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Abstract

Consider ( M , g ) as an m-dimensional compact connected Riemannian manifold without boundary. In this paper, we investigate

the first eigenvalue λ 1 , p , q of the ( p , q ) -Laplacian system on M. Also, in the case of p,q>n we will show that for arbitrary

large λ 1 , p , q there exists a Riemannian metric of volume one conformal to the standard metric of S m .
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CONFORMAL BOUNDS FOR THE FIRST EIGENVALUE OF THE
(p, q)-LAPLACIAN SYSTEM

MOHAMMAD JAVAD HABIBI VOSTA KOLAEI AND SHAHROUD AZAMI

Abstract. Consider (M, g) as an m-dimensional compact connected Riemannian
manifold without boundary. In this paper, we investigate the first eigenvalue λ1,p,q
of the (p, q)-Laplacian system on M . Also, in the case of p, q > n we will show that
for arbitrary large λ1,p,q there exists a Riemannian metric of volume one conformal
to the standard metric of Sm.

1. Introduction

Finding bounds of the eigenvalue for the Laplacian on a given manifold is a key
aspect in Riemannian geometry. Aa an example, studying eigenvalues that appear
as solutions of the Dirichlet or Neumann boundary value problems for curvature
functions, is interesting topic in geometric analysis. In recent years, because of the
theory of self-adjoint operators, the spectral properties of linear Laplacian studied
extensively. As an important example, mathematicians generally are interested in
the spectrum of the Laplacian on compact manifolds with or without boundary or
noncompact complete manifolds due to in these two cases the linear Laplacians can
be uniquely extended to self-adjoint operators (see [8, 9]).
Since the study of the properties of spectrum of Laplacian (specially in Dirichlet
condition) in infinitely stretched regions has applications in elasticity,
electromagnetism and quantum physics, it attracts attention of many
mathematicians and physicists. Recently Mao has proved the existence of discrete
spectrum of linear Laplacian on a class of 4-dimentional rotationally symmetric
quantum layers, which are noncompact noncomplete manifolds in [12].
Consider M as a compact, complete, simply connected Riemannian
manifold. Let u : M −→ R be a smooth function on M or u ∈ W 1,p (M) where
W 1,p (M) is the Sobolev space. The p-Laplacian of u for 1 < p <∞ is defined as

∆pu = div(|∇u|p−2∇u)(1.1)

= |∇u|p−2∆u+ (p− 2)|∇u|p−4(Hess u)(∇u,∇u),

where

(Hess u) (X, Y ) = ∇ (∇u) (X, Y )

= X. (Y.u)− (∇XY ) .u X, Y ∈ χ (M) .

Although the regularity theory of the p-Laplacian is very different from the usual
Laplacian, many of the estimates for the first eigenvalue of the Laplacian
(for example for p = 2) can be generalized to general p. As an important
example in [13], you can find remarkable results in a case of closed manifolds with

2010 Mathematics Subject Classification. 53C21, 58C40.
Key words and phrases. Eigenvalue, The (p, q)-Laplacian system, geometric estimate, Riemannian

metrics.
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2 M. HABIBI VOSTA KOLAEI AND S. AZAMI

bounded Ricci curvature from below by (m− 1)K where K > 0. The special case
K = 0 and general case K ∈ R are studied in [16] and [15], respectively.
Consider g as a Riemannian metric on M . The conformal class of g defined as

[g] = {fg|f ∈ C∞ (M) , f > 0},
also

G (n) = {γ ∈ Diff (Sn) |γ∗can ∈ [can]},
for arbitrary natural n, denote the group of conformal diffeomorphisms of (Sn, can).
It was proved before, for n big enough the set

In (M, [g]) = {φ : M → Sn|φ∗can ∈ [g]},
of conformal immersions from (M, g) to (Sn, can) is nonempty. The spectrum of eigen-
values of geometric operators were studied before. As an example, for m-dimensional
closed connected Riemannian manifold M with metric g

Spec (g) = {0 = λ0 (g) < λ1 (g) ≤ λ2 (g) ≤ ... ≤ λk (g) ≤ ...},
where λk (g) denotes the k-th eigenvalue of Laplace operator. Furthermore,

λck (M, [g]) = sup
g̃∈[g]

λk (g̃) = sup{λk (g̃)V (g̃)
2
m},

where g̃ is the metric conformal to g and V (g̃) is the volume element associated to
g̃.
The conformal bound for the first eigenvalue of p-Laplacian system (1.1) was studied
before in [14].

Theorem 1.1 (Matei [14]). Let M be an m-dimensional compact manifold and
1 < p ≤ m. If g denotes the Riemannian metric on M and n ∈ N then

λ1,p (M) ≤ m
p
2 (n+ 1)|

p
2
−1| V c

n (M, [g])
p
m ,

where

V c
n (M, [g]) = inf

φ∈In(M,[g])
sup

γ∈G(n)

vol (M, (γ ◦ φ)∗ can) .

2. The (p, q)-Laplacian system

The (p, q)-elliptic quasilinear system is defined as

(2.1)

 −∆pu = +λ|u|α|v|βv in M ,
−∆qv = +λ|u|α|v|βu in M ,
u = v = 0 (Dirichlet) or ∇δu = ∇δv = 0 (Neumann) on ∂M,

where δ is the outward normal on ∂M , p > 1 , q > 1 and α, β are real numbers such
that

α > 0, β > 0,
α + 1

p
+
β + 1

q
= 1.

In this situation λ is called an eigenvalue of system (2.1) and (u, v) are eigenfunctions
corresponding to λ.
In the term of the first nontrivial eigenvalue of the (p, q)-elliptic quasilinear system
(2.1), the first Neumann eigenvalue is defined as

µ1,p,q = inf
{ 1

A

(
α + 1

p

ˆ
M

|∇u|p +
β + 1

q

ˆ
M

|∇v|q
)

; u, v ∈ W 1,p (M) \ {0},B = E = 0
}
,
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where

A =

ˆ
M

|u|α+1|v|β+1,

and also

B =

ˆ
M

(
u|u|p−2 + |u|α|v|βv

)
,

E =

ˆ
M

(
v|v|q−2 + |u|α|v|βu

)
.

N. Zographopoulos in [17] has discussed the existence and uniqueness of the
solution of the (p, q)-elliptic quasilinear system (2.1). This type of systems have been
found in different cases in physics. For example to the study of transport of electron
temperature in a confined plasma and also to the study of electromagnetic
phenomena in nonhomogeneous super conductors, you can see [3, 6]. Also for more
details in electrochemistry and nuclear reaction, you can find useful results in [4] or
[5], respectively.
Let (M, g) be an m-dimensional compact Riemannian manifold. The first Dirichlet
eigenvalue of the system (2.1) is defined as

λ1,p,q (M) = inf
u,v 6=0

{ 1´
M
|u|α+1|v|β+1dv

[α + 1

p

ˆ
M

|∇u|pdv +
β + 1

q

ˆ
M

|∇v|qdv
]}
,

where

(u, v) ∈ W 1,p
0 (M)×W 1,q

0 (M) \ {0}.

As an example the second author has studied the first eigenvalue of the system (2.1)
in [1]. In this paper by inproving methods from Matei [14], we are going to study the
first Dirichlet eigenvalue of the system (2.1).

3. The first case, p, q ≤ m

In this section we will prove that

Theorem 3.1. ConsiderM as an m-dimensional compact Riemannian manifold and
also 1 < p, q ≤ m. If λ1,p,q denotes the first eigenvalue of the (p, q)-Laplacian system
(2.1) and p ≥ q, then for arbitrary natural n we get

• If p, q ≥ 2, then

λ1,p,q (M) ≤ (n+ 1)
1
2
p2 m

p
2 (V c

n (M, [g]))
p
m .

• If 1 < q, p < 2, then

λ1,p,q (M) ≤ (n+ 1)−
1
2
q(q+1)m

q
2 (V c

n (M, [g]))
q
m .

• If 1 < q < 2 ≤ p then

λ1,p,q (M) ≤ (n+ 1)
1
2(p2−q)m

q
2 (V c

n (M, [g]))
q
m .

Before giving proof for this theorem, first of all, we consider two following lemmas.
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Lemma 3.2 (Chebyshev’s inequality [2]). Consider {ai}ni=1 and {bi}ni=1 as two
decreasing real sequences, then

1

n

n∑
i=1

aibi ≥

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
.

Lemma 3.3. Let φ : (M, g) → (Sn, can) be a smooth map which its level sets are
zero measure, then there exist γ, δ ∈ G (n) and p ≥ q such that

• If p, q ≥ 2, then

λ1,p,q (M) ≤ (n+ 1)
1
2
p2
(
α + 1

p

ˆ
M

|dψ|pdv +
β + 1

q

ˆ
M

|dη|qdv
)
.

• If 1 < p, q < 2, then

λ1,p,q (M) ≤ (n+ 1)−
1
2
q(q+1)

(
α + 1

p

ˆ
M

|dψ|pdv +
β + 1

q

ˆ
M

|dη|qdv
)
.

• If 1 < q < 2 ≤ p, then

λ1,p,q (M) ≤ (n+ 1)
1
2(p2−q)

(
α + 1

p

ˆ
M

|dψ|qdv +
β + 1

q

ˆ
M

|dη|qdv
)
,

where η = δ ◦ φ and ψ = γ ◦ φ.

Proof. For α, β > 0 there exist γ, β ∈ G (n) and for ψi = (γ ◦ φ)i and ηi = (δ ◦ φ)i
where 1 ≤ i ≤ n+ 1 we see

λ1,p,q (M) ≤ 1´
M
|ψ̌i|α+1|η̌i|β+1dv

[α + 1

p

ˆ
M

|dψ̌i|pdv +
β + 1

q

ˆ
M

|dη̌i|q
]
,

where η̌i and ψ̌i are the decreasing rearrangement of ηi and ψi respectively, then

λ1,p,q (M)

ˆ
M

|ψ̌i|α+1|η̌i|β+1dv ≤ α + 1

p

ˆ
M

|dψ̌i|p +
β + 1

q

ˆ
M

|dη̌i|qdv.

By taking summation from i = 1 to i = n+ 1 from both sides we conclude that
n+1∑
i=1

(
λ1,p,q (M)

ˆ
M

|ψ̌i|α+1|η̌i|β+1dv

)
≤

n+1∑
i=1

(
α + 1

p

ˆ
M

|dψ̌i|p +
β + 1

q

ˆ
M

|dη̌i|q
)
,

or

λ1,p,q (M) ≤ 1´
M

∑n+1
i=1 |ψ̌i|α+1|η̌i|β+1dv

[α + 1

p

ˆ
M

n+1∑
i=1

|dψ̌i|pdv +
β + 1

q

ˆ
M

n+1∑
i=1

|dη̌i|q
]
.

First of all, let p, q ≥ 2, then

n+1∑
i=1

|dψ̌i|p =
n+1∑
i=1

(
|dψ̌i|2

) p
2 ≤

(
n+1∑
i=1

|dψ̌i|2
) p

2

= |dψ|p,

and also
n+1∑
i=1

|dη̌i|q =
n+1∑
i=1

(
|dη̌i|2

) q
2 ≤

(
n+1∑
i=1

|dη̌i|2
) q

2

= |dη|q.
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Now by Chebyshev’s inequality we get

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥ 1

n+ 1

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|α+1

)(
1

n+ 1

n+1∑
i=1

|η̌i|β+1

)

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|p(α+1)

)(
1

n+ 1

n+1∑
i=1

|η̌i|q(β+1)

)

=

(
n+1∑
i=1

1

n+ 1

(
|ψ̌i|2

) p
2
(α+1)

)(
n+1∑
i=1

1

n+ 1

(
|η̌i|2

) q
2
(β+1)

)
.(3.1)

By Jensen’s inequality in (3.1) we conclude that

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥

(
n+1∑
i=1

1

n+ 1
|ψ̌i|2

) p
2
(α+1)(n+1∑

i=1

1

n+ 1
|η̌i|2

) q
2
(β+1)

=

(
1

n+ 1

) p
2
(α+1)

(
n+1∑
i=1

|ψ̌i|2
) p

2
(α+1)(

1

n+ 1

) q
2
(β+1)

(
n+1∑
i=1

|η̌i|2
) q

2
(β+1)

= (n+ 1)−
1
2
(p(α+1)+q(β+1)) .

What we have done is dependent on two essential issues, first
∑n+1

i=1 |ψi|2 =
∑n+1

i=1 |ηi|2 =

1 and also we know that the map x → x
R
2 for R

2
≥ 1 is concave. Now under consid-

eration p ≥ q we have

λ1,p,q (M) ≤ (n+ 1)
1
2
p2
(
α + 1

p

ˆ
M

|dψ|pdv +
β + 1

q

ˆ
M

|dη|qdv
)
.

In the case that 1 < p, q < 2, since

|ψi| ≤ 1, |ηi| ≤ 1,

and also the maps x→ x
p+1
2 and x→ x

q+1
2 are concave, by the similar way

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥ 1

n+ 1

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|α+1

)(
1

n+ 1

n+1∑
i=1

|η̌i|β+1

)

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|(p+1)(α+1)

)(
1

n+ 1

n+1∑
i=1

|η̌i|(q+1)(β+1)

)

=

(
n+1∑
i=1

1

n+ 1

(
|ψ̌i|2

) p+1
2

(α+1)

)(
n+1∑
i=1

1

n+ 1

(
|η̌i|2

) q+1
2

(β+1)

)
.
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And also by Jensen’s inequality, it concludes that

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥

(
n+1∑
i=1

1

n+ 1
|ψ̌i|2

) p+1
2

(α+1)(n+1∑
i=1

1

n+ 1
|η̌i|2

) q+1
2

(β+1)

=

(
1

n+ 1

) p+1
2

(α+1)
(
n+1∑
i=1

|ψ̌i|2
) p+1

2
(α+1)

×
(

1

n+ 1

) q+1
2

(β+1)
(
n+1∑
i=1

|η̌i|2
) q+1

2
(β+1)

= (n+ 1)−
1
2
((p+1)(α+1)+(q+1)(β+1)) .

Since x→ x
p
2 and x→ x

q
2 are convex, we see

n+1∑
i=1

|dψ̌i|p =
n+1∑
i=1

(
|dψ̌i|2

) p
2 ≤ (n+ 1)1−

p
2

(
n+1∑
i=1

|dψ̌i|2
) p

2

= (n+ 1)1−
p
2 |dψ|p,

and

n+1∑
i=1

|dη̌i|q =
n+1∑
i=1

(
|dη̌i|2

) q
2 ≤ (n+ 1)1−

q
2

(
n+1∑
i=1

|dη̌i|2
) q

2

= (n+ 1)1−
q
2 |dη|q.

These together with p ≥ q conclude that

λ1,p,q (M) ≤ (n+ 1)−
1
2
q(q+1)

(
α + 1

p

ˆ
M

|dψ|pdv +
β + 1

q

ˆ
M

|dη|qdv
)
.

In the case that 1 < q < 2 ≤ p, since x→ x
p
2 is convex, in the similar way

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥ 1

n+ 1

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|α+1

)(
1

n+ 1

n+1∑
i=1

|η̌i|β+1

)

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|p(α+1)

)(
1

n+ 1

n+1∑
i=1

|η̌i|p(β+1)

)

=

(
n+1∑
i=1

1

n+ 1

(
|ψ̌i|2

) p
2
(α+1)

)(
n+1∑
i=1

1

n+ 1

(
|η̌i|2

) p
2
(β+1)

)
,

and again by Jensen’s inequality
n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥ (n+ 1)−
p
2
(α+β+2) .
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Furthermore, since x→ x
q
2 is convex, we get

n+1∑
i=1

|dψ̌i|p ≤
n+1∑
i=1

|dψ̌i|q =
n+1∑
i=1

(
|dψ̌i|2

) q
2 ≤

(
n+1∑
i=1

|dψ̌i|2
) q

2

= (n+ 1)1−
q
2 |dψ|q,

and
n+1∑
i=1

|dη̌i|q =
n+1∑
i=1

(
|dη̌i|2

) q
2 ≤

(
n+1∑
i=1

|dη̌i|2
) q

2

= (n+ 1)1−
q
2 |dη|q.

These together imply that

λ1,p,q (M) ≤ (n+ 1)
1
2(p2−q)

(
α + 1

p

ˆ
M

|dψ|qdv +
β + 1

q

ˆ
M

|dη|qdv
)
.

�

Proof of Theorem 3.1. For p, q ≥ 2, by Lemma 3.3 we saw that

λ1,p,q (M) ≤ (n+ 1)
1
2
p2
(
α + 1

p

ˆ
M

|dψ|p +
β + 1

q

ˆ
M

|dη|q
)
,

and also ˆ
M

|dψ|pdv ≤
(ˆ

M

|dψ|mdv
) p

m

ˆ
M

|dη|qdv ≤
(ˆ

M

|dη|mdv
) q

m

,

on the other side, ψ = γ ◦ φ : (M, g)→ (Sn, can) is a conformal immersion and since

(γ ◦ φ)∗ can =
|d (γ ◦ φ) |2

m
=
|dψ|2

m
,

from [14] we conclude thatˆ
M

|dψ|pdv = m
p
2 vol (M, (γ ◦ φ)∗ can)

≤ m
p
2 sup
γ∈G(n)

vol (M, (γ ◦ φ)∗ can) ,

and in the similar wayˆ
M

|dη|qdv = m
q
2 vol (M, (δ ◦ φ)∗ can)

≤ m
q
2 sup
δ∈G(n)

vol (M, (δ ◦ φ)∗ can) .

Now by taking "inf" with respect to φ in the above inequality we get

λ1,p,q (M) ≤ (n+ 1)
1
2
p2
[α + 1

p
m

p
2 (V c

n (M, [g]))
p
m +

β + 1

q
m

q
2 (V c

n (M, [g]))
q
m

]
.

Since p ≥ q, we have

λ1,p,q (M) ≤ (n+ 1)
1
2
p2 m

p
2 (V c

n (M, [g]))
p
m .

Also for 1 < p, q < 2, in the similar context we get

λ1,p,q (M) ≤ (n+ 1)−
1
2
q(q+1)m

q
2 (V c

n (M, [g]))
q
m ,
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and also for 1 < q < 2 ≤ p we find that

λ1,p,q (M) ≤ (n+ 1)
1
2(p2−q)m

q
2 (V c

n (M, [g]))
q
m .

�

The similar problem was studied before in [11] for surfaces and also for upper
dimension manifold there are some results in [7] for p-Laplacian operator. Li and
Yau [11], proved that the upper bound for V c

n (M, [g]) just depend on the genus of
M . They actually proved that for orientable surface M (when m = 2) and for n ≥ 2
we have

V c
n (M, [g]) ≤ 4π

[τ (M) + 3

2

]
,

and also for non-orientable surface M and n ≥ 4 we get

V c
n (M, [g]) ≤ 12π

[τ (M) + 3

2

]
,

where τ (M) is genus of M and [.] denotes the bracket function.

Remark 3.4. Consider M as a compact manifold and m ≥ p ≥ q. Let λ1,p,q denotes
the first eigenvalue of the (p, q)-Laplacian (2.1), if M is orientable and n ≥ 2, then

• If p ≥ q ≥ 2, then

λ1,p,q (M) ≤ (n+ 1)
1
2
p2 (8π)

p
2

[τ (M) + 3

2

] p
2
.

• If 1 < q ≤ p < 2, then

λ1,p,q (M) ≤ (n+ 1)−
1
2
q(q+1) (8π)

p
2

[τ (M) + 3

2

] p
2
.

• If 1 < q < 2 ≤ p, then

λ1,p,q (M) ≤ (n+ 1)
1
2(p2−q) (8π)

p
2

[τ (M) + 3

2

] p
2
.

Also if M is non-orientable and for n ≥ 4,

• if p ≥ q ≥ 2, then

λ1,p,q (M) ≤ (n+ 1)
1
2
p2 (24π)

p
2

[τ (M) + 3

2

] p
2
.

• If 1 < q ≤ p < 2, then

λ1,p,q (M) ≤ (n+ 1)−
1
2
q(q+1) (24π)

p
2

[τ (M) + 3

2

] p
2
.

• If 1 < q < 2 ≤ p, then

λ1,p,q (M) ≤ (n+ 1)
1
2(p2−q) (24π)

p
2

[τ (M) + 3

2

] p
2
.
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4. The second case, p, q > m

Let r ∈ [0, π] be a geodesic distance and ε > 0, then the radial function fε : Sn → R
is defined as

fε (r) = ε
4p

m(p−m) .χ[0,π
2
−ε]∪[π

2
+ε,π] (r) + χ(π2−ε,

π
2
+ε) (r) ,

where χ is denoted as characteristic function. Now let

Rε (u, v) :=
1´

Sm−1 f
m
2
ε |u|α+1|v|β+1dvcan

[α + 1

p

ˆ
Sm−1

f
m−p

2
ε |du|pdvcan

+
β + 1

q

ˆ
Sm−1

f
m−p

2
ε |dv|qdvcan

]
.

Then

λ1,p,q (ε) = inf
u,v 6=0

{
Rε (u, v) | (u, v) ∈ W 1,p

0 ×W
1,q
0 \ {0}

}
.

It seems clear that λ1,p,q (ε) is a parametrization for the first eigenvalue of the (p, q)-
Laplacian system (2.1).

Theorem 4.1. Consider M as an m-dimensional compact manifold. If λ1,p,q denotes
the first eigenvalue of the (p, q)-Laplacian system (2.1) and p ≥ q > m then

lim sup
ε→0

λ1,p,q (ε) .ε
p
m =∞.

This theorem actually gives us the comparison between λ1,p,q (ε) and λ1,p,q (Sm, can).

Proof of Theorem 4.1. Consider the radial functions ūε, v̄ε : Sm → R as

ūpε (r) =
1

V

ˆ
Sm−1

|uε (r, .) |pdvcan,

v̄qε (r) =
1

V

ˆ
Sm−1

|vε (r, .) |qdvcan,

where V stands for vol (Sm−1, can). By taking derivative with respect to r we get

pūp−1ε ū′ε =
p

V

ˆ
Sm−1

|uε|p−2uε
∂uε
∂r

dvcan,

and the similar context holds for v and q. By Hölder’s inequality we have

ūp−1ε |ū′ε| ≤
1

V

ˆ
Sm−1

|uε|p−1|
∂uε
∂r
|dvcan

≤ 1

V

(ˆ
Sm−1

|uε|pdvcan
) p−1

p
(ˆ

Sm−1

|∂uε
∂r
|pdvcan

) 1
p

,

which concludes that

|ū′ε|p ≤
1

V

ˆ
Sm−1

|∂uε
∂r
|pdvcan ≤

1

V

ˆ
Sm−1

|duε|pdvcan.(4.1)

Since α+1
2

+ β+1
2

= 1, Hölder’s inequality implies that
ˆ
Sm
|uε|α+1|vε|β+1dvcan ≤

(ˆ
Sm
|uε|pdvcan

)α+1
p
(ˆ

Sm
|vε|qdvcan

)β+1
q

,

and again by Hölder’s inequality we see
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ˆ
Sm
f
m
2
ε |ūε|α+1|v̄ε|β+1dvcan = V.

ˆ π

0

f
m
2
ε |ūε|α+1|v̄ε|β+1 sin rm−1dr

= V.

ˆ π

0

[
f
m
2
ε

(
1

V

ˆ
Sm−1

|uε|pdvcan
)α+1

p

(
1

V

ˆ
Sm−1

|vε|qdvcan
)β+1

q

sin rm−1
]
dr

=

ˆ π

0

[
f
m
2
ε

(ˆ
Sm−1

|uε|pdvcan
)α+1

p

(ˆ
Sm−1

|vε|qdvcan
)β+1

q

sin rm−1
]
dr

≥
ˆ π

0

f
m
2
ε

(ˆ
Sm−1

|uε|α+1|vε|β+1dvcan

)
sin rm−1dr

≥
ˆ
Sm
f
m
2
ε |uε|α+1|vε|β+1dvcan.

From (4.1), we getˆ
Sm
f
m−p

2
ε |ū′ε|pdvcan = V.

ˆ π

0

f
m−p

2
ε |ū′ε|p sin rm−1dr

≤
ˆ π

0

[ ˆ
Sm−1

|duε|pdvcan
]
f
m−p

2
ε sin rm−1dr

=

ˆ
Sm
f
m−p

2
ε |duε|pdvcan,

and in the similar wayˆ
Sm
f
m−p

2
ε |v̄′ε|qdvcan ≤

ˆ
Sm
f
m−p

2
ε |dvε|qdvcan.

If Sm+ and Sm− denote the upper and lower hemispheres centered at x0 and −x0 re-
spectively, then

λ1,p,q (ε) ≥ 1´
Sm f

m
2
ε |ūε|α+1|v̄ε|β+1dvcan

[α + 1

p

ˆ
Sm
f
m−p

2
ε |ū′ε|pdvcan +

β + 1

q

ˆ
Sm
f
m−p

2
ε |v̄′ε|qdvcan

]
≥ min{λ+1,p,q, λ−1,p,q},

where λ+1,p,q and λ−1,p,q mean that taking above integrals on upper and lower hemi-
spheres respectively. Without loss of generality, let

λ1,p,q (ε) ≥ λ+1,p,q (ε) ,

which means

λ1,p,q (ε) ≥ 1´
Sm+
f
m
2
ε |ūε|α+1|v̄ε|β+1dvcan

[α + 1

p

ˆ
Sm+
f
m−p

2
ε |ū′ε|pdvcan +

β + 1

q

ˆ
Sm+
f
m−p

2
ε |v̄′ε|qdvcan

]
.

Now consider two functions aε ∈ W 1,p (M) and cε ∈ W 1,q (M) as

aε =

{
ūε [0, π

2
− ε],

ūε
(
π
2
− ε
) (

π
2
− ε, π

2

]
,
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and

cε =

{
v̄ε [0, π

2
− ε],

v̄ε
(
π
2
− ε
) (

π
2
− ε, π

2

]
,

also let bε = ūε−aε and dε = v̄ε− cε. Obviously, on
[
0, pi

2
− ε
]
and

(
π
2
− ε, π

2

]
we have

bε = dε = 0 and aε = cε = 0 respectively. From above definitions we see

|ū′ε|p = |a′ε|p + |b′ε|p,
|v̄′ε|q = |c′ε|q + |d′ε|q,

|ūε|α+1 ≤ 2α
(
|aε|α+1 + |bε|α+1

)
,

|v̄ε|β+1 ≤ 2β
(
|cε|β+1 + |dε|β+1

)
.

And also from definition of fε (r) and substituting in formulae of λ1,p,q we get

λ1,p,q (ε) ≥ 2−(α+β)

A

[
ε−

2p
m

(
α + 1

p

ˆ
Sm+
|a′ε|pdvcan +

β + 1

q

ˆ
Sm+
|c′ε|qdvcan

)

+
α + 1

p

ˆ
Sm+
|b′ε|pdvcan +

β + 1

q

ˆ
Sm+
|d′ε|qdvcan

]
,

where

A =

ˆ
Sm+
f
m
2
ε |aε|α+1|cε|β+1dvcan +

ˆ
Sm+
|aε|α+1|dε|β+1dvcan +

ˆ
Sm+
|bε|α+1|cε|β+1dvcan

+

ˆ
Sm+
|bε|α+1|dε|beta+1dvcan.

Now let

A = 1,

so obviously,

λ1,p,q (ε) ≥ 2−(α+β)
[
ε−

2p
m

(
α + 1

p

ˆ
Sm+
|a′ε|pdvcan +

β + 1

q

ˆ
Sm+
|c′ε|qdvcan

)
(4.2)

+

(
α + 1

p

ˆ
S+m
|b′ε|pdvcan +

β + 1

q

ˆ
S+m
|d′ε|qdvcan

)]
.

We consider two different cases, on the one hand,

lim sup
ε→0

[α + 1

p

ˆ
Sm+
|a′ε|pdvcan +

β + 1

q

ˆ
Sm+
|c′ε|qdvcan

]
> 0,

then

λ1,p,q (ε) .ε
p
m ≥ 2−(α+β)ε−

p
m

(
α + 1

p

ˆ
Sm+
|a′ε|pdvcan +

β + 1

q

ˆ
Sm+
|c′ε|qdvcan

)
,

which concludes that

lim sup
ε→0

λ1,p,q (ε) .ε
p
m =∞.

On the other hand,

lim
ε→0

[α + 1

p

ˆ
Sm+
|a′ε|pdvcan +

β + 1

q

ˆ
Sm+
|c′ε|qdvcan

]
= 0,
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then we choose the sequence εn → 0 in the case that aεn + cεn → a+ c where a and c
are real constants. Now since

lim
n→∞

ˆ
Sm+
f
m
2
εn |aεn|α+1|cεn|β+1dvcan = lim

n→∞

ˆ
Sm+
f
m
2
εn

(
|aεn|α+1|cεn|β+1 − |a|α+1|c|β+1

)
dvcan

+
(
|a|α+1|c|β+1

)
lim
n→∞

ˆ
Sm+
f
m
2
εn dvcan = 0,

and for p, q > m, {fεn} is uniformly bounded, thus

lim
n→∞

ˆ
Sm+

f
m
2
εn dvcan = 0.

By substituting above formulaes in (4.2) we get

λ1,p,q (ε) ≥ 2−(α+β)

B

[α + 1

p

ˆ
Sm+
|b′ε|pdvcan +

β + 1

q

ˆ
Sm+
|d′ε|qdvcan

]
=

2−(α+β)´ π
2
π
2
−εn D sin rm−1dr

ˆ π
2

π
2
−εn

(
α + 1

p
|b′ε|p +

β + 1

q
|d′ε|q

)
sin rm−1dr

≥ 2−(α+β)
(

sin
(π

2
− εn

))m−1 α+1
p

´ π
2
π
2
−εn |b

′
ε|pdr + β+1

q

´ π
2
π
2
−εn |d

′
ε|qdr´ π

2
π
2
−εn Ddr

,

where

B =

ˆ
Sm+
|aε|α+1|dε|β+1dvcan +

ˆ
Sm+
|bε|α+1|cε|β+1dvcan

+

ˆ
Sm+
|bε|α+1|dε|β+1dvcan,

and

D = |aε|α+1|dε|β+1 + |bε|α+1|cε|β+1 + |bε|α+1|dε|β+1.

Consider āεn ∈ W
1,p
0 (−ε, ε) as

āεn (x) = aεn

(
x+

π

2
− εn

)
.

The similar way holds for b̄εn ∈ W 1,p
0 (−εn, εn) and c̄εn , d̄εn ∈ W 1,q

0 (−ε, ε), and also
these functions are even, so

α+1
p

´ π
2
π
2
−εn |b

′
ε|pdr + β+1

q

´ π
2
π
2
−εn |d

′
ε|qdr´ π

2
π
2
−εn Ddr

=

α+1
p

´ εn
0
|b′ε|pdr + β+1

q

´ εn
0
|d′ε|qdr´ εn

0
Ddr

=

α+1
p

´ εn
−εn |b

′
ε|pdr + β+1

q

´ εn
−εn |d

′
ε|qdr´ εn

−εn Ddr
≥ λ1,p,q (−εn, εn)

= ε−pn λ1,p,q (−1, 1) ,

and

λ1,p,q (ε) ≥ 2−(α+β).ε−pn

(
sin
(π

2
− εn

))m−1
λ1,p,q (−1, 1) ,
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which concludes finally

lim sup
ε→0

λ1,p,q (ε) .ε
p
m =∞.

�

For ε > 0, let f̃ε ∈ C∞ (Sm) be a radial function suth that f̃ε ≤ fε. Also on[
π
2
− ε

2
, π
2

+ ε
2

]
we get

f̃ε (r) = fε (r) = 1,

and

f̃ε (π − r) = f̃ (r) .

Furthermore

vol
(
Sm, f̃εcan

)
=

ˆ
Sm
f̃
m
2
ε dvcan =

ˆ
Sm−1

ˆ π
2

−π
2

f̃
m
2
ε sin rm−1drdvcan

> V.

ˆ π
2
+ ε

2

π
2
− ε

2

sin rm−1dr

> εV
[

sin
(π

2
− ε
) ]m−1

,

where V = vol (Sm, can). If ũε and ṽε denote the eigenfunctions for λ1,p,q
(
Sn, f̃εcan

)
,

and ũ+ε , ũ−ε , ṽ+ε , ṽ−ε denote the positive and the negative parts of ũε and ṽε respectively.
For the p-Laplacian (1.1) it was proved before in [14] that

λ1,p

(
Sm, f̃εcan

)
=

´
Sm |dũ

+
ε |pf̃

m−p
2

ε dvcan´
Sm |ũ+ε |pf̃

m
2
ε dvcan

=

´
Sm |dũ

−
ε |pf̃

m−p
2

ε dvcan´
Sm |ũ−ε |pf̃

m
2
ε dvcan

.(4.3)

Corollary 4.2. Let p ≥ q > m and λ1,p,q denotes the first eigenvalue for the (p, q)-
Laplacian system (2.1) then for λ1,p,q arbitrary large, there exists the Riemannian
metric with volume one on Sm conformal to the standard metric can.

Proof. By expanding (4.3) on the (p, q)-Laplacian system (2.1) we have

λ1,p,q

(
Sm, f̃εcan

)
=

1´
Sm |ũ+ε |α+1|ṽ+ε |β+1f̃

m
2
ε dvcan

[α + 1

p

ˆ
Sm
|dũ+ε |pf̃

m−p
2

ε dvcan

+
β + 1

q

ˆ
Sm
|dṽ+ε |qf̃

m−p
2

ε dvcan

]
=

1´
Sm |ũ−ε |α+1|ṽ−ε |β+1f̃

m
2
ε dvcan

[α + 1

p

ˆ
Sm
|dũ−ε |pf̃

m−p
2

ε dvcan

+
β + 1

q

ˆ
Sm
|dṽ−ε |qf̃

m−p
2

ε dvcan

]
.

Let t ∈ R such that

ũε,t = tũ+ε + ũ−ε ,
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then

λ1,p,q

(
Sm, f̃εcan

)
=

1´
Sm |ũε|α+1|ṽε|β+1f̃

m
2
ε dvcan

[α + 1

p

ˆ
Sm
|dũε|pf̃

m−p
2

ε dvcan

+
β + 1

q

ˆ
Sm
|dṽε|qf̃

m−p
2

ε dvcan

]
≥ 1´

Sm |ũε|α+1|ṽε|β+1f
m
2
ε dvcan

[α + 1

p

ˆ
Sm
|dũε|pf

m−p
2

ε dvcan

+
β + 1

q

ˆ
Sm
|dṽε|qf

m−p
2

ε dvcan

]
≥ λ1,p,q (ε) .

Above inequalities with the Theorem 4.1 and p ≥ q together give us

lim sup
ε→0

λ1,p,q

(
Sm, f̃εcan

)
vol
(
Sm, f̃εcan

) p
m ≥ V

p
m . lim sup

ε→0
λ1,p,q (ε) .ε

p
m =∞.

Now set

hε = vol
(
Sm, f̃εcan

)− 2
m
f̃ε,

then we get

vol (Sm, hεcan) = 1,

and

lim sup
ε→0

λ1,p,q (Sm, hεcan) =∞.

�

Remark 4.3. Someone may consider the situation q < m < p, in this case we just
take the radial function fε : Sm → R as

fε (r) = ε
4q

m(m−q) .χ[0,π
2
−ε]∪[π

2
+ε,π] (r) + χ(π2−ε,

π
2
+ε) (r) ,

and then

Rε (u, v) :=
1´

Sm−1 f
m
2
ε |u|α+1|v|β+1dvcan

[α + 1

p

ˆ
Sm−1

f
q−m

2
ε |du|pdvcan

+
β + 1

q

ˆ
Sm−1

f
q−m

2
ε |dv|qdvcan

]
,

where

λ1,p,q (ε) = inf
u,v 6=0

{
Rε (u, v) | (u, v) ∈ W 1,p

0 ×W
1,q
0 \ {0}

}
.

Now by the definition of ūε and v̄ε in the Theorem 4.1 and by Hölder’s inequality we
see ˆ

Sm
f
m
2
ε |ūε|α+1dvcan =

ˆ
Sm
f
m
2
ε |uε|α+1dvcan,

and ˆ
Sm
f
q−m

2
ε |ū′|pdvcan ≤

ˆ
Sm
f
q−m

2
ε |du|pdvcan,
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also the same way holds for v and q. These together give us

λ1,p,q (ε) ≥ 1´
Sm f

m
2
ε |ūε|α+1|v̄ε|β+1dvcan

[α + 1

p

ˆ
Sm
f
q−m

2
ε |ū′ε|pdvcan

+
β + 1

q

ˆ
Sm
f
q−m

2
ε |v̄′ε|qdvcan

]
≥ min{λ+1,p,q, λ−1,p,q}.

So by the same way as Theorem 4.1 we get

lim sup
ε→0

λ1,p,q (ε) .ε
q
m =∞.

It means that the same context as Corollary 4.2 holds in the case q < m < p.

5. The (p, q)-Laplacian equation, a new characterization

One may consider the (p, q)-Laplacian equation as

∆pu+ ∆qu = div
((
|∇u|p−2 + |∇u|q−2

)
∇u
)
,

for 1 < q < p <∞ and also

u ∈ W 1,p
0 (M) ∩W 1,q

0 (M) .

Also it can be written as

−∆pu−∆qu = λ|u|p−2u,(5.1)

where for arbitrary v ∈ W 1,p
0 ∩W

1,q
0 , it is equivalent toˆ

M

|∇u|p−2∇u∇vdµ+

ˆ
M

|∇u|q−2∇u∇vdv

= λ

ˆ
M

|u|p−2uvdv,

and λ is called its eigenvalue associated to the eigenvector u. Similar to the previous
one, in this case the first Dirichlet eigenvalue of the (p, q)-Laplacian equation (5.1) is
defined as

λD1,p,q (M) = inf
u6=0

{ 1´
M
|u|pdv

(ˆ
M

|∇u|pdv +

ˆ
M

|∇u|qdv
)
|u ∈ W 1,p

0 (M) ∩W 1,q
0 (M) \ {0}

}
.

Theorem 5.1. Consider M as an m-dimensional compact manifold and 1 < q <
p ≤ m. If λD1,p,q denotes the first eigenvalue of the (p, q)-Laplacian equation (5.1),
then

λD1,p,q (M) ≤ (n+ 1)|
p
2
−1|
[
m

p
2 (V n

c (M, [g]))
p
m +m

q
m (V n

c (M, [g]))
q
m

]
.

Before giving the proof for this theorem we consider the following lemma.

Lemma 5.2. Consider φ as same as Lemma 3.3. If λD1,p,q denotes the first eigenvalue
of the (p, q)-Laplacian equation (5.1), then

λD1,p,q (M) ≤ (n+ 1)|1−
p
2
|
[ ˆ

M

|dψ|pdv +

ˆ
M

|dψ|qdv
]
,

where ψ = γ ◦ φ and γ ∈ G (n).
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Proof. From the definition of λD1,p,q (M) we see

λD1,p,q (M) ≤
´
M
|dψi|pdv +

´
M
|dψi|qdv´

M
|ψi|pdv

,

thus

λD1,p,q (M) ≤
n+1∑
i=1

´
M
|dψi|pdv +

´
M
|dψi|qdv´

M
|ψi|pdv

.

First, let p ≥ q ≥ 2, then
n+1∑
i=1

|dψi|p =
n+1∑
i=1

(
|dψi|2

) p
2 ≤

(
n+1∑
i=1

|dψi|2
) p

2

= |dψ|p.

Also in the similar way for q we have
n+1∑
i=1

|dψi|q ≤ |dψ|q.

Since
∑n+1

i=1 |ψ1|2 = 1 and the map x→ x
p
2 is concave we get

n+1∑
i=1

|ψi|p ≥ (n+ 1)1−
p
2

(
n+1∑
i=1

|ψi|2
) p

2

= (n+ 1)1−
p
2 ,

and

λD1,p,q (M) ≤ (n+ 1)
p
2
−1
[ ˆ

M

|dψ|pdv +

ˆ
M

|dψ|qdv
]
.

Now let 1 < q ≤ p < 2, since |ψi| < 1 and also |ψi|2 ≤ |ψi|p and

1 = vol (M, g) =

ˆ
M

n+1∑
i=1

|ψi|2dv ≤
ˆ
M

n+1∑
i=1

|ψi|pdv,

we conclude that
n+1∑
i=1

|dψi|p =
n+1∑
i=1

(
|dψi|2

) p
2 ≤ (n+ 1)1−

p
2

(
n+1∑
i=1

|dψi|2
) p

2

= (n+ 1)1−
p
2 |dψ|p,

similarly,
n+1∑
i=1

|dψi|q =
n+1∑
i=1

(
|dψi|2

) q
2 ≤ (n+ 1)1−

p
2

(
n+1∑
i=1

|dψi|2
) q

2

= (n+ 1)1−
p
2 |dψ|q,

which finally give us

λD1,p,q (M) ≤ (n+ 1)|1−
p
2
|
[ ˆ

M

|dψ|pdv +

ˆ
M

|dψ|qdv
]
.

�

Proof of Theorem 5.1. Consider φ : (M, g)→ (Sm, can) as a conformal immersion.
From Lemma 5.2 there exists γ ∈ G (n) such that

λD1,p,q (M) ≤ (n+ 1)|
p
2
−1|
[ ˆ

M

|dψ|pdv +

ˆ
M

|dψ|qdv
]
.
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By Hölder’s inequality we haveˆ
M

|dψ|pdv ≤
(ˆ

M

|dψ|mdv
) p

m

,

also the similar context holds for q. Since γ ◦ φ : (M, g) → (Sm, can) is a conformal
immersion and

(γ ◦ φ)∗ can =
|d (γ ◦ φ) |2

m
g,

we have ˆ
M

|d (γ ◦ φ) |pdv = m
p
2 vol (M, (γ ◦ φ)∗ can)

≤ m
p
2 sup
γ∈G(n)

vol (M, (γ ◦ φ)∗ can) ,

also the similar context holds for q. Therefore, these together and by taking inf
respect to φ we find that

λD1,p,q (M) ≤ (n+ 1)|
p
2
−1|
[
m

p
2 (V n

c (M, [g]))
p
m +m

q
m (V n

c (M, [g]))
q
m

]
.

�

Remark 5.3. It seems clear that under consideration p ≥ q, the (p, q)-Laplacian
equation (5.1) turns into the known p-Laplacian system (1.1) which was studied
extensively in [14]. So by the similar way of Matei [14] and Theorem 4.1, for an
m-dimensional compact manifold M and p ≥ q > m we get

lim sup
ε→0

λD1,p,q (ε) .ε
p
m =∞.
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