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Abstract

Environmental stochasticity is a key determinant of population viability. Decades of work exploring how environmental stochas-

ticity influences population dynamics have highlighted the ability of some natural populations to limit the negative effects of

environmental stochasticity, one of these strategies being demographic buffering. Whilst various methods exist to quantify

demographic buffering, we still do not know which environment factors and demographic characteristics are most responsible

for the demographic buffering observed in natural populations. Here, we introduce a framework to quantify the relative effects

of three key drivers of demographic buffering: environment components (e.g., temporal autocorrelation and variance), popula-

tion structure, and demographic rates (e.g., progression and fertility). Using Integral Projection Models, we explore how these

drivers impact the demographic buffering abilities of three plant species with different life histories and demonstrate how our

approach successfully characterises a population’s capacity to demographically buffer against environmental stochasticity in a

changing world.
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ABSTRACT (147 out of 150 words) 40 

Environmental stochasticity is a key determinant of population viability. Decades of work 41 

exploring how environmental stochasticity influences population dynamics have highlighted 42 

the ability of some natural populations to limit the negative effects of environmental 43 

stochasticity, one of these strategies being demographic buffering. Whilst various methods 44 

exist to quantify demographic buffering, we still do not know which environment factors and 45 

demographic characteristics are most responsible for the demographic buffering observed in 46 

natural populations. Here, we introduce a framework to quantify the relative effects of three 47 

key drivers of demographic buffering: environment components (e.g., temporal autocorrelation 48 

and variance), population structure, and demographic rates (e.g., progression and fertility). 49 

Using Integral Projection Models, we explore how these drivers impact the demographic 50 

buffering abilities of three plant species with different life histories and demonstrate how our 51 

approach successfully characterises a population’s capacity to demographically buffer against 52 

environmental stochasticity in a changing world. 53 

  54 



INTRODUCTION 55 

Understanding how populations minimise the negative effects of environmental stochasticity 56 

is central to ecology and evolution (Sutherland et al. 2013). A key prediction of life history 57 

theory is that increases in the temporal variance of demographic rates (e.g., rates of progression, 58 

stasis, retrogression and fertility) lead to reductions in a population’s stochastic growth rate 59 

(𝜆𝑠)  (Tuljapurkar 1982, 1989). In extreme cases, this demographic rate variance can lead to 60 

local extinction (May 1973; Saether et al. 1998; Lennartsson & Oostermeijer 2001; Bull et al. 61 

2007; Melbourne & Hastings 2008). Critically, environmental stochasticity, a key driver of 62 

demographic rate variance (Jongejans et al. 2010), is projected to increase due to climate 63 

change (Urban 2015; Bathiany et al. 2018; Di Cecco & Gouhier 2018; Masson-Delmotte et al. 64 

2021). Therefore, understanding the environment drivers and demographic mechanisms 65 

influencing the relationship between environmental stochasticity and population dynamics is 66 

both important and timely.  67 

Three key considerations are needed to relate demographic rate variance to population 68 

dynamics. First, there are limits to the amount of variance that demographic rate can exhibit 69 

without driving a population to local extinction (Arthreya & Karlin 1971; May 1973). Second, 70 

the negative effects of demographic rate variance on population growth are exacerbated when 71 

the environment drivers impact the demographic rate(s) of highest importance (i.e., sensitivity) 72 

to 𝜆𝑠. However, the negative effect of demographic rate variance on 𝜆𝑠 can be reduced (or 73 

increased) when demographic rates covary negatively (or positively) (Tuljapurkar 1982, 1989), 74 

as demographic rates can compensate (amplify) for one another within a timestep. For example, 75 

demographic compensation may occur if instances of low adult survival happen concurrently 76 

with high adult reproduction, or vice versa (Sheth & Angert 2018). Third, environment-vital 77 

rate reaction norms can moderate the relationship between demographic rate variance and 𝜆𝑠 78 

(King & Hadfield 2019; Bruijning et al. 2020). Following Jensen’s inequality (1906), convex 79 



(U-shaped) environment-demographic rate reaction norms result in a positive effect of 80 

demographic rate variance on 𝜆𝑠, whereas concave (∩-shaped) reaction norms lead to a 81 

negative effect (Drake 2005; Koons et al. 2009). These three key considerations regarding the 82 

impact of stochastic environments on population dynamics have produced key predictions in 83 

life history theory (Tuljapurkar et al. 2009; Sæther et al. 2013), conservation biology (Foley 84 

1994; Higgins et al. 2000), and agriculture science (Lande et al. 1997; Mack 2000). However, 85 

these three considerations alone do not allow us to quantify a population’s ability to 86 

accommodate demographic rate variance; demographic buffering does. 87 

Quantifying demographic buffering in natural populations has been a dynamic area of 88 

study in recent decades. The field has moved from regression-based approaches, where the 89 

deterministic elasticities (or sensitivities) of demographic rates with respect to λ are regressed 90 

against the coefficient of variation (or variance) of demographic rates (Pfister 1998; Morris & 91 

Doak 2004; further examples in Hilde et al. 2020), to a derivative-based approach that uses the 92 

summation of stochastic elasticities of variance, ∑ 𝐸𝑎𝑖𝑗

𝜎2
, as a measure of demographic buffering 93 

(Santos et al. 2023; Wang et al. 2023). Despite important insights (e.g., McDonald et al. 2017), 94 

the regression-based approaches have important limitations, such as being confounded by the 95 

life cycle’s complexity, the lack of standardized methods (Hilde et al. 2020), and difficulty in 96 

clear-cut interpretations (see Santos et al. 2023 for further details).  97 

Using the summation of stochastic elasticities of variance, one can explore the 98 

environment drivers and demographic mechanisms behind demographic buffering. This insight 99 

is possible because ∑ 𝐸𝑎𝑖𝑗

𝜎2
  quantifies the proportional contribution of demographic rate 100 

variance to 𝜆𝑠 (Tuljapurkar et al. 2003; Haridas & Tuljapurkar 2005) and, consequently, 101 

directly quantifies degree of demographic buffering. Whilst researchers have previously used 102 

∑ 𝐸𝑎𝑖𝑗

𝜎2
  to quantify demographic buffering (Morris et al. 2008; Dalgleish et al. 2010), we still 103 



do not know how different environment components (i.e., temporal autocorrelation and 104 

variance), population structure (i.e., distribution of individuals in a population according to 105 

states, such as age, stage and/or size), and different demographic rates (i.e., state-specific 106 

transition probabilities or reproductive contributions between time 𝑡 and 𝑡 + 1) impact ∑ 𝐸𝑎𝑖𝑗

𝜎2
 .  107 

Here, we test the effects of the environment components, population structure and 108 

demographic rates on the ability of natural populations to remain demographically buffered. 109 

We use environment-explicit stochastic integral projection models (IPMs) (Easterling et al. 110 

2000; Ellner et al. 2016) for three perennial plant species from the PADRINO database (Levin 111 

et al. 2022) to test two hypotheses. We expect that: (H1) environment autocorrelation and 112 

variance will have negative effects on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 . Specifically, as environments become more 113 

variable and positively autocorrelated, populations will become less buffered as predicted by 114 

Tuljapurkar’s (1982, 1989) small-noise approximation. (H2) Environment autocorrelation and 115 

variance influence ∑ 𝐸𝑎𝑖𝑗

𝜎2
  via different demographic mechanisms. Specifically, we expect that: 116 

(H2a) environment autocorrelation influences ∑ 𝐸𝑎𝑖𝑗

𝜎2
 via its impact on population structure. We 117 

base this prediction on the fact that the impact of environment autocorrelation on population 118 

dynamics can be quantified by the degree to which the sequence of environments shifts the 119 

population from its long-term mean stable state structure (Tuljapurkar & Haridas 2006). 120 

Briefly, the rationale behind this expectation can be simplified by acknowledging that the 121 

commutative property of multiplication that applies to unstructured systems (e.g., 2 × 1 =122 

1 × 2) does not apply to structured systems (e.g., 𝐀 × 𝐁 ≠ 𝐁 × 𝐀, where 𝐀 and 𝐁 are matrices 123 

of size > 1 × 1). In turn, since the structure of the population is encoded into the population 124 

state distributions, we hypothesize that the impact of environment autocorrelation on ∑ 𝐸𝑎𝑖𝑗

𝜎2
  is 125 

strongly mediated by population structure.  Similarly, we expect (H2b) environment variance 126 

to influence ∑ 𝐸𝑎𝑖𝑗

𝜎2
  via the populations’ underlying demographic rates. This prediction also 127 



follows Tuljapurkar’s small-noise approximation (1982, 1989), where the impact of 128 

environment variance can be approximated by the summed product of the variance and 129 

sensitivities of individual demographic rates. 130 

 131 

METHODS 132 

Stochastic integral projection models 133 

To explore the drivers of demographic buffering, we used integral projection models (IPMs). 134 

IPMs are discrete time population models (i.e., they project populations are projected across 135 

well-defined intervals of time from 𝑡 to 𝑡 + 1) that are structured with respect to a continuous 136 

variable (e.g., height, length, mass; Easterling et al. 2000; Ellner et al. 2016). To investigate 137 

the environment drivers and demographic mechanisms that impact degrees of demographic 138 

buffering in natural populations, we used  environment explicit, parameter-stochastic IPMs for 139 

the Berberis thunbergii (Japanese barberry; Merow et al. 2017), Calathea crotalifera 140 

(rattlesnake plant; Westerband & Horvitz 2017) and Heliconia tortuosa (red twist Heliconia; 141 

Westerband & Horvitz 2017), extracted from the PADRINO IPM database (Levin et al. 2022). 142 

The chosen model structure allows us to individually influence regression parameters that 143 

underpin the IPM subkernels (i.e., the survival P- and fertility F-subkernels) based on the 144 

environment conditions to test our hypotheses.  145 

We chose these three published IPMs to compare the roles of environment parameters 146 

and 𝜆𝑠 on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 to gain some generality. The B. thunbergii IPM uses five environment 147 

parameters to build its kernels: mean temperature during warmest month, mean May 148 

precipitation, photosynthetically active radiation (PAR), soil nitrogen, and soil pH. The C. 149 

crotalifera and H. tortuosa IPMs use two environment parameters to define their kernels: 150 

canopy openness and photosynthetic rate. The kernel structure and parameters used in vital rate 151 



regressions for B. thunbergii, C. crotalifera and H. tortuosa are detailed in supplementary 152 

tables 1, 2 and 3, respectively. Furthermore, the models inhabit different domains of 𝜆𝑠. The 153 

models of B. thunbergii and H. torutosa have values of 𝜆𝑠 > 1 (B. thunbergii: 𝜆𝑠 = 1.378; H. 154 

tortuosa: 𝜆𝑠 = 1.367), implying long-term population growth, C. crotalifera has a 𝜆𝑠 < 1 (𝜆𝑠 155 

= 0.976), describing long-term population decline (Figure S1). Since C. crotalifera and H. 156 

torutosa have the same environment parameters and B. thunbergii and H. tortuosa have similar 157 

𝜆𝑠values, by comparing demographic buffering across these species, we aim to examine 158 

possible impacts of environment parameters and 𝜆𝑠on ∑ 𝐸𝑎𝑖𝑗

𝜎2
  across the autocorrelation – 159 

proportional variance parameter space. 160 

Simulation methodology 161 

To explore the roles of (H1) environment drivers as well as (H2a) population structure and 162 

(H2b) demographic rates on demographic buffering, we simulated IPMs across the 163 

environment autocorrelation – variance parameter space. In this simulation, all combinations 164 

of stochastic environment parameters, with autocorrelation ranging from -0.8 to 0.8 and 165 

proportional variance ranging from 0.9 (10% less variance in the environment than the IPM in 166 

PADRINO) to 1.1 (10% more variance in the environment that the IPM in PADRINO) were 167 

generated for all environment parameters. B. thunbergii had five environment parameters, 168 

whilst C. crotalifera and H. tortuosa had two environment parameters (Fig. 1a,b). We used 169 

these sequences of environment parameters to construct the time series of 1,000 IPM kernels 170 

from which we then estimated 𝜆𝑠 (eq. 1). Specifically, to calculate 𝜆𝑠: (1) a population of 171 

random structure was initialized, whereby the proportion of individuals of a given size class 172 

was generated from a uniform distribution ranging between the upper and lower limits of the 173 

IPMs (see Tables S1-3), (2) the population was then multiplied through the series of 1,000 174 



parameter-stochastic IPM kernels, and (3) population sizes from timestep 200 to 1,000 were 175 

used to calculate 𝜆𝑠 following the equation: 176 

(Eq. 1)   𝜆𝑠 = exp (𝐸 [ln (
𝑁𝑡+1

𝑁𝑡
)]).  177 

We omitted the first 200 projections from our calculation of 𝜆𝑠 to discard transient dynamics 178 

effects on short-term population size distributions (McDonald et al. 2016). 179 

Generating environment time series 180 

To explore the environment drivers of demographic buffering (H1), we manipulated the 181 

temporal autocorrelation and variance of environmental variables in our environmentally 182 

explicit stochastic IPMs. Whilst the effects of variance of demographic rates on population 183 

dynamics are commonly researched in population ecology (e.g., Jackson et al. 2022; Le Coeur 184 

et al. 2022), temporal autocorrelation is much less explored despite temporal autocorrelation 185 

having broad impacts on population dynamics (Petchey et al. 1997; Petchey 2000; Smallegange 186 

et al. 2014; Evers et al. 2023), life histories (Paniw et al. 2018; Vinton et al. 2023) and 187 

evolution (Wieczynski et al. 2018; Vinton et al. 2022). To fill this gap in knowledge, we used 188 

a first-order autoregressive function to generate the sequence of environment values used to 189 

build the series of IPM kernels. Here, 𝜑 represents the degree of autocorrelation across time 190 

steps whilst, 𝜖𝑡+1 represents white noise (i.e., random draws from a normal distribution, 191 

𝛜~𝑁(0,1)). 192 

(Eq. 2)   𝑋𝑡+1 = 𝜑𝑋𝑡 + 𝜖𝑡+1 193 

Subsequently, to coerce the autocorrelated series (𝐗) to realistic values for the vital rate 194 

regressions that build the IPMs (shown in Tables S1-3), the final sequence of environment 195 

values was to a desired mean (𝜇) and variance (𝜎2) of the simulated environment: 196 



(Eq. 3)   environment =  [
√𝜎2[𝐗−mean(𝐗)]

√var(𝐗)
] + 𝜇 197 

As our objective is not to evaluate the effect of shifts in mean environment values on 198 

demographic buffering but rather to examine the impacts of variance and autocorrelation, 𝜇 199 

values were kept constant across simulations, whilst 𝜎2 values varied across simulations. 200 

Since the environment variables across the three species have different variances (𝜎𝑖𝑛𝑖𝑡.
2 ), to 201 

standardize the increase/decrease in environment variance across parameters, we manipulated 202 

variances proportional to their variances coded in the PADRINO database (𝜎𝑝𝑟𝑜𝑝.
2 ) (Levin et 203 

al. 2022).  204 

(Eq. 4)   𝜎2 =  𝜎𝑖𝑛𝑖𝑡.
2 𝜎𝑝𝑟𝑜𝑝.

2  205 

Analysing the effects of environment autocorrelation and variance  206 

To explore the effects of environmental components on each species’ ability to remain 207 

demographically buffered (H1,2), we constructed a suite of linear models using autocorrelation 208 

and proportional variance as predictors whilst also including an autocorrelation × proportional 209 

variance as an interaction term. Furthermore, since the impact of autocorrelation and 210 

proportional variance on demographic buffering may be nonlinear, we also constructed models 211 

using the quadratic and cubic forms of proportional variance and autocorrelation as predictors. 212 

To select the most appropriate model to describe the data, we used model comparison based on 213 

AIC (see supplementary materials p. 4 for the full analysis pipeline and Tables S4-12 for full 214 

AIC break down). After selecting the most parsimonious model, we calculated the proportion 215 

of variance in ∑ 𝐸𝑎𝑖𝑗

𝜎2
  that can be explained by the summed contributions of autocorrelation, 216 

proportional variance, autocorrelation × proportional variance and residuals (Figure 1c). 217 

 218 



Perturbation analyses to quantify ∑ 𝐸𝑎𝑖𝑗

𝜎2
 219 

To quantify the degree of demographic buffering across our simulations (testing H1,2), we 220 

calculated the summation of stochastic elasticities of variance of demographic rates with 221 

respect to 𝜆𝑠. We estimated this variable, ∑ 𝐸𝑎𝑖𝑗

𝜎2
 , numerically. Whilst the K-kernel of an IPM 222 

is defined as a continuous map that projects a continuously structured population across time 223 

steps, in practice we discretise the kernel into a matrix notated as A (Easterling et al. 2000; 224 

Ellner et al. 2016). Since A is composed of individual matrix elements (𝑎𝑖𝑗) and our stochastic 225 

environment generates a temporal sequence of A matrices, we can quantify the temporal 226 

variance of each 𝑎𝑖𝑗 element in matrix A. In turn, we numerically calculate ∑ 𝐸𝑎𝑖𝑗

𝜎2
 by perturbing 227 

the temporal variance of each matrix element (𝑎𝑖𝑗) from our IPMs individually by 0.00001 228 

proportionate (elasticity) to the unperturbed temporal variance of that matrix element. After 229 

perturbation of the matrix element, we calculated a perturbed stochastic population growth rate 230 

(𝜆𝑠

∗𝑎𝑖𝑗). The summation of these weighted differences in 𝜆𝑠  and 𝜆𝑠

∗𝑎𝑖𝑗
yields ∑ 𝐸𝑎𝑖𝑗

𝜎2
 .  231 

(Eq. 5)   ∑ 𝐸𝑎𝑖𝑗

𝜎2
 = ∑ [

var(𝑎𝑖𝑗)

𝜆𝑠
∗

𝜆𝑠

∗𝑎𝑖𝑗
−𝜆𝑠

0.00001∗var(𝑎𝑖𝑗)
] 232 

To calculate the impact of demographic rates on demographic buffering (H2b), we perturbed 233 

the subkernels that describe survival-dependent changes in size (P) and fertility (F) using the 234 

same method we used for the K-kernels. After calculating the subkernel-level elasticities of 235 

variance (Griffith 2017), we subtracted the subkernel summed elasticities of demographic rates 236 

to calculate their relative contributions: P – F contribution. Positive (negative) values of P – F 237 

contribution indicate relative variance in rates of survival-dependent changes in size are more 238 

(less) impactful on 𝜆𝑠 than relative variance in rates of fertility. 239 

Quantifying the impact of population structure on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 240 



To analyse how population structure influences demographic buffering (H2a), we used two 241 

numerical approaches. Whilst methods exist to analytically measure the impact of population 242 

structure on asymptotic properties of population dynamics (Tuljapurkar & Lee 1997), currently 243 

there are no analytical approaches to quantify the degree to which multiple environment 244 

components influence ∑ 𝐸𝑎𝑖𝑗

𝜎2
 via population structure. In turn, we use two measures of 245 

population structure using a regression-based approach and an estimate-based approach. 246 

These approaches numerically link the impact of environment autocorrelation and variance on 247 

∑ 𝐸𝑎𝑖𝑗

𝜎2
via population structure. Importantly, using these two approaches to investigate H2a 248 

allows us to cross-validate outputs (i.e., the hypothesized result of environment autocorrelation 249 

impacting ∑ 𝐸𝑎𝑖𝑗

𝜎2
via shifts in population structure). 250 

The regression-based approach involved examining deviances from stationary 251 

distributions. To do so, we regressed the scaled values – relative to the average size distribution 252 

– of the expected mean buffering value of a randomly selected individual in the population 253 

(∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD) against scaled values of ∑ 𝐸𝑎𝑖𝑗

𝜎2
.  Deviances of ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD~ ∑ 𝐸𝑎𝑖𝑗

𝜎2
 from a 1-to-1 254 

line (i.e., the existence of residuals from this regression) indicates shifts in population structure 255 

may be influencing ∑ 𝐸𝑎𝑖𝑗

𝜎2
. Subsequently, regressing these residuals against the environment 256 

components allows us to implicate an environment component – hypothesized to be 257 

environment autocorrelation [H2a] – as driving the impact of population structure on ∑ 𝐸𝑎𝑖𝑗

𝜎2
. 258 

To perform this approach, we weighted ∑ 𝐸𝑎𝑖𝑗

𝜎2
  by the average size distribution (i.e., the average 259 

size distribution [ASD] of individuals in the population across the simulation) to calculate 260 

∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD. To determine the population’s average size distribution for a given environment, 261 

we iterated 1,000 randomly generated size distributions through the series of stochastic kernels 262 

and retained the mean of all size distributions across time steps 200 to 1,000 as an estimation 263 



of the average size distribution. Burning in the first 200 timesteps mitigates the impact of 264 

transients on the ASD. After calculating ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD, the emergent distribution was z-265 

transformed (mean = 0, standard deviation = 1) and regressed against z-transformed values of 266 

∑ 𝐸𝑎𝑖𝑗

𝜎2
  not informed by the average size distribution. Residuals from this regression represent 267 

a possible impact of population structure on ∑ 𝐸𝑎𝑖𝑗

𝜎2
. To further investigate the impact of 268 

environment autocorrelation and variance on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 via said residuals, we modelled the 269 

residuals of the ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD ~ ∑ 𝐸𝑎𝑖𝑗

𝜎2
 regression in response to environment autocorrelation and 270 

variance. 271 

The estimate-based approach involved calculating the mean of the distribution of 272 

demographic buffering across a life history, termed mean buffered size. Calculating mean 273 

buffered size allows us to explore if the degree of buffering across a life history is shifted 274 

towards smaller or larger sizes across the environment autocorrelation – variance parameter 275 

space. To calculate this mean buffered size, we calculated the relative size (i.e., 0 = smallest 276 

possible size (α) and 1 = maximum possible size (ω)) that corresponds to the centre of the 277 

distribution of ∑ 𝐸𝑎𝑖𝑗

𝜎2
 across the domain of sizes (Eq. 6). This calculation mirrors the method 278 

of calculating generation time as the mean age of reproductive individuals in the population 279 

(Ebert 1999, pg. 14). 280 

(Eq. 6)   𝑚𝑒𝑎𝑛 𝑏𝑢𝑓𝑓𝑒𝑟𝑒𝑑 𝑠𝑖𝑧𝑒 =
1

𝜔
[

∑ [𝑗 ∑ 𝐸𝑎𝑖𝑗
𝜎2

𝑖 ]𝑗  

∑ 𝐸𝑎𝑖𝑗
𝜎2

 
− 𝛼] 281 

After calculating the mean buffered size for each species across the environment 282 

autocorrelation – variance parameter space, we regressed mean buffered size against the 283 

environment components to test our hypothesis that environment autocorrelation influences 284 

∑ 𝐸𝑎𝑖𝑗

𝜎2
 via shifts in population structure (H2a). 285 



 286 

RESULTS 287 

Testing H1: Environment variance is the primary driver of demographic buffering 288 

Here we tested the hypothesis that environment autocorrelation and variance have negative 289 

effects on demographic buffering as quantified via ∑ 𝐸𝑎𝑖𝑗

𝜎2
 (H1). To do so, we ran simulations 290 

of the Berberis thunbergii, Calathea crotalifera and Heliconia tortuosa IPMs across the 291 

domain of autocorrelation and proportional variance values and calculated ∑ 𝐸𝑎𝑖𝑗

𝜎2
. We found 292 

environment variance to be the primary driver of variance in ∑ 𝐸𝑎𝑖𝑗

𝜎2
  (Figure 2). The summed 293 

contributions of proportional variance accounted for 94% of the variance of ∑ 𝐸𝑎𝑖𝑗

𝜎2
 in B. 294 

thunbergii (R2 = 0.99, Table S4) (Figure 2a), 85% of the variance of ∑ 𝐸𝑎𝑖𝑗

𝜎2
 in  C. crotalifera 295 

(R2 = 0.89, Table S5 (Figure 2b) and 83% of the variance of ∑ 𝐸𝑎𝑖𝑗

𝜎2
 in H. tortuosa (R2 = 0.89, 296 

Table S6) (Figure 2c). Supporting our hypothesis, environment variance had a negative effect 297 

on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 (see models for B. thunbergii, C. crotalifera, and H. tortuosa in Tables S4-6). 298 

However, we did not find evidence for a negative effect of environment autocorrelation on 299 

∑ 𝐸𝑎𝑖𝑗

𝜎2
 . Instead, all species were best modelled when the quadratic and cubic forms of 300 

autocorrelation were used as predictors of ∑ 𝐸𝑎𝑖𝑗

𝜎2
without the inclusion of a linear effect of 301 

autocorrelation. This finding indicates the impact of autocorrelation on ∑ 𝐸𝑎𝑖𝑗

𝜎2
  is non-linear 302 

across the environment autocorrelation and variance parameter space. 303 

Testing H2a: Temporal autocorrelation influences demographic buffering via population 304 

structure 305 

We used two approaches to test the hypothesis that temporal autocorrelation influences 306 

demographic buffering via shifts in population structure (H2a). First, we used a measure of 307 



demographic buffering that accounts for population structure (∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD) and regressed that 308 

against our normal measure of demographic buffering (∑ 𝐸𝑎𝑖𝑗

𝜎2
). Second, we measured the shifts 309 

in the distribution of buffering across the life history in response to environment components. 310 

In our first approach, we regressed scaled values of ∑ 𝐸𝑎𝑖𝑗

𝜎2
  across all simulations 311 

against their respective ∑ 𝐸𝑎𝑖𝑗

𝜎2
  normalized by simulation specific stable size distribution 312 

(∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD). Since both values are scaled to mean = 0 with standard deviation = 1, any 313 

deviation of ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD~ ∑ 𝐸𝑎𝑖𝑗

𝜎2
   from the 1-to-1 regression line indicates temporal shifts in 314 

population structure may impact demographic buffering. Interestingly, we found heterogeneity 315 

in the degree to which ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD differed from ∑ 𝐸𝑎𝑖𝑗

𝜎2
 across species. Whilst C. crotalifera 316 

reported a 1-to-1 regression line between ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD and ∑ 𝐸𝑎𝑖𝑗

𝜎2
 (R2 = 1, Figure 3d), B. 317 

thunbergii and H. tortuosa had residuals (B. thunbergii: R2 = 0.9977, Fig. 3a; H. tortuosa: R2 318 

= 0.9995, Figure 3g). These residuals indicate that population structure may influence ∑ 𝐸𝑎𝑖𝑗

𝜎2
, 319 

specifically in B. thunbergii and H. tortuosa.  320 

To determine if environment autocorrelation is driving these residuals, we modelled the 321 

residuals of the ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD~ ∑ 𝐸𝑎𝑖𝑗

𝜎2
 regression against environment autocorrelation and 322 

variance. Supporting our hypothesis (H2a), we found the residuals of the ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD~ ∑ 𝐸𝑎𝑖𝑗

𝜎2
 323 

regression are mostly explained by environment autocorrelation (Figures 3b,e,h). In B. 324 

thunbergii and H. tortuosa (the species with the largest residuals from the ∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD~ ∑ 𝐸𝑎𝑖𝑗

𝜎2
 325 

regression), environment autocorrelation accounted for 48% (R2 = 0.56, Figure 3b, Table S7) 326 

and 46% (R2 = 0.84, Figure 3h, Table S9) of the variance in residuals respectively; whilst 327 

environment variance only accounted for 2% of the variance in residuals in both species. 328 

Regarding C. crotalifera, the largest contributor to variance in residuals was unexplained 329 



residual variance (56%, R2 = 0.47, Figure 3e, Table S8), followed by environment 330 

autocorrelation (28%) and variance (16%). 331 

In our second approach, we analysed the impact of environment autocorrelation and 332 

variance on the distribution of demographic buffering across a life cycle. In turn, we calculated 333 

the centre of the distribution of demographic buffering across a life history: mean buffered size. 334 

Echoing the findings from the first line of enquiry, mean buffered size was best explained by 335 

changes in environment autocorrelation – especially in B. thunbergii and H. tortuosa. 336 

Specifically, in B. thunbergii, 73% of the variance in mean buffered size was attributed to 337 

environment autocorrelation whilst 17% was attributed to environment variance (R2 = 0.91, 338 

Figure 3c, Table S10). Additionally, in H. tortuosa, 91% of the variance in mean buffered size 339 

was attributed to environment autocorrelation with only 0.1% being attributed to changes in 340 

environment variance (R2 = 0.97, Figure 3i, Table S12). And finally, just as in the first line of 341 

enquiry, ∑ 𝐸𝑎𝑖𝑗

𝜎2
 in C. crotalifera is less exposed to impacts of shifts in population structure as 342 

the distribution of mean buffered size across the environment autocorrelation – variance 343 

parameter space was mostly explained by residual variance (78%) rather than environment 344 

autocorrelation (17%) or environment variance (5%) (R2 = 0.26, Figure 3f, Table S11). 345 

 346 

Testing H2b: Demographic buffering is most sensitive to environment variance’s impact on 347 

rates of progression 348 

To test the hypothesis that environment variance impacts demographic buffering through vital 349 

rates (H2b), we ran the same perturbation analysis used to calculate ∑ 𝐸𝑎𝑖𝑗

𝜎2
  at the level of the 350 

sub-kernels: P-subkernel (survival-dependent changes in size) and the F-subkernel (fertility). 351 

By taking the difference of the subkernel elasticities of variance (i.e., P – F contribution), we 352 

investigated (1) the role of underlying rates on demographic buffering and (2) the 353 



environmental components that influence the P – F contribution across the environment 354 

autocorrelation – variance parameter space. 355 

 First, we determined if the P – F contribution is a sufficient predictor of ∑ 𝐸𝑎𝑖𝑗

𝜎2
. The P 356 

– F contribution was highly predictive of ∑ 𝐸𝑎𝑖𝑗

𝜎2
 across all species (Figure 4a). B. thunbergii 357 

had a negative relationship between P – F contribution and ∑ 𝐸𝑎𝑖𝑗

𝜎2
 (r(223) = -0.968, p<0.001), 358 

whilst C. crotalifera and H. tortuosa had positive relationships (C. crotalifera: r(223) = 0.999, 359 

p<0.001; H. tortuosa: r(223) = 0.983, p<0.001). These results indicate lower degrees of 360 

demographic buffering are associated with a greater impact of variance in rates of progression 361 

(vs. fertility) in B. thunbergii, but the opposite, a greater impact of variance in fertility (vs. 362 

progression) in C. crotalifera and H. tortuosa. 363 

 To test if variance in P – F contribution is most explained by environment variance 364 

rather than autocorrelation (H2b), we regressed P – F contribution against the environment 365 

components. Across the three species, the P – F contribution was mostly explained by 366 

differences in degrees of environment variance rather than autocorrelation across the 367 

environment autocorrelation – variance parameter space (Figures 4b-d). Specifically, 368 

environment variance explained 80%, 85% and 86% of the variance of P – F contribution in 369 

B. thunbergii (R2 = 0.99, Figure 4b, Table S13), C. crotalifera (R2 = 0.89, Figure 4c, Table 370 

S14) and H. tortuosa (R2 = 0.89, Figure 4d, Table S15), respectively. However, of the 371 

remaining variance, environment autocorrelation explained 17%, 3% and 2% of the variance 372 

of P – F contribution, respectively. 373 

 374 

DISCUSSION 375 



Environment drivers and demographic mechanisms are key to quantify and predict a 376 

population’s capacity for demographic buffering. Using three stochastic IPMs from the 377 

PADRINO database (Levin et al. 2022), we obtain partial support for the hypothesis that 378 

environment autocorrelation and variance negatively impact a population’s capacity to remain 379 

demographically buffered (H1). Interestingly, whilst environment variance negatively affects 380 

demographic buffering, there is a nonlinear effect of temporal autocorrelation on demographic 381 

buffering. Furthermore, even though environment autocorrelation and variance combine to 382 

make the environment time series, we show that their effects on demographic buffering are 383 

orthogonal dimensions of environmental stochasticity. Indeed, the effect of temporal 384 

autocorrelation on demographic buffering (∑ 𝐸𝑎𝑖𝑗

𝜎2
) is mediated by population structure (H2a), 385 

whilst the effect of environment variance on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 is mediated by underlying demographic 386 

rates (H2b). Specifically, the influence of environment variance on rates of progression vs. 387 

fertility is the greatest driver of differences in ∑ 𝐸𝑎𝑖𝑗

𝜎2
 across variable environments in the three 388 

examined species. This finding builds on multiple lines of evidence showing how different life 389 

histories can persist in variable environments via the differential variance of progression vs. 390 

fertility rates (Gaillard et al. 1998; Pfister 1998). 391 

 Identifying the mechanisms that underpin the ability of natural populations to buffer 392 

against environmental stochasticity offers a powerful framework to explore a population’s 393 

vulnerability to climate change. Current climatic forecasts predict environmental stochasticity 394 

to increase with global climate change (Masson-Delmotte et al. 2021). For example, periods of 395 

extreme variation in temperature and precipitation are expected to increase in the tropics and 396 

sub-tropics which host the highest biodiversity (temperature: Bathiany et al. 2018; 397 

precipitation: Trenberth 2011). Furthermore, extreme weather events are expected to become 398 

more common, leading to increased autocorrelation (e.g., tropical cyclones: Knutson et al. 399 



2010; fire frequency: Halofsky et al. 2020). However, not all environmental components affect 400 

populations the same way (Hoffmann & Bridle 2022; Vinton et al. 2022, 2023). The shape of 401 

demographic rates across a life history varies widely across the tree of life (Jones et al. 2014; 402 

Salguero-Gómez et al. 2017; Paniw et al. 2018; Healy et al. 2019; Varas-Enriquez et al. 2022). 403 

Therefore, predicting the susceptibility of populations to environmental stochasticity, without 404 

a regard to the mechanism, overlooks key heterogeneity in the demographic processes 405 

necessary for accurate predictions. Our framework provides a promising avenue to incorporate 406 

this heterogeneity for informed analyses of the role of environmental stochasticity in a 407 

population’s demographic buffering capacity.  408 

Our results highlight an interesting, but often overlooked, role of population structure 409 

in demographic buffering. Whilst we find environment autocorrelation to primarily impact 410 

demographic buffering via shifts in population structure, there is also species-level 411 

heterogeneity in the strength and direction by which environment autocorrelation shifts 412 

population structure. Furthermore, our results indicate portions of the heterogeneity in ∑ 𝐸𝑎𝑖𝑗

𝜎2
 413 

are explained by the interaction between environment autocorrelation and variance. One likely 414 

source of this heterogeneity is transient dynamics (i.e., short-term, progressively weakening 415 

realizations of non-asymptotic lambda values resulting from a population not being at its stable-416 

stage distribution (Stott et al. 2011)). Whilst transient dynamics represent a suite of different 417 

stereotyped population dynamics (Capdevila et al. 2020), only reactivity (the degree to which 418 

a population not at its stable-stage distribution increases/decreases relative to that same 419 

population projected from its stable-stage distribution (Neubert & Caswell 1997)) has been 420 

linked to stochastic demography (McDonald et al. 2016). However, the link between reactivity, 421 

along with other transient dynamics, and demographic buffering remains unknown. Future 422 

work analysing which transient dynamics are increasing and decreasing levels of demographic 423 

buffering will finally integrate the analysis of transient dynamics with stochastic demography. 424 



Historically, studies of life histories in stochastic environments have followed two 425 

branches: modelling and dimension reduction. Modelling life histories in stochastic 426 

environments, whereby analytic or numeric methods are used for demographic inference in 427 

individual populations, has progressively put to rest some key problems within life history 428 

theory (iteroparity: Orzack & Tuljapurkar 1989; Tuljapurkar et al. 2009; diapause: Tuljapurkar 429 

& Istock 1993; migration: Wiener & Tuljapurkar 1994; biennialism: Klinkhammer & de Jong 430 

1983; Roerdink 1988, 1989; homeostasis: Orzack 1985; lability: Koons et al. 2009; Jongejans 431 

et al. 2010; Barraquand & Yoccoz 2013; summarized in Caswell (2001, pg. 440)). However, 432 

one of the limitations of a modelling approach is losing the realism captured within constraints, 433 

phylogenetic history or selection gradients that drive variance patterns in demographic rates.  434 

From the empirical side, researchers have used dimension reduction techniques to 435 

unmask the patterns life histories exhibit in variable environments. Dimension reduction 436 

techniques, such as phylogenetically controlled principal component analyses (Revell 2012), 437 

are especially useful as a life history is not a value nor an object; a life history strategy is an 438 

abstract concept that researchers probe with life history traits – such as: longevity, age at 439 

maturity, average body size, etc. To capture the signal of an individual life history strategy 440 

through the dimensionality, reducing the multidimensionality of life history metrics to its most 441 

important axes of variance (i.e., principal components) has led to key discoveries (two-axes of 442 

life history variance: Salguero-Gómez et al. 2017; Healy et al. 2019). Furthermore, this 443 

approach has been used to model life histories in stochastic environments (Paniw et al. 2018; 444 

Romeijn & Smallegange 2022). However, this approach is limited to modelling only one 445 

component of a variable environment (e.g., environment autocorrelation or variance). This 446 

limitation is further emphasized by our results showing non-linearities between the effects of 447 

environmental components on ∑ 𝐸𝑎𝑖𝑗

𝜎2
, thereby illustrating that the impact of an environment 448 

component on demographic process is context dependent. 449 



Using our framework, researchers can stitch the modelling and dimension reduction 450 

approaches together. Our framework can be applied to any environmentally explicit structured 451 

population models: from physiologically structured population models (de Roos 1997) to 452 

matrix population models (Caswell 2001) to integral projection models (Easterling et al. 2000; 453 

Ellner et al. 2016), to dynamic energy budget models (Nisbet et al. 2000; Smallegange et al. 454 

2017). By using open-access data (COMPADRE: Salguero-Gómez et al. 2015; COMADRE: 455 

Salguero-Gómez et al. 2016; PADRINO: Levin et al. 2022; AmP: Marques et al. 2018), 456 

researchers can explore the combined impact of autocorrelation and variance on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 by 457 

interfacing the time series of a structured population models with stochastic matrices (as in 458 

Paniw et al. 2018). Once the landscape of ∑ 𝐸𝑎𝑖𝑗

𝜎2
 is mapped across environment autocorrelation 459 

and variance, the relative contributions of constraints, phylogeny and species-specific effects 460 

on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 will be realized. This combined approach of modelling and dimension reduction 461 

offers generalization in a previously exception driven area of life history theory. 462 

 In conclusion, structure matters. Since Leslie (1945) and Lefkovitch (1965), 463 

demographers have explored how relatively simple structured population models can be used 464 

for biological inference. From transient dynamics (Hastings 2001; Ezard et al. 2010; Capdevila 465 

et al. 2020, 2022), to structured Lotka-Volterra models (de Roos et al. 1990; de Roos 2021) to 466 

stability analysis (Cushing et al. 2003), researchers have generated a rich body of theory and 467 

evidence for the impact of population structure on demographic inferences. However, the 468 

impact of environment structure, in the form of individual climate drivers (e.g., temporal 469 

autocorrelation and variance), and their corresponding demographic mechanisms that mediate 470 

their effects are uncoupled. We argue they should be stitched together. Our framework 471 

exploring demographic buffering across the environment autocorrelation – variance parameter 472 



space joins a recent push stitching the impacts of climate drivers (e.g., Vinton et al. 2022) with 473 

their respective demographic mechanisms (e.g., Le Coeur et al. 2022). 474 
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FIGURES 719 

 720 

Figure 1. An overview of the simulation and analysis structure implemented to examine the 721 

impacts of climate drivers on natural populations. In our simulations, we explored how a 722 

population’s measure of demographic buffering changes over the parameter space of possible 723 

environment autocorrelation and variance values. (a) This space is visualized here across a 724 

2D surface with environment autocorrelation on the x-axis and proportional variance on the 725 

y-axis. Environment variance is noted as proportional variance which is defined as the 726 

relative increase (>1) or decrease (<1) in the variance of a climate driver is made relative to 727 

the climate driver’s variance value stored in the PADRINO database. The middle of this 728 

landscape (i.e., autocorrelation = 0 and proportional variance = 1) represents the population 729 

model stored in the PADRINO database. (b) The impact of environment autocorrelation and 730 

variance on a response variable (e.g., degree of demographic buffering or a measure of 731 

population structure) is shown projected as a third dimension across this landscape. Across 732 

this projection, values lower than those reported in the original PADRINO IPM model are 733 

coloured purple, values close to the PADRINO model are coloured white, and values greater 734 

than the PADRINO model are coloured green. (c) The most parsimonious model that predicts 735 

the response variable as a function of environment autocorrelation and proportional variance 736 



was retained to calculate the summed linear and non-linear contribution of each predictor and 737 

the residuals towards the variance in the response variable. 738 
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 740 

 741 

 742 

Figure 2. Environment variance (𝜎2) is the primary driver of demographic buffering. Across 743 

Berberis thunbergii (a), Calathea crotalifera (b) and Heliconia tortuosa (c), environment 744 

variance (blue in pie-chart) explains the majority of variance in ∑ 𝐸𝑎𝑖𝑗

𝜎2
. Populations of all 745 

three species become relatively less buffered (lower values of ∑ 𝐸𝑎𝑖𝑗

𝜎2
, in purple) as 746 

proportional variance of environment components increase, whilst populations become 747 

relatively more buffered (higher values of ∑ 𝐸𝑎𝑖𝑗

𝜎2
, in green) as environment variance 748 

decreases. This strong impact of proportional variance of environment components is 749 

summarized in the pie charts detailing the proportion of variance in ∑ 𝐸𝑎𝑖𝑗

𝜎2
 that can be explain 750 

by the environment components: environment autocorrelation in orange, environment 751 

variance in blue, environment autocorrelation × variance interaction in grey (so small here it 752 

is not visible), and unexplained residuals in white. Since the pie charts are predominantly 753 

blue across all three species, variance in environment components is the primary driver of 754 

∑ 𝐸𝑎𝑖𝑗

𝜎2
 across the environment autocorrelation – variance parameter space. 755 



 756 

Figure 3. Environment autocorrelation can influence demographic buffering (∑ 𝐸𝑎𝑖𝑗

𝜎2
) via its 757 

impact on population structure. In addition, the degree to which environmental 758 

autocorrelation impacts ∑ 𝐸𝑎𝑖𝑗

𝜎2
 across Berberis thunbergii (a-c), Calathea crotalifera (d-f) and 759 

Heliconia tortuosa (g-i) is species-specific.  The first column (a, d, g) shows the correlation 760 

between ∑ 𝐸𝑎𝑖𝑗

𝜎2
 and demographic buffering weighted by the average stage distribution 761 

(∑ 𝐸𝑎𝑖𝑗

𝜎2
|ASD). Residuals from these regressions show the potential impact of population 762 

structure on ∑ 𝐸𝑎𝑖𝑗

𝜎2
. We then, in the second column (b, e, h), investigate these residuals as a 763 

function of the environment autocorrelation (x-axis) and environmental variance (𝜎2; purple). 764 

Lastly, in the third column (c, f, i), we quantify the impact of environment autocorrelation 765 

and variance on the mean buffered size of the population. The pie charts at the top right-hand 766 



corner of panels in (b, e, h), and (c, f, i) detail the proportion of variance in ∑ 𝐸𝑎𝑖𝑗

𝜎2
 that is 767 

explained by environment autocorrelation (orange), environment variance (blue), 768 

environment autocorrelation × variance interaction (grey) and residuals (white). These pie 769 

charts show how environmental autocorrelation is the primary driver of shifts in ∑ 𝐸𝑎𝑖𝑗

𝜎2
 due to 770 

population. 771 

 772 
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 774 

Figure 4. Environment variance (𝜎2) influences demographic buffering (∑ 𝐸𝑎𝑖𝑗

𝜎2
) via the 775 

population’s underlying demographic rates. (a) The relative contribution of progression 776 

(growth conditional on survival: P) and fertility (recruitment of new individuals from 777 

reproductive ones the previous year: F) on ∑ 𝐸𝑎𝑖𝑗

𝜎2
 (i.e., P-F contribution). This approach was 778 

then applied to three plant species: (b) Berberis thunbergii, (c) Calathea crotalifera, and (d) 779 

Heliconia tortuosa). Dots are coloured by the degree of environment autocorrelation 780 

(yellow). The pie charts at the top right-hand corner of panels b-d detail the proportion of 781 

variance in ∑ 𝐸𝑎𝑖𝑗

𝜎2
 that is explained by environment autocorrelation (𝜑, orange), environment 782 

variance (blue), environment autocorrelation × variance interaction (grey) and residuals 783 

(white).  These pie charts show how environment variance is the primary driver of shifts in 784 

the relative contributions of progression and fertility to ∑ 𝐸𝑎𝑖𝑗

𝜎2
. 785 
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