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Abstract

Consider ( M, g ) as an m-dimensional compact connected Riemannian manifold without boundary. In this paper, we investigate
the first eigenvalue A 1, p, q of the ( p, q ) -Laplacian system on M. Also, in the case of p,¢g>n we will show that for arbitrary

large A 1, p, q there exists a Riemannian metric of volume one conformal to the standard metric of S m .
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ABSTRACT. Consider (M, g) as an m-dimensional compact connected Riemannian
manifold without boundary. In this paper, we investigate the first eigenvalue Ay ; 4
of the (p, ¢)-Laplacian system on M. Also, in the case of p,q > n we will show that
for arbitrary large A; p 4 there exists a Riemannian metric of volume one conformal
to the standard metric of S™.

1. INTRODUCTION

Finding bounds of the eigenvalue for the Laplacian on a given manifold is a key
aspect in Riemannian geometry. Aa an example, studying eigenvalues that appear
as solutions of the Dirichlet or Neumann boundary value problems for curvature
functions, is interesting topic in geometric analysis. In recent years, because of the
theory of self-adjoint operators, the spectral properties of linear Laplacian studied
extensively. As an important example, mathematicians generally are interested in
the spectrum of the Laplacian on compact manifolds with or without boundary or
noncompact complete manifolds due to in these two cases the linear Laplacians can
be uniquely extended to self-adjoint operators (see [8, 9]).

Since the study of the properties of spectrum of Laplacian (specially in Dirichlet
condition) in infinitely stretched regions has applications in elasticity,
electromagnetism and quantum physics, it attracts attention of many
mathematicians and physicists. Recently Mao has proved the existence of discrete
spectrum of linear Laplacian on a class of 4-dimentional rotationally symmetric
quantum layers, which are noncompact noncomplete manifolds in [12].

Consider M as a compact, complete, simply connected Riemannian
manifold. Let u : M — R be a smooth function on M or u € W' (M) where
WP (M) is the Sobolev space. The p-Laplacian of u for 1 < p < oo is defined as

(1.1) Ayu = div(|Vul[P~2Vu)
= |VulP2Au + (p — 2)|VulP~*(Hess u)(Vu, Vu),
where
(Hessu) (X,Y) =V (Vu) (X,Y)
=X . (Yu)— (VxY)u XY ex(M).
Although the regularity theory of the p-Laplacian is very different from the usual
Laplacian, many of the estimates for the first eigenvalue of the Laplacian

(for example for p = 2) can be generalized to general p. As an important
example in [13|, you can find remarkable results in a case of closed manifolds with
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bounded Ricci curvature from below by (m — 1) K where K > 0. The special case
K =0 and general case K € R are studied in [16] and [15], respectively.
Consider ¢ as a Riemannian metric on M. The conformal class of g defined as

9] = {fglf € C= (M), f >0},

also
G (n) ={y € Dif [ (S")|y"can € [can]},

for arbitrary natural n, denote the group of conformal diffeomorphisms of (S™, can).
It was proved before, for n big enough the set

I (M, [g]) = {¢ : M — S"|¢"can € [g]},

of conformal immersions from (M, g) to (S", can) is nonempty. The spectrum of eigen-
values of geometric operators were studied before. As an example, for m-dimensional
closed connected Riemannian manifold M with metric g

Spec(g) ={0="20(g9) <A (g9) S Aa(g) <. S A (g) <),
where )\ (¢) denotes the k-th eigenvalue of Laplace operator. Furthermore,
Ae (M, [g]) = sup A (9) = sup{Ax (9) V (3)™ },
gelg
where g is the metric conformal to g and V (g) is the volume element associated to
g.
The conformal bound for the first eigenvalue of p-Laplacian system (1.1) was studied
before in [14].

Theorem 1.1 (Matei [14]). Let M be an m-dimensional compact manifold and
1 <p<m. If g denotes the Riemannian metric on M and n € N then

p

Ay (M) <m? (n+ 1) ve (M, [g])
where

Ve(M,[g]))= inf  sup vol (M, (yo@) can).
d€ln(M,[9]) yeG(n)

2. THE (p,q)-LAPLACIAN SYSTEM

The (p, q)-elliptic quasilinear system is defined as
—Ayu = +Nul¥v|fv in M,
(2.1) —Av = +\ul|*v]Pu in M ,
u=wv=0 (Dirichlet) or Vsu=Vsuv=0 (Neumann) on oM,
where ¢ is the outward normal on OM, p > 1, ¢ > 1 and «, 8 are real numbers such
that
a+1 +1
N

p q

In this situation A is called an eigenvalue of system (2.1) and (u, v) are eigenfunctions
corresponding to .

In the term of the first nontrivial eigenvalue of the (p, ¢)-elliptic quasilinear system
(2.1), the first Neumann eigenvalue is defined as

g =inf {5 (8 [ wup+ 22 [ wap) i woewian\ (0.5 - <o},
M

= 1.

a>0,08>0,
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where

A= / o o],
M

5= / (a2 + Jul[o]v)
M

and also

&= / (v]v]"% + [u|*[v]u) .
M

N. Zographopoulos in [17] has discussed the existence and uniqueness of the
solution of the (p, ¢)-elliptic quasilinear system (2.1). This type of systems have been
found in different cases in physics. For example to the study of transport of electron
temperature in a confined plasma and also to the study of electromagnetic
phenomena in nonhomogeneous super conductors, you can see |3, 6]. Also for more
details in electrochemistry and nuclear reaction, you can find useful results in [4] or
[5], respectively.

Let (M, g) be an m-dimensional compact Riemannian manifold. The first Dirichlet
eigenvalue of the system (2.1) is defined as

_ 1 a+1 B+1
Moo (M) = f{ [ /vpd —/qu”,
Lp,q( ) u}ll;l;éo ]‘M|u’a+1‘vllg+1dv D M| u| v+ 7 M| Ul v

where

(u,v) € Wy (M) x Wy (M) \ {0}.

As an example the second author has studied the first eigenvalue of the system (2.1)
in [1]. In this paper by inproving methods from Matei [14], we are going to study the
first Dirichlet eigenvalue of the system (2.1).

3. THE FIRST CASE, p,qg <m

In this section we will prove that

Theorem 3.1. Consider M as an m-dimensional compact Riemannian manifold and
also 1 <p,q <m. If \1,, denotes the first eigenvalue of the (p,q)-Laplacian system
(2.1) and p > q, then for arbitrary natural n we get

o Ifp,q>2, then
1 P y:a
Mg (M) < (n+ 127 m% (VE (M, [g])) ™ .
o I[f1<q,p<2, then
Mpg (M) < (n+ 1)729@D i3 (Ve (M, [g])) 7 .

n

o I[f1<qg<2<pthen

Mg (M) < (n+1)2079) 3 (Ve (M, [g])) 7 .

n

Before giving proof for this theorem, first of all, we consider two following lemmas.



4 M. HABIBI VOSTA KOLAEI AND S. AZAMI

Lemma 3.2 (Chebyshev’s inequality [2]|). Consider {a;}", and {b;}}_, as two
decreasing real sequences, then

1 & 1 & 1 &
ﬁ;aibiz (ﬁzzlaz) (5121[%)

Lemma 3.3. Let ¢ : (M,g) — (S", can) be a smooth map which its level sets are
zero measure, then there exist v,0 € G (n) and p > q such that

® Ifp,q=2, then

1.2 1
Apq (M) < (n+1)¥ (“; [ Javtran +2 / \dn\qdv)-

o If1 <p,q<2, then
1 1 1
p M

o I[f1<q<2<np, then
1
g () < 014 070 (2 [ g 258 [ 'd”'qd“> |

where n =60 ¢ and ¢ = 7y o .

Proof. For o, f > 0 there exist v, € G (n) and for 1, = (yo¢), and 1; = (0 0 ¢),
where 1 <7 <n+1 we see
!

1 04 +1 +1
AMpg (M) < v 1= 1841 / |d¢z|pdv +— p /
Jor il | dv a Ju
where 7; and 1; are the decreasing rearrangement of n; and v; respectively, then
. 1 - 1
M ) [ 1l o < 2 i 552 i
M p M

By taking summation from ¢ = 1 to ¢ = n + 1 from both sides we conclude that

n+1 5 n+1 1 1
> (Ma0n) [ pnieta) < 30 (U0 [ i+ S [ ),

=1

s

or
n+1

1 a+1/ o ﬁ+1/
A < 3" [ddi[Pdv + § : dii;
l,pq fM +1 ’w |a+1|,’7 |ﬁ+1d'U P Mi:1| | |

First of all, let p,q > 2, then

n+1 n+1 5 » n+1
ZWI”—Z (ldif*)* < (er) = |dyl?,
=1

and also

n+1 n+1 4 n+1
Slanie =5 (an < (zw) _ i
=1
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Now by Chebyshev’s inequality we get

n+1 n+1

y 1 y
e 1 e SO U U M e
; n+1 ;
1 n+1 n+1
Jy.|ot1 B+1
n+12'%' ) (5 )
n+1 n+1
p(a+1) q(8+1)
) (S )
1 - n+1 1 o Blat) n+1 1 5841
(3.1) = Zn+1(|¢i|) Z?(WU

=1 i=1

Vv

Vv

By Jensen’s inequality in (3.1) we conclude that

n+1 n+1 1 %(O‘Jrl) n+1 1 %(6+1)
J et B+ > 1|2 52
St (S er) (S a)

i=1

|\ Bl [n4l 5(at1) 1\ 56+ [nt 1(8+1)
_ 72 12
B (n—i—l) (ZW ) <n+ 1) (Zlml )
i—1 i=1

_ (n + 1)—%(p(a+1)+q(/3+1)) '

What we have done is dependent on two essentlal issues, first S0 o2 = S0 i =
1 and also we know that the map z — x % for & 5 > 1 is concave. Now under consid-
eration p > q we have

1 1
i (M) < (n+ 1) (M / dppdo+ 211 / |dn|qdv>.
b q M

In the case that 1 < p,q < 2, since

il <1, |mi| <1,

pil at1 -
and also the maps * — x 2 and x — 2 2 are concave, by the similar way

n+1 n+1
1

DN > —— Z [ g
i=1 i

n+1 n+1

zww) (e 2om)

n+1 1 n+1

o+ ) (— > |m|<q+1>(ﬂ+l>)
n—+1 Z n+1 4
=1

T T e e PRt YoIey
= Zn——l—l (1)) Zn——H (I:1?) :

i=1 i=1

v

v
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And also by Jensen’s inequality, it concludes that

n+1 nl Bt(atl) rpq 1 TEH(B+1)
okl B+] S T2 2
;:1 |90:| %7704 = (;Zl nT 1|¢z| ) (;1 T 1|7h| )

1\ Bty /o1 EE (at1)
= (Z W)
i=1

1 TL(B4+1) [ntl TEL(B+1)
9 ( ) (Z W)
1 -
= (n

1) HEH @@ @)

. P g
Since x — z2 and x — z2 are convex, we see

n+1 5 n+1 5 » . n+1
D lddifP = (|ddi]?)* < (n+ 1) 2(Z|dw@|2>
=1 =1

= (n+1)"72 |dy],

and

n+1 n+1 . n+1
SSjanir =55 (ai)F < 0+ Q(deﬁ)
=1
— (n+ 1) e

These together with p > ¢ conclude that
1 1 1
Mg (M) < (4 1) 0600 (ﬂ [ pwpan 222 !dn!qd"’) |
p M 4q M

In the case that 1 < ¢ < 2 < p, since © — 2 is convex, in the similar way

n+1 n+1
1

T e S (T a a
; n+1 ;
1 n+1 5 n+1
) (e o)
n+l n+1
) (e
n+l n+1
1 »(a 1 e
= Zn (19:1%) > H) (Z 1 (I7:1* )WH))7

i=1 1=1

v

v

and again by Jensen’s inequality

n+1
ST P > (4 1) B
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. q .
Furthermore, since x — x2 is convex, we get

n+1 n+1 n+1

n+1
Zrdwz!uZ\dwl\q > (ldvil)* (Zldwz) (n+1)""% |dy|7,
=1

)

and

n+1 n+1 . n+1 % .
Zldmlq > (ldml?)? < (de ) (n+1)'72 |dn|”.
=1

These together imply that

Apg (M) < (n+1)3(7~) (a; 1/ dup|dv +BZ / 'd”'qd”>'

Proof of Theorem 3.1. For p,q > 2, by Lemma 3.3 we saw that

1 +1 +1
Mpg (M) < (n +1)2 (a / |d¢lp+ﬁ—/ |dn|q),
p M q M

/ydwdvg (/ \dwdv)’%
/|dn|qdv< (/ |dn\mdv) |

on the other side, 1 =vyo¢: (M, g) —

and also

(S™, can) is a conformal immersion and since

ooy can — [0 O _ v

)
m m

from [14] we conclude that

/ |d|[Pdv = mEvol (M, (y o ¢)* can)
M

<m3 sup vol (M, (yo¢) can),
v€G(n)
and in the similar way

/ |dn|%dv = m3vol (M, (6 o ¢)* can)
M

q

<m?2 sup vol (M, (60 ¢)" can).
0eG(n)

Now by taking "inf" with respect to ¢ in the above inequality we get
12fa+1 » B+1
Mg (M) < (-4 )37 |5 =mE (V7 (M [g])

*Tm% (Ve (M. [g])™ |.

Since p > ¢, we have

s

1.2 P c
Mpg (M) < (n+1)2" m2 (V.7 (M, [g]))
Also for 1 < p,q < 2, in the similar context we get

3la

Mpg (M) < (n+1)729 m (Ve (M, [g])
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and also for 1 < g < 2 < p we find that

M (M) < (04 DEE md (V5 (0 )
0J

The similar problem was studied before in [11]| for surfaces and also for upper
dimension manifold there are some results in [7| for p-Laplacian operator. Li and
Yau [11], proved that the upper bound for V¢ (M, [g]) just depend on the genus of
M. They actually proved that for orientable surface M (when m = 2) and for n > 2
we have

T(M)+3:|

Ve (M, [g]) < 477[ :

n

and also for non-orientable surface M and n > 4 we get

Ve (0, [g)) < 12e[ A0

n I

where 7 (M) is genus of M and [.] denotes the bracket function.

Remark 3.4. Consider M as a compact manifold and m > p > ¢q. Let A, ,, denotes
the first eigenvalue of the (p, ¢)-Laplacian (2.1), if M is orientable and n > 2, then

e If p> ¢ > 2, then

[N4S)

Mg OF) < (n+ )2 (sm)F [ 225

2
o If 1 <g<p<2, then

AMpg (M) < (n+ 1)—%q(q+1) (87r)g [M] g.

o [f1 <g<2<p,then

2 D M g
Mg (M) < (n-+ D0 gy LD 2]
Also if M is non-orientable and for n > 4,
e if p>¢>2, then
2 p M g
Mpg (M) < (n+ 1)%1’ (247)* [T( 2)—1—3]

o I[f1 <g<p<2, then
ALy (M) < (n+1)720 (247)
o [f1 <qg<2<p,then

Mg (M) < (n+ 1)2079) (247

[NJ4S]
| —]
9
—
=
+
w
[E—
[S4S)
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4. THE SECOND CASE, p,q >m

Let r € [0, 7] be a geodesic distance and € > 0, then the radial function f. : S* — R
is defined as

__4p
fe (7‘) = ¢mlp—m) X[0,Z—e]u[Z+em] T ( ) + X<77€,§+€) (T‘) ’

where Y is denoted as characteristic function. Now let

1 ]_ m—p
R (u,v) := - [a * fe 7 |du|Pdvean
Jomor £ [ulottu]H  dvggy, = P Jsmo
1 m—p
+ prl fe = |dv|qdvcan].
q gm—l

Then
Mg (€)= inf LR (u,0) | (uw,0) € WP < Wo"\ {0} }.

u,v#£0

It seems clear that A, , (€) is a parametrization for the first eigenvalue of the (p, q)-
Laplacian system (2.1).

Theorem 4.1. Consider M as an m-dimensional compact manifold. If A\, , denotes
the first eigenvalue of the (p, q)-Laplacian system (2.1) and p > q > m then

lim sup Ay pq (€) .€m = oo.
e—0

This theorem actually gives us the comparison between Ay , , (€) and Ay, 4 (S™, can).

Proof of Theorem 4.1. Consider the radial functions ., v, : S™ — R as
1
@)= [l Pdoan
1

W0 = [ ) v,

where V stands for vol (S™7!, can). By taking derivative with respect to r we get
y g

au
1/ _2 €
pup = _/ 6 dvcany
m—1

and the similar context holds for v and ¢. By Holder’s inequality we have

1 ou
A R T
V §m—1

p—1 1

1 v Oue v

<1 / 1P / 2 g, )
V Sm—l Sm—l 87“

which concludes that

1 ou 1
4.1 P < — - Pd can < = d epd can-
(4.) e O L

a+l B+1
2 + 2

Since = 1, Hoélder’s inequality implies that

a+1

B+1

P q

/ |u€|a+1|ve\ﬂ“dvms< / |u€|pdvm) ( / |v€|qdvm) ,
Sm Sm Sm

and again by Holder’s inequality we see
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m T m
/ f62 |ﬂ6|a+1|1—}6‘5+1dvcan — V/ f52 |a€|a+1’1—)6|f3+1 sin Tmfldr
Sm 0

a+1

™ m 1 P
== V/ fez (_/ Ue pdvcan)
(g )

B+1

1 e
— / |Ve|Tdvean sin rm_l} dr
V Smfl

a+1

L] )’

B+1

Tq
(/ |v€|qdvc(m) sin rm_l] dr
Sm—l
s
> / (/ |u€]a+1|v5\5+1dvcan) sinr™ tdr
0 sm—1

> / £ ] 0| .
S'm

S

From (4.1), we get

T m—p
/ fE |u [Pdvean = V./ fe 2 |ul|Psinr™ tdr
0

g/ [/ |du.|P dvcan}fm; sinr™ tdr
0 sm—1

m—p
:/ fE 2 |due|pdvcan7
sm

and in the similar way

/ fe 2 |’U ’ dvcan =~ fe ’dve| dvcan
gm

If ST and S™ denote the upper and lower hemispheres centered at zy and —x¢ re-
spectively, then

1 1 m=p 1
Mg (€) > = [a i / fe T UL P dVeqn + —— p+ / f6 |7/| dvcan]
Jor JE T [0 i L P o

2 mln{)‘fp q’ )‘17p q}7

where )\fp , and A7, mean that taking above integrals on upper and lower hemi-

spheres respectlvely Wlthout loss of generality, let
)\LP,CI( ) > )\1+pq< )

which means

1 1 m=p 1
Aipa (€) = —— [ / f62p|ag|pdvm+/3 i / FEE 0l dvan].
D Jsr

Jop 1312415 v

Now consider two functions a, € W'? (M) and ¢, € W (M) as

ac ={ 59 (o)
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and

NE]

«~{5g-a ¢l

also let b, = 4, — a. and d. = v. — c.. Obviously, on [O, %i — 6} and (% — €, %} we have

b = d. = 0 and a, = c. = 0 respectively. From above definitions we see
|Gl = lacl” + b7,
CAREALE S A
|a€|&Jrl <2¢ (’a€’a+1 + ‘bE‘aH) )
]66]6“ < 28 (]06]/5”rl + \d€|'8+1) )

And also from definition of f, (r) and substituting in formulae of A ,, we get

9—(a+p) 1 1
M (02 = [ (0 [t + 2 [l
A p s q sm

+
1 1
+ ot / UL Pdvean + BL/ ]d’e\qdvc(m],
D Jsr q Jsr
where
A = / fe%|ae|a+1|ce’ﬁ+ldvcan +/ |a6‘a+1|d6|5+1dvmn _'_/ ‘b6|a+1|cﬁ|5+1dvcan
s sT s

+ / |b€|a+1|d€|bem+1dvcan-
Sm

+

Now let

so obviously,

1 1
(4.2) Apg (€) > 27FH) [e_%p (a i / laL|Pdvean + &/ |c’6|qdvcan>
S qa Jsr

P Jsy T

1 1
+(“+ /|mm%m+ﬁi—/|¢mmm)]
p St q She

We consider two different cases, on the one hand,

1 1
lim sup [ﬂ/ lal[Pdvean + 6;/ |c’6|qdvmn} > 0,
e—0 p sm q s

then

a+1 +1
)‘LIMI (E) 'E% > 2_(a+5)€_% / |a;|pd'l}can + ﬂ—/ |Cé|qdvcan )
p S q sP

which concludes that

ik

limsup Ay 4 (€) .€m = o0.

e—0

On the other hand,

1 1
lim [a + / lal|Pdvean + B;/ |c’6]qdvcan} =0,
sm q sm

e—0
p + +
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then we choose the sequence €, — 0 in the case that a, + ¢, — a + ¢ where a and ¢
are real constants. Now since

i [ e P e, = Ji / 13 (e, e, |77 — [al** el ) dvens
n—oo

+ (‘a|a+1|c|ﬂ+1) nh_{lc}o /Sm fgdvccm = 07
+

and for p,q > m, {f.,} is uniformly bounded, thus

Em [ f2 v, = 0.

By substituting above formulaes in (4.2) we get

2-(@+h) roy 1 f+1
Ao (€) > [ / B Pdv,y, + = / 4 Qdum}
(@2 5[ [0 = el

9—(a+p) 2 1
= / (a + |bL|P + ]d’\q) sinr™ tdr
[Z. Dsinrm-ldr /3

Bl

—€n

Wl

ol [ b frdr + B [ |dlfedr

> 9—(a+8) (Sin (I ¢ >>M1 p J3 T
= 5 n z :
fg_En Ddr
where
B:/ |ae|a+1|de|6+ldvcan+/ |be|a+1|ce|5+1dvmn
ST g:r_l
+ / 15,10
ST
and

D= |a6|a+1|de|6+1 + |b6|a+1|06|6+1 + |b6|a+1|d6|6+1'

Consider a., € W, ? (—¢,¢) as
m
a, () = a., <:L‘ + 5 (—:n) :

The similar way holds for b, € Wy™* (=€, €,) and @, ,d., € Wy? (=€, €), and also
these functions are even, so

ool [3 (W pdr + ZEL [ Jdlfdr e [y pdy 4 BEL [ fody

5 —€n

J2.,, Ddr N e Dar
abL [ |y Pdr + Z5 [ |d|edr
N fE” Ddr

2 )\1,p,q (_€n7 En)
= 6;p)‘l,p,q (_17 1) )

and
T m—1
)\1,p,q (6) Z 2—(&—1—5)‘6;1) <Sin <§ — 6n)) )\1,p,q (_17 1) )
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which concludes finally

lim sup Ay pq (€) .€m = oo.

e—0
[
For € > 0, let f. € C™(S™) be a radial function suth that f. < f.. Also on
[5— 55+ 5] we get
fe (T) = fe (T) =1,
and
fem—r)=F(r)
Furthermore

vol (Sm, ﬂcan) = / ﬂ%dvcm / f sin 7™ L drdvegn,
Sm
> V.

_r
2
T

2t 1
sinr™ dr
s
5

£
2

> eV[sin <g — e) }m_l,

w\m

where V' = vol (S™, can). If 4. and 7. denote the eigenfunctions for A, , (S”, fecan>,

and @}, u_, 0F, 0 denote the positive and the negative parts of @, and ¥, respectively.

6767

For the p—Laplac1an (1.1) it was proved before in [14] that

me ‘du—i_’ fe dvcan me ’du ‘ fs dvcan
fgm |u2_|pfe dvcan fgm |U' |pf dvcan

Corollary 4.2. Let p > q¢ > m and Ay, denotes the first eigenvalue for the (p,q)-
Laplacian system (2.1) then for \i,, arbitrary large, there exists the Riemannian
metric with volume one on S™ conformal to the standard metric can.

(4.3) Ay (Sm, ﬂcan) =

Proof. By expanding (4.3) on the (p, ¢)-Laplacian system (2.1) we have

M op.g <Sm, ﬁcan) = ! — [a ks / |du+\pfE dvcan

me |ﬁ’+’a+1‘{)+|ﬁ+lfe2 dvcan p
1
2 [ e )
q
| 1
_ _ [0‘+ / 1A T dveen

me |ﬂ;|a+1|@€—|5+1f62 dvcan p

1 ~m=p
+5L/ \do |91, dvm]
q sm

Let ¢t € R such that

Uy = tﬂj +u,_,
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then

. 1 1
Mg (87, Jecan) = — [ / dii[” i dvean
me |a€|a+1|@ |B+1f€2 dvcan p sm

1
el MU
q
1 1
> - [‘” / P f. 7 dvean
me |7:L |a+1|7~} |B+1f62 dVcan p sm

1
eyl MU
q

> /\l,p q ( )
Above inequalities with the Theorem 4.1 and p > q together give us

P

lim sup Ay 4 (Sm, ﬂccm) vol <Sm, ﬁcan) > Vi limsup Ay p g (€) .€m = oc.
e—0

e—0
Now set
he = vol (Sm, fecan)_fn 1.,
then we get
vol (8™, hecan) = 1,
and

limsup Ay p 4 (S™, hecan) = oo.
e—0

O

Remark 4.3. Someone may consider the situation ¢ < m < p, in this case we just
take the radial function f. : S™ — R as

Je(1) = 050 X0 g utgvem) (1) F X(5-cg40) (1),

and then

]_ 1 g—_m
R (u,v) == - [a + f: 2 | dulPdvean,
Jamer 2 |ulot[v]f 1 dve, - P Jsme
]_ a-—_m
+ 5; f: 2 |dv|qdvcan} ,
q gm—1
where

Aipg (€) = inf {Re (u,0) | (u,v) € WEP s Wh\ {o}}.

u,v7#£0

Now by the definition of u, and v, in the Theorem 4.1 and by Holder’s inequality we
see

T = jatl El +1
/ f62 |ue‘a dvcan = / f62 ’UJE'Q dvca”’
sm Sm

g—-—_m g—-m
/ £ |0 P < / £ | duP dven,
Sm Sm

and
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also the same way holds for v and g. These together give us

1 1 g—m
Mg () > 5 [ v

Jom fE Ul OS P dvcan - P

5+1/ = |U’dvm}

> min{\

1pq7)\;pq}

So by the same way as Theorem 4.1 we get

. a4
limsup A 4 (€) .€m = 0.
e—0

It means that the same context as Corollary 4.2 holds in the case ¢ < m < p.

5. THE (p,q)-LAPLACIAN EQUATION, A NEW CHARACTERIZATION
One may consider the (p, ¢)-Laplacian equation as
Apu+ Agu = div ((|VulP 7 + |[Vu|'™?) Vu) ,
for 1 < g < p < oo and also
we Wy (M)NW, 9 (M).
Also it can be written as
(5.1) —Apu — Aju = Mul’?u,

where for arbitrary v € W,* N W%, it is equivalent to

/ \VulP~2VuVvdy + / |Vu|" 2 VuVody
M M

= )\/ lu|P~2uvdv,
M

and \ is called its eigenvalue associated to the eigenvector u. Similar to the previous
one, in this case the first Dirichlet eigenvalue of the (p, ¢)-Laplacian equation (5.1) is
defined as

D : 1 1,
)\lpq( ) i&g{m (/ |VU|de+/ |VU,|qu> |U€WOP(M)HWO(1(M)\{O}}
Theorem 5.1. Consider M as an m-dimensional compact manifold and 1 < q <

p <m. If )\1pq denotes the first eigenvalue of the (p,q)-Laplacian equation (5.1),

then

N (M) < (- D)E [ (V2 (M, [g)) ™+ m (V2 (M, [g])*
Before giving the proof for this theorem we consider the following lemma.

Lemma 5.2. Consider ¢ as same as Lemma 3.5. If \P
of the (p, q)-Laplacian equation (5.1), then

Ao ) < ()8 [ jawpao+ [ jaupean).
where =~y o ¢ and v € G (n).

1pq denotes the first eigenvalue
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Proof. From the definition of AP,/ (M) we see

Mpa (1) < Jar Wilpdv !
thus
2 [y ldi|Pdo + [, [das|2do
1pq < Z M M )

fM |%|de
First, let p > ¢ > 2, then

[SiS]

n+1 n+1

n+1
S lav =3 (ldw) < (Z |d¢i|2> — [do.

=1 =1 =1
Also in the similar way for g we have
n+1

Z |7 < |dw]".

Since 377" [1]> = 1 and the map = — x% is concave we get

n+1 n+1
Z!W> (n+1)'72 (ZW) (n+1)'7

and
)\{qu(M)S(nJrl)g_l[/M|d¢]pdv+/M]dw\qdv]

Now let 1 < ¢ < p < 2, since |1);] < 1 and also |1;]* < [¢;|P and
n+1 n+1

t=vlng = [ Sijufars [ 3 i

we conclude that

n+1 n+1 n+1 g
2Nl =3 (19f)* < (n ) o (DdW) = (n+1)"7% |ayp,
i=1
simﬂarly,
n+1 n+1 . n+1 %
21l =3 (diF)* < - (de) (n+1)""% g,
1=1
which ﬁnally give us
A ) < (o4 005 [ Javprao s [ Javpran]
U
Proof of Theorem 5.1. Consider ¢ : (M, g) — (S™, can) as a conformal immersion.

From Lemma 5.2 there exists v € G ( such that

AP (M) < [ oot [ Javpa).
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By Hoélder’s inequality we have

/|dzp|pdv<(/ |d¢|mdv) :

also the similar context holds for ¢. Since yo ¢ : (M, g) — (S™, can) is a conformal
immersion and
d(yo¢)|®
(Y0 @) can = %97

we have

/M |d (0 @) |Pdv = m2vol (M, (v 0 ¢)* can)

<m? sup vol (M, (yo¢)* can),
YEG(n)

also the similar context holds for q. Therefore, these together and by taking inf
respect to ¢ we find that

AP, (M) < o+ 1)E7 [ (V2 (M, ) +mit (V7 (M, [g])

ile

1,p.q

0

Remark 5.3. It seems clear that under consideration p > ¢, the (p, ¢)-Laplacian
equation (5.1) turns into the known p-Laplacian system (1.1) which was studied
extensively in [14]. So by the similar way of Matei [14] and Theorem 4.1, for an
m-~dimensional compact manifold M and p > ¢ > m we get

hmsup/\lpq( €) .em = o0.
e—0
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