 4 10 4 10 4 684

Pocp-2-Gen Generated 21 95 3 10 3 30 3 3515
Observation Dims States Step Limit

4*14 576 1000
9*23 24576 1000
17*27 393216 2000
24*32 4521984 5000
39*40 2.39E+08 10000
96*48 1.49E+08 30000

Table 3 NASim Benchmark Scenario Configurations and Parameters

The action space encompasses various types of actions, such as exploitation, privilege escalation, scanning, and more. Each
action is associated with specific costs and success probabilities. For instance, action number 4 represents an exploitation attempt
on the 0th host of the 1st subnet, with a cost of 3 and a success probability of 0.9, resulting in obtaining primary access to a
Linux system. Consequently, the minimum number of steps achievable by a human expert, referred to as the oracle, does not
necessarily represent the optimal number of steps that RL methods can attain. The expected episodic length for RL methods
can be estimated as follows, using the Small environment as an example: Let 𝑝𝑎 denote the success probability of a performed
action 𝑎. The expected number of steps required for this action is represented as:
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Figure 6 The action space of Small

𝐸𝑎 =
∞
∑

𝑖=1
𝑖 ∗ (1 − 𝑝𝑎)𝑖−1 ∗ 𝑝𝑎 =

1
𝑝𝑎

Considering an optimal policy for the Small environment as an example, which follows the action trajectory [6, 2, 13, 16, 33,
29, 67, 70], the oracle’s value is 8. However, the expectation for RL methods should be:

𝐸𝑅𝐿 =
8
∑

𝑖=1
𝐸𝑎𝑖

where 𝐸𝑎𝑖 represents the expected number of steps for each action in the trajectory, and this value may exceed the oracle’s
count.
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Scenario Mlp-layers-size RNN-size Learning rate IQM reward Reward StdDev IQM length Length StdDev

Tiny 32 128 0.0012 193.07 0.26 6.88 0.07
32 128 0.0015 192.15 0.45 7.29 0.09
64 128 0.0012 189.63 0.79 16.93 0.43
128 256 0.0012 182.09 1.05 19.22 0.74

Small 64 128 0.0015 184.94 0.08 8.40 0.08
32 128 0.0015 183.80 0.08 8.84 0.24
64 128 0.0012 183.60 0.83 9.21 0.39

Medium 32 128 0.0012 182.32 2.74 8.74 2.15
64 128 0.0015 179.09 2.34 10.98 2.20

LargeGen 32 128 0.0012 211.88 1.23 11.41 1.47
32 128 0.0015 205.07 7.42 19.21 5.13
64 128 0.0012 210.16 3.36 11.99 3.48
64 128 0.0015 209.67 4.34 12.37 4.51

HugeGen 16 128 0.0012 214.28 2.31 14.51 2.41
32 64 0.0012 213.04 4.90 15.31 4.06

Pocp2Gen 16 128 0.0012 229.83 3.42 15.61 4.32
32 256 0.0015 227.18 3.91 17.09 2.63

Table 4 Comparison of convergence performance between different algorithms on various scenarios in terms of Mlp-layers-
size, RNN-size, Learning rate, IQM reward, and IQM length.

Methods
Scenarios Tiny Small Medium LargeGen HugeGen Pocp2Gen

HA-DQN L 1000 3000 − − − −
T 0.49 2.15 − − − −

NDSPI-DQN L 800 1600 1800 − − −
T 0.35 1.3 1.37 − − −

PPO L 65 100 3000 2000 4500 6000
T 0.0083 0.011 0.0250 0.136 0.317 0.417

Recurrent PPO L 66 100 3000 3000 15000 25000
T 0.02 0.028 0.167 0.72 4.3 40.1

EPPTA L 𝟑𝟓𝟎 𝟔𝟏𝟓 𝟖𝟎𝟎 𝟐𝟎𝟎𝟎 𝟏𝟔𝟎𝟎𝟎 𝟑𝟎𝟎𝟎𝟎
T 𝟎.𝟎𝟏𝟎𝟖(𝟏.𝟖𝟓×) 𝟎.𝟎𝟏𝟖𝟑(𝟏.𝟓𝟑×) 𝟎.𝟎𝟐𝟒𝟐(𝟔.𝟗𝟎×) 𝟎.𝟎𝟓𝟏𝟏(𝟏𝟒.𝟎𝟗×) 𝟎.𝟒𝟏(𝟏𝟎.𝟒𝟗×) 𝟐.𝟐(𝟏𝟖.𝟐𝟑×)

Table 5 Comparison of convergence time among various methods under different network configurations in fully observable
states.The columns labeled L represent the converged step count (in thousands), while the columns labeled T represent the
convergence time (in hours).

How to cite this article: Zegang Li, Qian Zhang, Guangwen Yang (2023), EPPTA: Efficient Partially Observable Reinforcement
Learning Agent for Penetration testing Applications, Engineering Reports, .
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